mirror of https://github.com/python/cpython
1021 lines
32 KiB
C
1021 lines
32 KiB
C
|
|
#include "Python.h"
|
|
#include "pycore_ceval.h" // _PyEval_SignalReceived()
|
|
#include "pycore_initconfig.h" // _PyStatus_OK()
|
|
#include "pycore_interp.h" // _Py_RunGC()
|
|
#include "pycore_pyerrors.h" // _PyErr_GetRaisedException()
|
|
#include "pycore_pylifecycle.h" // _PyErr_Print()
|
|
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
|
|
#include "pycore_pystats.h" // _Py_PrintSpecializationStats()
|
|
|
|
/*
|
|
Notes about the implementation:
|
|
|
|
- The GIL is just a boolean variable (locked) whose access is protected
|
|
by a mutex (gil_mutex), and whose changes are signalled by a condition
|
|
variable (gil_cond). gil_mutex is taken for short periods of time,
|
|
and therefore mostly uncontended.
|
|
|
|
- In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
|
|
able to release the GIL on demand by another thread. A volatile boolean
|
|
variable (gil_drop_request) is used for that purpose, which is checked
|
|
at every turn of the eval loop. That variable is set after a wait of
|
|
`interval` microseconds on `gil_cond` has timed out.
|
|
|
|
[Actually, another volatile boolean variable (eval_breaker) is used
|
|
which ORs several conditions into one. Volatile booleans are
|
|
sufficient as inter-thread signalling means since Python is run
|
|
on cache-coherent architectures only.]
|
|
|
|
- A thread wanting to take the GIL will first let pass a given amount of
|
|
time (`interval` microseconds) before setting gil_drop_request. This
|
|
encourages a defined switching period, but doesn't enforce it since
|
|
opcodes can take an arbitrary time to execute.
|
|
|
|
The `interval` value is available for the user to read and modify
|
|
using the Python API `sys.{get,set}switchinterval()`.
|
|
|
|
- When a thread releases the GIL and gil_drop_request is set, that thread
|
|
ensures that another GIL-awaiting thread gets scheduled.
|
|
It does so by waiting on a condition variable (switch_cond) until
|
|
the value of last_holder is changed to something else than its
|
|
own thread state pointer, indicating that another thread was able to
|
|
take the GIL.
|
|
|
|
This is meant to prohibit the latency-adverse behaviour on multi-core
|
|
machines where one thread would speculatively release the GIL, but still
|
|
run and end up being the first to re-acquire it, making the "timeslices"
|
|
much longer than expected.
|
|
(Note: this mechanism is enabled with FORCE_SWITCHING above)
|
|
*/
|
|
|
|
// GH-89279: Force inlining by using a macro.
|
|
#if defined(_MSC_VER) && SIZEOF_INT == 4
|
|
#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) (assert(sizeof((ATOMIC_VAL)->_value) == 4), *((volatile int*)&((ATOMIC_VAL)->_value)))
|
|
#else
|
|
#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) _Py_atomic_load_relaxed(ATOMIC_VAL)
|
|
#endif
|
|
|
|
/* bpo-40010: eval_breaker should be recomputed if there
|
|
is a pending signal: signal received by another thread which cannot
|
|
handle signals.
|
|
Similarly, we set CALLS_TO_DO and ASYNC_EXCEPTION to match the thread.
|
|
*/
|
|
static inline void
|
|
update_eval_breaker_from_thread(PyInterpreterState *interp, PyThreadState *tstate)
|
|
{
|
|
if (tstate == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (_Py_IsMainThread()) {
|
|
int32_t calls_to_do = _Py_atomic_load_int32_relaxed(
|
|
&_PyRuntime.ceval.pending_mainthread.calls_to_do);
|
|
if (calls_to_do) {
|
|
_Py_set_eval_breaker_bit(interp, _PY_CALLS_TO_DO_BIT, 1);
|
|
}
|
|
if (_Py_ThreadCanHandleSignals(interp)) {
|
|
if (_Py_atomic_load_int(&_PyRuntime.signals.is_tripped)) {
|
|
_Py_set_eval_breaker_bit(interp, _PY_SIGNALS_PENDING_BIT, 1);
|
|
}
|
|
}
|
|
}
|
|
if (tstate->async_exc != NULL) {
|
|
_Py_set_eval_breaker_bit(interp, _PY_ASYNC_EXCEPTION_BIT, 1);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
SET_GIL_DROP_REQUEST(PyInterpreterState *interp)
|
|
{
|
|
_Py_set_eval_breaker_bit(interp, _PY_GIL_DROP_REQUEST_BIT, 1);
|
|
}
|
|
|
|
|
|
static inline void
|
|
RESET_GIL_DROP_REQUEST(PyInterpreterState *interp)
|
|
{
|
|
_Py_set_eval_breaker_bit(interp, _PY_GIL_DROP_REQUEST_BIT, 0);
|
|
}
|
|
|
|
|
|
static inline void
|
|
SIGNAL_PENDING_CALLS(PyInterpreterState *interp)
|
|
{
|
|
_Py_set_eval_breaker_bit(interp, _PY_CALLS_TO_DO_BIT, 1);
|
|
}
|
|
|
|
|
|
static inline void
|
|
UNSIGNAL_PENDING_CALLS(PyInterpreterState *interp)
|
|
{
|
|
_Py_set_eval_breaker_bit(interp, _PY_CALLS_TO_DO_BIT, 0);
|
|
}
|
|
|
|
/*
|
|
* Implementation of the Global Interpreter Lock (GIL).
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
|
|
#include "condvar.h"
|
|
|
|
#define MUTEX_INIT(mut) \
|
|
if (PyMUTEX_INIT(&(mut))) { \
|
|
Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
|
|
#define MUTEX_FINI(mut) \
|
|
if (PyMUTEX_FINI(&(mut))) { \
|
|
Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
|
|
#define MUTEX_LOCK(mut) \
|
|
if (PyMUTEX_LOCK(&(mut))) { \
|
|
Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
|
|
#define MUTEX_UNLOCK(mut) \
|
|
if (PyMUTEX_UNLOCK(&(mut))) { \
|
|
Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
|
|
|
|
#define COND_INIT(cond) \
|
|
if (PyCOND_INIT(&(cond))) { \
|
|
Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
|
|
#define COND_FINI(cond) \
|
|
if (PyCOND_FINI(&(cond))) { \
|
|
Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
|
|
#define COND_SIGNAL(cond) \
|
|
if (PyCOND_SIGNAL(&(cond))) { \
|
|
Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
|
|
#define COND_WAIT(cond, mut) \
|
|
if (PyCOND_WAIT(&(cond), &(mut))) { \
|
|
Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
|
|
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
|
|
{ \
|
|
int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
|
|
if (r < 0) \
|
|
Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
|
|
if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
|
|
timeout_result = 1; \
|
|
else \
|
|
timeout_result = 0; \
|
|
} \
|
|
|
|
|
|
#define DEFAULT_INTERVAL 5000
|
|
|
|
static void _gil_initialize(struct _gil_runtime_state *gil)
|
|
{
|
|
gil->locked = -1;
|
|
gil->interval = DEFAULT_INTERVAL;
|
|
}
|
|
|
|
static int gil_created(struct _gil_runtime_state *gil)
|
|
{
|
|
if (gil == NULL) {
|
|
return 0;
|
|
}
|
|
return (_Py_atomic_load_int_acquire(&gil->locked) >= 0);
|
|
}
|
|
|
|
static void create_gil(struct _gil_runtime_state *gil)
|
|
{
|
|
MUTEX_INIT(gil->mutex);
|
|
#ifdef FORCE_SWITCHING
|
|
MUTEX_INIT(gil->switch_mutex);
|
|
#endif
|
|
COND_INIT(gil->cond);
|
|
#ifdef FORCE_SWITCHING
|
|
COND_INIT(gil->switch_cond);
|
|
#endif
|
|
_Py_atomic_store_ptr_relaxed(&gil->last_holder, 0);
|
|
_Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
|
|
_Py_atomic_store_int_release(&gil->locked, 0);
|
|
}
|
|
|
|
static void destroy_gil(struct _gil_runtime_state *gil)
|
|
{
|
|
/* some pthread-like implementations tie the mutex to the cond
|
|
* and must have the cond destroyed first.
|
|
*/
|
|
COND_FINI(gil->cond);
|
|
MUTEX_FINI(gil->mutex);
|
|
#ifdef FORCE_SWITCHING
|
|
COND_FINI(gil->switch_cond);
|
|
MUTEX_FINI(gil->switch_mutex);
|
|
#endif
|
|
_Py_atomic_store_int_release(&gil->locked, -1);
|
|
_Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
|
|
}
|
|
|
|
#ifdef HAVE_FORK
|
|
static void recreate_gil(struct _gil_runtime_state *gil)
|
|
{
|
|
_Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
|
|
/* XXX should we destroy the old OS resources here? */
|
|
create_gil(gil);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
drop_gil(PyInterpreterState *interp, PyThreadState *tstate)
|
|
{
|
|
struct _ceval_state *ceval = &interp->ceval;
|
|
/* If tstate is NULL, the caller is indicating that we're releasing
|
|
the GIL for the last time in this thread. This is particularly
|
|
relevant when the current thread state is finalizing or its
|
|
interpreter is finalizing (either may be in an inconsistent
|
|
state). In that case the current thread will definitely
|
|
never try to acquire the GIL again. */
|
|
// XXX It may be more correct to check tstate->_status.finalizing.
|
|
// XXX assert(tstate == NULL || !tstate->_status.cleared);
|
|
|
|
struct _gil_runtime_state *gil = ceval->gil;
|
|
if (!_Py_atomic_load_ptr_relaxed(&gil->locked)) {
|
|
Py_FatalError("drop_gil: GIL is not locked");
|
|
}
|
|
|
|
/* tstate is allowed to be NULL (early interpreter init) */
|
|
if (tstate != NULL) {
|
|
/* Sub-interpreter support: threads might have been switched
|
|
under our feet using PyThreadState_Swap(). Fix the GIL last
|
|
holder variable so that our heuristics work. */
|
|
_Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
|
|
}
|
|
|
|
MUTEX_LOCK(gil->mutex);
|
|
_Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
|
|
_Py_atomic_store_int_relaxed(&gil->locked, 0);
|
|
COND_SIGNAL(gil->cond);
|
|
MUTEX_UNLOCK(gil->mutex);
|
|
|
|
#ifdef FORCE_SWITCHING
|
|
/* We check tstate first in case we might be releasing the GIL for
|
|
the last time in this thread. In that case there's a possible
|
|
race with tstate->interp getting deleted after gil->mutex is
|
|
unlocked and before the following code runs, leading to a crash.
|
|
We can use (tstate == NULL) to indicate the thread is done with
|
|
the GIL, and that's the only time we might delete the
|
|
interpreter, so checking tstate first prevents the crash.
|
|
See https://github.com/python/cpython/issues/104341. */
|
|
if (tstate != NULL && _Py_eval_breaker_bit_is_set(interp, _PY_GIL_DROP_REQUEST_BIT)) {
|
|
MUTEX_LOCK(gil->switch_mutex);
|
|
/* Not switched yet => wait */
|
|
if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) == tstate)
|
|
{
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
RESET_GIL_DROP_REQUEST(tstate->interp);
|
|
/* NOTE: if COND_WAIT does not atomically start waiting when
|
|
releasing the mutex, another thread can run through, take
|
|
the GIL and drop it again, and reset the condition
|
|
before we even had a chance to wait for it. */
|
|
COND_WAIT(gil->switch_cond, gil->switch_mutex);
|
|
}
|
|
MUTEX_UNLOCK(gil->switch_mutex);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Take the GIL.
|
|
|
|
The function saves errno at entry and restores its value at exit.
|
|
|
|
tstate must be non-NULL. */
|
|
static void
|
|
take_gil(PyThreadState *tstate)
|
|
{
|
|
int err = errno;
|
|
|
|
assert(tstate != NULL);
|
|
/* We shouldn't be using a thread state that isn't viable any more. */
|
|
// XXX It may be more correct to check tstate->_status.finalizing.
|
|
// XXX assert(!tstate->_status.cleared);
|
|
|
|
if (_PyThreadState_MustExit(tstate)) {
|
|
/* bpo-39877: If Py_Finalize() has been called and tstate is not the
|
|
thread which called Py_Finalize(), exit immediately the thread.
|
|
|
|
This code path can be reached by a daemon thread after Py_Finalize()
|
|
completes. In this case, tstate is a dangling pointer: points to
|
|
PyThreadState freed memory. */
|
|
PyThread_exit_thread();
|
|
}
|
|
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
PyInterpreterState *interp = tstate->interp;
|
|
struct _gil_runtime_state *gil = interp->ceval.gil;
|
|
|
|
/* Check that _PyEval_InitThreads() was called to create the lock */
|
|
assert(gil_created(gil));
|
|
|
|
MUTEX_LOCK(gil->mutex);
|
|
|
|
int drop_requested = 0;
|
|
while (_Py_atomic_load_int_relaxed(&gil->locked)) {
|
|
unsigned long saved_switchnum = gil->switch_number;
|
|
|
|
unsigned long interval = (gil->interval >= 1 ? gil->interval : 1);
|
|
int timed_out = 0;
|
|
COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
|
|
|
|
/* If we timed out and no switch occurred in the meantime, it is time
|
|
to ask the GIL-holding thread to drop it. */
|
|
if (timed_out &&
|
|
_Py_atomic_load_int_relaxed(&gil->locked) &&
|
|
gil->switch_number == saved_switchnum)
|
|
{
|
|
if (_PyThreadState_MustExit(tstate)) {
|
|
MUTEX_UNLOCK(gil->mutex);
|
|
// gh-96387: If the loop requested a drop request in a previous
|
|
// iteration, reset the request. Otherwise, drop_gil() can
|
|
// block forever waiting for the thread which exited. Drop
|
|
// requests made by other threads are also reset: these threads
|
|
// may have to request again a drop request (iterate one more
|
|
// time).
|
|
if (drop_requested) {
|
|
RESET_GIL_DROP_REQUEST(interp);
|
|
}
|
|
PyThread_exit_thread();
|
|
}
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
|
|
SET_GIL_DROP_REQUEST(interp);
|
|
drop_requested = 1;
|
|
}
|
|
}
|
|
|
|
#ifdef FORCE_SWITCHING
|
|
/* This mutex must be taken before modifying gil->last_holder:
|
|
see drop_gil(). */
|
|
MUTEX_LOCK(gil->switch_mutex);
|
|
#endif
|
|
/* We now hold the GIL */
|
|
_Py_atomic_store_int_relaxed(&gil->locked, 1);
|
|
_Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
|
|
|
|
if (tstate != (PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) {
|
|
_Py_atomic_store_ptr_relaxed(&gil->last_holder, tstate);
|
|
++gil->switch_number;
|
|
}
|
|
|
|
#ifdef FORCE_SWITCHING
|
|
COND_SIGNAL(gil->switch_cond);
|
|
MUTEX_UNLOCK(gil->switch_mutex);
|
|
#endif
|
|
|
|
if (_PyThreadState_MustExit(tstate)) {
|
|
/* bpo-36475: If Py_Finalize() has been called and tstate is not
|
|
the thread which called Py_Finalize(), exit immediately the
|
|
thread.
|
|
|
|
This code path can be reached by a daemon thread which was waiting
|
|
in take_gil() while the main thread called
|
|
wait_for_thread_shutdown() from Py_Finalize(). */
|
|
MUTEX_UNLOCK(gil->mutex);
|
|
drop_gil(interp, tstate);
|
|
PyThread_exit_thread();
|
|
}
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
|
|
RESET_GIL_DROP_REQUEST(interp);
|
|
update_eval_breaker_from_thread(interp, tstate);
|
|
|
|
MUTEX_UNLOCK(gil->mutex);
|
|
|
|
errno = err;
|
|
}
|
|
|
|
void _PyEval_SetSwitchInterval(unsigned long microseconds)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
struct _gil_runtime_state *gil = interp->ceval.gil;
|
|
assert(gil != NULL);
|
|
gil->interval = microseconds;
|
|
}
|
|
|
|
unsigned long _PyEval_GetSwitchInterval(void)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
struct _gil_runtime_state *gil = interp->ceval.gil;
|
|
assert(gil != NULL);
|
|
return gil->interval;
|
|
}
|
|
|
|
|
|
int
|
|
_PyEval_ThreadsInitialized(void)
|
|
{
|
|
/* XXX This is only needed for an assert in PyGILState_Ensure(),
|
|
* which currently does not work with subinterpreters.
|
|
* Thus we only use the main interpreter. */
|
|
PyInterpreterState *interp = _PyInterpreterState_Main();
|
|
if (interp == NULL) {
|
|
return 0;
|
|
}
|
|
struct _gil_runtime_state *gil = interp->ceval.gil;
|
|
return gil_created(gil);
|
|
}
|
|
|
|
// Function removed in the Python 3.13 API but kept in the stable ABI.
|
|
PyAPI_FUNC(int)
|
|
PyEval_ThreadsInitialized(void)
|
|
{
|
|
return _PyEval_ThreadsInitialized();
|
|
}
|
|
|
|
static inline int
|
|
current_thread_holds_gil(struct _gil_runtime_state *gil, PyThreadState *tstate)
|
|
{
|
|
if (((PyThreadState*)_Py_atomic_load_ptr_relaxed(&gil->last_holder)) != tstate) {
|
|
return 0;
|
|
}
|
|
return _Py_atomic_load_int_relaxed(&gil->locked);
|
|
}
|
|
|
|
static void
|
|
init_shared_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
|
|
{
|
|
assert(gil_created(gil));
|
|
interp->ceval.gil = gil;
|
|
interp->ceval.own_gil = 0;
|
|
}
|
|
|
|
static void
|
|
init_own_gil(PyInterpreterState *interp, struct _gil_runtime_state *gil)
|
|
{
|
|
assert(!gil_created(gil));
|
|
create_gil(gil);
|
|
assert(gil_created(gil));
|
|
interp->ceval.gil = gil;
|
|
interp->ceval.own_gil = 1;
|
|
}
|
|
|
|
void
|
|
_PyEval_InitGIL(PyThreadState *tstate, int own_gil)
|
|
{
|
|
assert(tstate->interp->ceval.gil == NULL);
|
|
if (!own_gil) {
|
|
/* The interpreter will share the main interpreter's instead. */
|
|
PyInterpreterState *main_interp = _PyInterpreterState_Main();
|
|
assert(tstate->interp != main_interp);
|
|
struct _gil_runtime_state *gil = main_interp->ceval.gil;
|
|
init_shared_gil(tstate->interp, gil);
|
|
assert(!current_thread_holds_gil(gil, tstate));
|
|
}
|
|
else {
|
|
PyThread_init_thread();
|
|
init_own_gil(tstate->interp, &tstate->interp->_gil);
|
|
}
|
|
|
|
// Lock the GIL and mark the current thread as attached.
|
|
_PyThreadState_Attach(tstate);
|
|
}
|
|
|
|
void
|
|
_PyEval_FiniGIL(PyInterpreterState *interp)
|
|
{
|
|
struct _gil_runtime_state *gil = interp->ceval.gil;
|
|
if (gil == NULL) {
|
|
/* It was already finalized (or hasn't been initialized yet). */
|
|
assert(!interp->ceval.own_gil);
|
|
return;
|
|
}
|
|
else if (!interp->ceval.own_gil) {
|
|
#ifdef Py_DEBUG
|
|
PyInterpreterState *main_interp = _PyInterpreterState_Main();
|
|
assert(main_interp != NULL && interp != main_interp);
|
|
assert(interp->ceval.gil == main_interp->ceval.gil);
|
|
#endif
|
|
interp->ceval.gil = NULL;
|
|
return;
|
|
}
|
|
|
|
if (!gil_created(gil)) {
|
|
/* First Py_InitializeFromConfig() call: the GIL doesn't exist
|
|
yet: do nothing. */
|
|
return;
|
|
}
|
|
|
|
destroy_gil(gil);
|
|
assert(!gil_created(gil));
|
|
interp->ceval.gil = NULL;
|
|
}
|
|
|
|
// Function removed in the Python 3.13 API but kept in the stable ABI.
|
|
PyAPI_FUNC(void)
|
|
PyEval_InitThreads(void)
|
|
{
|
|
/* Do nothing: kept for backward compatibility */
|
|
}
|
|
|
|
void
|
|
_PyEval_Fini(void)
|
|
{
|
|
#ifdef Py_STATS
|
|
_Py_PrintSpecializationStats(1);
|
|
#endif
|
|
}
|
|
|
|
// Function removed in the Python 3.13 API but kept in the stable ABI.
|
|
PyAPI_FUNC(void)
|
|
PyEval_AcquireLock(void)
|
|
{
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
|
|
take_gil(tstate);
|
|
}
|
|
|
|
// Function removed in the Python 3.13 API but kept in the stable ABI.
|
|
PyAPI_FUNC(void)
|
|
PyEval_ReleaseLock(void)
|
|
{
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
/* This function must succeed when the current thread state is NULL.
|
|
We therefore avoid PyThreadState_Get() which dumps a fatal error
|
|
in debug mode. */
|
|
drop_gil(tstate->interp, tstate);
|
|
}
|
|
|
|
void
|
|
_PyEval_AcquireLock(PyThreadState *tstate)
|
|
{
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
take_gil(tstate);
|
|
}
|
|
|
|
void
|
|
_PyEval_ReleaseLock(PyInterpreterState *interp, PyThreadState *tstate)
|
|
{
|
|
/* If tstate is NULL then we do not expect the current thread
|
|
to acquire the GIL ever again. */
|
|
assert(tstate == NULL || tstate->interp == interp);
|
|
drop_gil(interp, tstate);
|
|
}
|
|
|
|
void
|
|
PyEval_AcquireThread(PyThreadState *tstate)
|
|
{
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
_PyThreadState_Attach(tstate);
|
|
}
|
|
|
|
void
|
|
PyEval_ReleaseThread(PyThreadState *tstate)
|
|
{
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
_PyThreadState_Detach(tstate);
|
|
}
|
|
|
|
#ifdef HAVE_FORK
|
|
/* This function is called from PyOS_AfterFork_Child to destroy all threads
|
|
which are not running in the child process, and clear internal locks
|
|
which might be held by those threads. */
|
|
PyStatus
|
|
_PyEval_ReInitThreads(PyThreadState *tstate)
|
|
{
|
|
assert(tstate->interp == _PyInterpreterState_Main());
|
|
|
|
struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
|
|
if (!gil_created(gil)) {
|
|
return _PyStatus_OK();
|
|
}
|
|
recreate_gil(gil);
|
|
|
|
take_gil(tstate);
|
|
|
|
struct _pending_calls *pending = &tstate->interp->ceval.pending;
|
|
_PyMutex_at_fork_reinit(&pending->mutex);
|
|
|
|
/* Destroy all threads except the current one */
|
|
_PyThreadState_DeleteExcept(tstate);
|
|
return _PyStatus_OK();
|
|
}
|
|
#endif
|
|
|
|
/* This function is used to signal that async exceptions are waiting to be
|
|
raised. */
|
|
|
|
void
|
|
_PyEval_SignalAsyncExc(PyInterpreterState *interp)
|
|
{
|
|
_Py_set_eval_breaker_bit(interp, _PY_ASYNC_EXCEPTION_BIT, 1);
|
|
}
|
|
|
|
PyThreadState *
|
|
PyEval_SaveThread(void)
|
|
{
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
_PyThreadState_Detach(tstate);
|
|
return tstate;
|
|
}
|
|
|
|
void
|
|
PyEval_RestoreThread(PyThreadState *tstate)
|
|
{
|
|
#ifdef MS_WINDOWS
|
|
int err = GetLastError();
|
|
#endif
|
|
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
_PyThreadState_Attach(tstate);
|
|
|
|
#ifdef MS_WINDOWS
|
|
SetLastError(err);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
|
|
signal handlers or Mac I/O completion routines) can schedule calls
|
|
to a function to be called synchronously.
|
|
The synchronous function is called with one void* argument.
|
|
It should return 0 for success or -1 for failure -- failure should
|
|
be accompanied by an exception.
|
|
|
|
If registry succeeds, the registry function returns 0; if it fails
|
|
(e.g. due to too many pending calls) it returns -1 (without setting
|
|
an exception condition).
|
|
|
|
Note that because registry may occur from within signal handlers,
|
|
or other asynchronous events, calling malloc() is unsafe!
|
|
|
|
Any thread can schedule pending calls, but only the main thread
|
|
will execute them.
|
|
There is no facility to schedule calls to a particular thread, but
|
|
that should be easy to change, should that ever be required. In
|
|
that case, the static variables here should go into the python
|
|
threadstate.
|
|
*/
|
|
|
|
void
|
|
_PyEval_SignalReceived(PyInterpreterState *interp)
|
|
{
|
|
if (_Py_ThreadCanHandleSignals(interp)) {
|
|
_Py_set_eval_breaker_bit(interp, _PY_SIGNALS_PENDING_BIT, 1);
|
|
}
|
|
}
|
|
|
|
/* Push one item onto the queue while holding the lock. */
|
|
static int
|
|
_push_pending_call(struct _pending_calls *pending,
|
|
_Py_pending_call_func func, void *arg, int flags)
|
|
{
|
|
int i = pending->last;
|
|
int j = (i + 1) % NPENDINGCALLS;
|
|
if (j == pending->first) {
|
|
return -1; /* Queue full */
|
|
}
|
|
pending->calls[i].func = func;
|
|
pending->calls[i].arg = arg;
|
|
pending->calls[i].flags = flags;
|
|
pending->last = j;
|
|
assert(pending->calls_to_do < NPENDINGCALLS);
|
|
pending->calls_to_do++;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_next_pending_call(struct _pending_calls *pending,
|
|
int (**func)(void *), void **arg, int *flags)
|
|
{
|
|
int i = pending->first;
|
|
if (i == pending->last) {
|
|
/* Queue empty */
|
|
assert(pending->calls[i].func == NULL);
|
|
return -1;
|
|
}
|
|
*func = pending->calls[i].func;
|
|
*arg = pending->calls[i].arg;
|
|
*flags = pending->calls[i].flags;
|
|
return i;
|
|
}
|
|
|
|
/* Pop one item off the queue while holding the lock. */
|
|
static void
|
|
_pop_pending_call(struct _pending_calls *pending,
|
|
int (**func)(void *), void **arg, int *flags)
|
|
{
|
|
int i = _next_pending_call(pending, func, arg, flags);
|
|
if (i >= 0) {
|
|
pending->calls[i] = (struct _pending_call){0};
|
|
pending->first = (i + 1) % NPENDINGCALLS;
|
|
assert(pending->calls_to_do > 0);
|
|
pending->calls_to_do--;
|
|
}
|
|
}
|
|
|
|
/* This implementation is thread-safe. It allows
|
|
scheduling to be made from any thread, and even from an executing
|
|
callback.
|
|
*/
|
|
|
|
int
|
|
_PyEval_AddPendingCall(PyInterpreterState *interp,
|
|
_Py_pending_call_func func, void *arg, int flags)
|
|
{
|
|
assert(!(flags & _Py_PENDING_MAINTHREADONLY)
|
|
|| _Py_IsMainInterpreter(interp));
|
|
struct _pending_calls *pending = &interp->ceval.pending;
|
|
if (flags & _Py_PENDING_MAINTHREADONLY) {
|
|
/* The main thread only exists in the main interpreter. */
|
|
assert(_Py_IsMainInterpreter(interp));
|
|
pending = &_PyRuntime.ceval.pending_mainthread;
|
|
}
|
|
|
|
PyMutex_Lock(&pending->mutex);
|
|
int result = _push_pending_call(pending, func, arg, flags);
|
|
PyMutex_Unlock(&pending->mutex);
|
|
|
|
/* signal main loop */
|
|
SIGNAL_PENDING_CALLS(interp);
|
|
return result;
|
|
}
|
|
|
|
int
|
|
Py_AddPendingCall(_Py_pending_call_func func, void *arg)
|
|
{
|
|
/* Legacy users of this API will continue to target the main thread
|
|
(of the main interpreter). */
|
|
PyInterpreterState *interp = _PyInterpreterState_Main();
|
|
return _PyEval_AddPendingCall(interp, func, arg, _Py_PENDING_MAINTHREADONLY);
|
|
}
|
|
|
|
static int
|
|
handle_signals(PyThreadState *tstate)
|
|
{
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
_Py_set_eval_breaker_bit(tstate->interp, _PY_SIGNALS_PENDING_BIT, 0);
|
|
if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
|
|
return 0;
|
|
}
|
|
if (_PyErr_CheckSignalsTstate(tstate) < 0) {
|
|
/* On failure, re-schedule a call to handle_signals(). */
|
|
_Py_set_eval_breaker_bit(tstate->interp, _PY_SIGNALS_PENDING_BIT, 1);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_make_pending_calls(struct _pending_calls *pending)
|
|
{
|
|
/* perform a bounded number of calls, in case of recursion */
|
|
for (int i=0; i<NPENDINGCALLS; i++) {
|
|
_Py_pending_call_func func = NULL;
|
|
void *arg = NULL;
|
|
int flags = 0;
|
|
|
|
/* pop one item off the queue while holding the lock */
|
|
PyMutex_Lock(&pending->mutex);
|
|
_pop_pending_call(pending, &func, &arg, &flags);
|
|
PyMutex_Unlock(&pending->mutex);
|
|
|
|
/* having released the lock, perform the callback */
|
|
if (func == NULL) {
|
|
break;
|
|
}
|
|
int res = func(arg);
|
|
if ((flags & _Py_PENDING_RAWFREE) && arg != NULL) {
|
|
PyMem_RawFree(arg);
|
|
}
|
|
if (res != 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
make_pending_calls(PyInterpreterState *interp)
|
|
{
|
|
struct _pending_calls *pending = &interp->ceval.pending;
|
|
struct _pending_calls *pending_main = &_PyRuntime.ceval.pending_mainthread;
|
|
|
|
/* Only one thread (per interpreter) may run the pending calls
|
|
at once. In the same way, we don't do recursive pending calls. */
|
|
PyMutex_Lock(&pending->mutex);
|
|
if (pending->busy) {
|
|
/* A pending call was added after another thread was already
|
|
handling the pending calls (and had already "unsignaled").
|
|
Once that thread is done, it may have taken care of all the
|
|
pending calls, or there might be some still waiting.
|
|
Regardless, this interpreter's pending calls will stay
|
|
"signaled" until that first thread has finished. At that
|
|
point the next thread to trip the eval breaker will take
|
|
care of any remaining pending calls. Until then, though,
|
|
all the interpreter's threads will be tripping the eval
|
|
breaker every time it's checked. */
|
|
PyMutex_Unlock(&pending->mutex);
|
|
return 0;
|
|
}
|
|
pending->busy = 1;
|
|
PyMutex_Unlock(&pending->mutex);
|
|
|
|
/* unsignal before starting to call callbacks, so that any callback
|
|
added in-between re-signals */
|
|
UNSIGNAL_PENDING_CALLS(interp);
|
|
|
|
if (_make_pending_calls(pending) != 0) {
|
|
pending->busy = 0;
|
|
/* There might not be more calls to make, but we play it safe. */
|
|
SIGNAL_PENDING_CALLS(interp);
|
|
return -1;
|
|
}
|
|
|
|
if (_Py_IsMainThread() && _Py_IsMainInterpreter(interp)) {
|
|
if (_make_pending_calls(pending_main) != 0) {
|
|
pending->busy = 0;
|
|
/* There might not be more calls to make, but we play it safe. */
|
|
SIGNAL_PENDING_CALLS(interp);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
pending->busy = 0;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
_Py_FinishPendingCalls(PyThreadState *tstate)
|
|
{
|
|
assert(PyGILState_Check());
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
|
|
if (make_pending_calls(tstate->interp) < 0) {
|
|
PyObject *exc = _PyErr_GetRaisedException(tstate);
|
|
PyErr_BadInternalCall();
|
|
_PyErr_ChainExceptions1(exc);
|
|
_PyErr_Print(tstate);
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyEval_MakePendingCalls(PyThreadState *tstate)
|
|
{
|
|
int res;
|
|
|
|
if (_Py_IsMainThread() && _Py_IsMainInterpreter(tstate->interp)) {
|
|
/* Python signal handler doesn't really queue a callback:
|
|
it only signals that a signal was received,
|
|
see _PyEval_SignalReceived(). */
|
|
res = handle_signals(tstate);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
res = make_pending_calls(tstate->interp);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Py_MakePendingCalls() is a simple wrapper for the sake
|
|
of backward-compatibility. */
|
|
int
|
|
Py_MakePendingCalls(void)
|
|
{
|
|
assert(PyGILState_Check());
|
|
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
|
|
/* Only execute pending calls on the main thread. */
|
|
if (!_Py_IsMainThread() || !_Py_IsMainInterpreter(tstate->interp)) {
|
|
return 0;
|
|
}
|
|
return _PyEval_MakePendingCalls(tstate);
|
|
}
|
|
|
|
void
|
|
_PyEval_InitState(PyInterpreterState *interp)
|
|
{
|
|
_gil_initialize(&interp->_gil);
|
|
}
|
|
|
|
|
|
/* Do periodic things, like check for signals and async I/0.
|
|
* We need to do reasonably frequently, but not too frequently.
|
|
* All loops should include a check of the eval breaker.
|
|
* We also check on return from any builtin function.
|
|
*
|
|
* ## More Details ###
|
|
*
|
|
* The eval loop (this function) normally executes the instructions
|
|
* of a code object sequentially. However, the runtime supports a
|
|
* number of out-of-band execution scenarios that may pause that
|
|
* sequential execution long enough to do that out-of-band work
|
|
* in the current thread using the current PyThreadState.
|
|
*
|
|
* The scenarios include:
|
|
*
|
|
* - cyclic garbage collection
|
|
* - GIL drop requests
|
|
* - "async" exceptions
|
|
* - "pending calls" (some only in the main thread)
|
|
* - signal handling (only in the main thread)
|
|
*
|
|
* When the need for one of the above is detected, the eval loop
|
|
* pauses long enough to handle the detected case. Then, if doing
|
|
* so didn't trigger an exception, the eval loop resumes executing
|
|
* the sequential instructions.
|
|
*
|
|
* To make this work, the eval loop periodically checks if any
|
|
* of the above needs to happen. The individual checks can be
|
|
* expensive if computed each time, so a while back we switched
|
|
* to using pre-computed, per-interpreter variables for the checks,
|
|
* and later consolidated that to a single "eval breaker" variable
|
|
* (now a PyInterpreterState field).
|
|
*
|
|
* For the longest time, the eval breaker check would happen
|
|
* frequently, every 5 or so times through the loop, regardless
|
|
* of what instruction ran last or what would run next. Then, in
|
|
* early 2021 (gh-18334, commit 4958f5d), we switched to checking
|
|
* the eval breaker less frequently, by hard-coding the check to
|
|
* specific places in the eval loop (e.g. certain instructions).
|
|
* The intent then was to check after returning from calls
|
|
* and on the back edges of loops.
|
|
*
|
|
* In addition to being more efficient, that approach keeps
|
|
* the eval loop from running arbitrary code between instructions
|
|
* that don't handle that well. (See gh-74174.)
|
|
*
|
|
* Currently, the eval breaker check happens on back edges in
|
|
* the control flow graph, which pretty much applies to all loops,
|
|
* and most calls.
|
|
* (See bytecodes.c for exact information.)
|
|
*
|
|
* One consequence of this approach is that it might not be obvious
|
|
* how to force any specific thread to pick up the eval breaker,
|
|
* or for any specific thread to not pick it up. Mostly this
|
|
* involves judicious uses of locks and careful ordering of code,
|
|
* while avoiding code that might trigger the eval breaker
|
|
* until so desired.
|
|
*/
|
|
int
|
|
_Py_HandlePending(PyThreadState *tstate)
|
|
{
|
|
PyInterpreterState *interp = tstate->interp;
|
|
|
|
/* Stop-the-world */
|
|
if (_Py_eval_breaker_bit_is_set(interp, _PY_EVAL_PLEASE_STOP_BIT)) {
|
|
_Py_set_eval_breaker_bit(interp, _PY_EVAL_PLEASE_STOP_BIT, 0);
|
|
_PyThreadState_Suspend(tstate);
|
|
|
|
/* The attach blocks until the stop-the-world event is complete. */
|
|
_PyThreadState_Attach(tstate);
|
|
}
|
|
|
|
/* Pending signals */
|
|
if (_Py_eval_breaker_bit_is_set(interp, _PY_SIGNALS_PENDING_BIT)) {
|
|
if (handle_signals(tstate) != 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Pending calls */
|
|
if (_Py_eval_breaker_bit_is_set(interp, _PY_CALLS_TO_DO_BIT)) {
|
|
if (make_pending_calls(interp) != 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
/* Objects with refcounts to merge */
|
|
if (_Py_eval_breaker_bit_is_set(interp, _PY_EVAL_EXPLICIT_MERGE_BIT)) {
|
|
_Py_set_eval_breaker_bit(interp, _PY_EVAL_EXPLICIT_MERGE_BIT, 0);
|
|
_Py_brc_merge_refcounts(tstate);
|
|
}
|
|
#endif
|
|
|
|
/* GC scheduled to run */
|
|
if (_Py_eval_breaker_bit_is_set(interp, _PY_GC_SCHEDULED_BIT)) {
|
|
_Py_set_eval_breaker_bit(interp, _PY_GC_SCHEDULED_BIT, 0);
|
|
_Py_RunGC(tstate);
|
|
}
|
|
|
|
/* GIL drop request */
|
|
if (_Py_eval_breaker_bit_is_set(interp, _PY_GIL_DROP_REQUEST_BIT)) {
|
|
/* Give another thread a chance */
|
|
_PyThreadState_Detach(tstate);
|
|
|
|
/* Other threads may run now */
|
|
|
|
_PyThreadState_Attach(tstate);
|
|
}
|
|
|
|
/* Check for asynchronous exception. */
|
|
if (_Py_eval_breaker_bit_is_set(interp, _PY_ASYNC_EXCEPTION_BIT)) {
|
|
_Py_set_eval_breaker_bit(interp, _PY_ASYNC_EXCEPTION_BIT, 0);
|
|
if (tstate->async_exc != NULL) {
|
|
PyObject *exc = tstate->async_exc;
|
|
tstate->async_exc = NULL;
|
|
_PyErr_SetNone(tstate, exc);
|
|
Py_DECREF(exc);
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|