mirror of https://github.com/python/cpython
3439 lines
115 KiB
Python
3439 lines
115 KiB
Python
"""
|
|
The typing module: Support for gradual typing as defined by PEP 484.
|
|
|
|
At large scale, the structure of the module is following:
|
|
* Imports and exports, all public names should be explicitly added to __all__.
|
|
* Internal helper functions: these should never be used in code outside this module.
|
|
* _SpecialForm and its instances (special forms):
|
|
Any, NoReturn, Never, ClassVar, Union, Optional, Concatenate, Unpack
|
|
* Classes whose instances can be type arguments in addition to types:
|
|
ForwardRef, TypeVar and ParamSpec
|
|
* The core of internal generics API: _GenericAlias and _VariadicGenericAlias, the latter is
|
|
currently only used by Tuple and Callable. All subscripted types like X[int], Union[int, str],
|
|
etc., are instances of either of these classes.
|
|
* The public counterpart of the generics API consists of two classes: Generic and Protocol.
|
|
* Public helper functions: get_type_hints, overload, cast, no_type_check,
|
|
no_type_check_decorator.
|
|
* Generic aliases for collections.abc ABCs and few additional protocols.
|
|
* Special types: NewType, NamedTuple, TypedDict.
|
|
* Wrapper submodules for re and io related types.
|
|
"""
|
|
|
|
from abc import abstractmethod, ABCMeta
|
|
import collections
|
|
from collections import defaultdict
|
|
import collections.abc
|
|
import contextlib
|
|
import functools
|
|
import operator
|
|
import re as stdlib_re # Avoid confusion with the re we export.
|
|
import sys
|
|
import types
|
|
import warnings
|
|
from types import WrapperDescriptorType, MethodWrapperType, MethodDescriptorType, GenericAlias
|
|
|
|
|
|
try:
|
|
from _typing import _idfunc
|
|
except ImportError:
|
|
def _idfunc(_, x):
|
|
return x
|
|
|
|
# Please keep __all__ alphabetized within each category.
|
|
__all__ = [
|
|
# Super-special typing primitives.
|
|
'Annotated',
|
|
'Any',
|
|
'Callable',
|
|
'ClassVar',
|
|
'Concatenate',
|
|
'Final',
|
|
'ForwardRef',
|
|
'Generic',
|
|
'Literal',
|
|
'Optional',
|
|
'ParamSpec',
|
|
'Protocol',
|
|
'Tuple',
|
|
'Type',
|
|
'TypeVar',
|
|
'TypeVarTuple',
|
|
'Union',
|
|
|
|
# ABCs (from collections.abc).
|
|
'AbstractSet', # collections.abc.Set.
|
|
'ByteString',
|
|
'Container',
|
|
'ContextManager',
|
|
'Hashable',
|
|
'ItemsView',
|
|
'Iterable',
|
|
'Iterator',
|
|
'KeysView',
|
|
'Mapping',
|
|
'MappingView',
|
|
'MutableMapping',
|
|
'MutableSequence',
|
|
'MutableSet',
|
|
'Sequence',
|
|
'Sized',
|
|
'ValuesView',
|
|
'Awaitable',
|
|
'AsyncIterator',
|
|
'AsyncIterable',
|
|
'Coroutine',
|
|
'Collection',
|
|
'AsyncGenerator',
|
|
'AsyncContextManager',
|
|
|
|
# Structural checks, a.k.a. protocols.
|
|
'Reversible',
|
|
'SupportsAbs',
|
|
'SupportsBytes',
|
|
'SupportsComplex',
|
|
'SupportsFloat',
|
|
'SupportsIndex',
|
|
'SupportsInt',
|
|
'SupportsRound',
|
|
|
|
# Concrete collection types.
|
|
'ChainMap',
|
|
'Counter',
|
|
'Deque',
|
|
'Dict',
|
|
'DefaultDict',
|
|
'List',
|
|
'OrderedDict',
|
|
'Set',
|
|
'FrozenSet',
|
|
'NamedTuple', # Not really a type.
|
|
'TypedDict', # Not really a type.
|
|
'Generator',
|
|
|
|
# Other concrete types.
|
|
'BinaryIO',
|
|
'IO',
|
|
'Match',
|
|
'Pattern',
|
|
'TextIO',
|
|
|
|
# One-off things.
|
|
'AnyStr',
|
|
'assert_type',
|
|
'assert_never',
|
|
'cast',
|
|
'clear_overloads',
|
|
'dataclass_transform',
|
|
'final',
|
|
'get_args',
|
|
'get_origin',
|
|
'get_overloads',
|
|
'get_type_hints',
|
|
'is_typeddict',
|
|
'LiteralString',
|
|
'Never',
|
|
'NewType',
|
|
'no_type_check',
|
|
'no_type_check_decorator',
|
|
'NoReturn',
|
|
'NotRequired',
|
|
'overload',
|
|
'ParamSpecArgs',
|
|
'ParamSpecKwargs',
|
|
'Required',
|
|
'reveal_type',
|
|
'runtime_checkable',
|
|
'Self',
|
|
'Text',
|
|
'TYPE_CHECKING',
|
|
'TypeAlias',
|
|
'TypeGuard',
|
|
'Unpack',
|
|
]
|
|
|
|
# The pseudo-submodules 're' and 'io' are part of the public
|
|
# namespace, but excluded from __all__ because they might stomp on
|
|
# legitimate imports of those modules.
|
|
|
|
|
|
def _type_convert(arg, module=None, *, allow_special_forms=False):
|
|
"""For converting None to type(None), and strings to ForwardRef."""
|
|
if arg is None:
|
|
return type(None)
|
|
if isinstance(arg, str):
|
|
return ForwardRef(arg, module=module, is_class=allow_special_forms)
|
|
return arg
|
|
|
|
|
|
def _type_check(arg, msg, is_argument=True, module=None, *, allow_special_forms=False):
|
|
"""Check that the argument is a type, and return it (internal helper).
|
|
|
|
As a special case, accept None and return type(None) instead. Also wrap strings
|
|
into ForwardRef instances. Consider several corner cases, for example plain
|
|
special forms like Union are not valid, while Union[int, str] is OK, etc.
|
|
The msg argument is a human-readable error message, e.g::
|
|
|
|
"Union[arg, ...]: arg should be a type."
|
|
|
|
We append the repr() of the actual value (truncated to 100 chars).
|
|
"""
|
|
invalid_generic_forms = (Generic, Protocol)
|
|
if not allow_special_forms:
|
|
invalid_generic_forms += (ClassVar,)
|
|
if is_argument:
|
|
invalid_generic_forms += (Final,)
|
|
|
|
arg = _type_convert(arg, module=module, allow_special_forms=allow_special_forms)
|
|
if (isinstance(arg, _GenericAlias) and
|
|
arg.__origin__ in invalid_generic_forms):
|
|
raise TypeError(f"{arg} is not valid as type argument")
|
|
if arg in (Any, LiteralString, NoReturn, Never, Self, TypeAlias):
|
|
return arg
|
|
if allow_special_forms and arg in (ClassVar, Final):
|
|
return arg
|
|
if isinstance(arg, _SpecialForm) or arg in (Generic, Protocol):
|
|
raise TypeError(f"Plain {arg} is not valid as type argument")
|
|
if type(arg) is tuple:
|
|
raise TypeError(f"{msg} Got {arg!r:.100}.")
|
|
return arg
|
|
|
|
|
|
def _is_param_expr(arg):
|
|
return arg is ... or isinstance(arg,
|
|
(tuple, list, ParamSpec, _ConcatenateGenericAlias))
|
|
|
|
|
|
def _should_unflatten_callable_args(typ, args):
|
|
"""Internal helper for munging collections.abc.Callable's __args__.
|
|
|
|
The canonical representation for a Callable's __args__ flattens the
|
|
argument types, see https://bugs.python.org/issue42195. For example:
|
|
|
|
collections.abc.Callable[[int, int], str].__args__ == (int, int, str)
|
|
collections.abc.Callable[ParamSpec, str].__args__ == (ParamSpec, str)
|
|
|
|
As a result, if we need to reconstruct the Callable from its __args__,
|
|
we need to unflatten it.
|
|
"""
|
|
return (
|
|
typ.__origin__ is collections.abc.Callable
|
|
and not (len(args) == 2 and _is_param_expr(args[0]))
|
|
)
|
|
|
|
|
|
def _type_repr(obj):
|
|
"""Return the repr() of an object, special-casing types (internal helper).
|
|
|
|
If obj is a type, we return a shorter version than the default
|
|
type.__repr__, based on the module and qualified name, which is
|
|
typically enough to uniquely identify a type. For everything
|
|
else, we fall back on repr(obj).
|
|
"""
|
|
if isinstance(obj, types.GenericAlias):
|
|
return repr(obj)
|
|
if isinstance(obj, type):
|
|
if obj.__module__ == 'builtins':
|
|
return obj.__qualname__
|
|
return f'{obj.__module__}.{obj.__qualname__}'
|
|
if obj is ...:
|
|
return('...')
|
|
if isinstance(obj, types.FunctionType):
|
|
return obj.__name__
|
|
return repr(obj)
|
|
|
|
|
|
def _collect_parameters(args):
|
|
"""Collect all type variables and parameter specifications in args
|
|
in order of first appearance (lexicographic order). For example::
|
|
|
|
_collect_parameters((T, Callable[P, T])) == (T, P)
|
|
"""
|
|
parameters = []
|
|
for t in args:
|
|
# We don't want __parameters__ descriptor of a bare Python class.
|
|
if isinstance(t, type):
|
|
continue
|
|
if hasattr(t, '__typing_subst__'):
|
|
if t not in parameters:
|
|
parameters.append(t)
|
|
else:
|
|
for x in getattr(t, '__parameters__', ()):
|
|
if x not in parameters:
|
|
parameters.append(x)
|
|
return tuple(parameters)
|
|
|
|
|
|
def _check_generic(cls, parameters, elen):
|
|
"""Check correct count for parameters of a generic cls (internal helper).
|
|
This gives a nice error message in case of count mismatch.
|
|
"""
|
|
if not elen:
|
|
raise TypeError(f"{cls} is not a generic class")
|
|
alen = len(parameters)
|
|
if alen != elen:
|
|
raise TypeError(f"Too {'many' if alen > elen else 'few'} arguments for {cls};"
|
|
f" actual {alen}, expected {elen}")
|
|
|
|
def _unpack_args(args):
|
|
newargs = []
|
|
for arg in args:
|
|
subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
|
|
if subargs is not None and not (subargs and subargs[-1] is ...):
|
|
newargs.extend(subargs)
|
|
else:
|
|
newargs.append(arg)
|
|
return newargs
|
|
|
|
def _prepare_paramspec_params(cls, params):
|
|
"""Prepares the parameters for a Generic containing ParamSpec
|
|
variables (internal helper).
|
|
"""
|
|
# Special case where Z[[int, str, bool]] == Z[int, str, bool] in PEP 612.
|
|
if (len(cls.__parameters__) == 1
|
|
and params and not _is_param_expr(params[0])):
|
|
assert isinstance(cls.__parameters__[0], ParamSpec)
|
|
return (params,)
|
|
else:
|
|
_check_generic(cls, params, len(cls.__parameters__))
|
|
_params = []
|
|
# Convert lists to tuples to help other libraries cache the results.
|
|
for p, tvar in zip(params, cls.__parameters__):
|
|
if isinstance(tvar, ParamSpec) and isinstance(p, list):
|
|
p = tuple(p)
|
|
_params.append(p)
|
|
return tuple(_params)
|
|
|
|
def _deduplicate(params):
|
|
# Weed out strict duplicates, preserving the first of each occurrence.
|
|
all_params = set(params)
|
|
if len(all_params) < len(params):
|
|
new_params = []
|
|
for t in params:
|
|
if t in all_params:
|
|
new_params.append(t)
|
|
all_params.remove(t)
|
|
params = new_params
|
|
assert not all_params, all_params
|
|
return params
|
|
|
|
|
|
def _remove_dups_flatten(parameters):
|
|
"""An internal helper for Union creation and substitution: flatten Unions
|
|
among parameters, then remove duplicates.
|
|
"""
|
|
# Flatten out Union[Union[...], ...].
|
|
params = []
|
|
for p in parameters:
|
|
if isinstance(p, (_UnionGenericAlias, types.UnionType)):
|
|
params.extend(p.__args__)
|
|
else:
|
|
params.append(p)
|
|
|
|
return tuple(_deduplicate(params))
|
|
|
|
|
|
def _flatten_literal_params(parameters):
|
|
"""An internal helper for Literal creation: flatten Literals among parameters"""
|
|
params = []
|
|
for p in parameters:
|
|
if isinstance(p, _LiteralGenericAlias):
|
|
params.extend(p.__args__)
|
|
else:
|
|
params.append(p)
|
|
return tuple(params)
|
|
|
|
|
|
_cleanups = []
|
|
|
|
|
|
def _tp_cache(func=None, /, *, typed=False):
|
|
"""Internal wrapper caching __getitem__ of generic types with a fallback to
|
|
original function for non-hashable arguments.
|
|
"""
|
|
def decorator(func):
|
|
cached = functools.lru_cache(typed=typed)(func)
|
|
_cleanups.append(cached.cache_clear)
|
|
|
|
@functools.wraps(func)
|
|
def inner(*args, **kwds):
|
|
try:
|
|
return cached(*args, **kwds)
|
|
except TypeError:
|
|
pass # All real errors (not unhashable args) are raised below.
|
|
return func(*args, **kwds)
|
|
return inner
|
|
|
|
if func is not None:
|
|
return decorator(func)
|
|
|
|
return decorator
|
|
|
|
def _eval_type(t, globalns, localns, recursive_guard=frozenset()):
|
|
"""Evaluate all forward references in the given type t.
|
|
For use of globalns and localns see the docstring for get_type_hints().
|
|
recursive_guard is used to prevent infinite recursion with a recursive
|
|
ForwardRef.
|
|
"""
|
|
if isinstance(t, ForwardRef):
|
|
return t._evaluate(globalns, localns, recursive_guard)
|
|
if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)):
|
|
if isinstance(t, GenericAlias):
|
|
args = tuple(
|
|
ForwardRef(arg) if isinstance(arg, str) else arg
|
|
for arg in t.__args__
|
|
)
|
|
if _should_unflatten_callable_args(t, args):
|
|
t = t.__origin__[(args[:-1], args[-1])]
|
|
else:
|
|
t = t.__origin__[args]
|
|
ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__)
|
|
if ev_args == t.__args__:
|
|
return t
|
|
if isinstance(t, GenericAlias):
|
|
return GenericAlias(t.__origin__, ev_args)
|
|
if isinstance(t, types.UnionType):
|
|
return functools.reduce(operator.or_, ev_args)
|
|
else:
|
|
return t.copy_with(ev_args)
|
|
return t
|
|
|
|
|
|
class _Final:
|
|
"""Mixin to prohibit subclassing"""
|
|
|
|
__slots__ = ('__weakref__',)
|
|
|
|
def __init_subclass__(cls, /, *args, **kwds):
|
|
if '_root' not in kwds:
|
|
raise TypeError("Cannot subclass special typing classes")
|
|
|
|
class _Immutable:
|
|
"""Mixin to indicate that object should not be copied."""
|
|
__slots__ = ()
|
|
|
|
def __copy__(self):
|
|
return self
|
|
|
|
def __deepcopy__(self, memo):
|
|
return self
|
|
|
|
|
|
class _NotIterable:
|
|
"""Mixin to prevent iteration, without being compatible with Iterable.
|
|
|
|
That is, we could do:
|
|
def __iter__(self): raise TypeError()
|
|
But this would make users of this mixin duck type-compatible with
|
|
collections.abc.Iterable - isinstance(foo, Iterable) would be True.
|
|
|
|
Luckily, we can instead prevent iteration by setting __iter__ to None, which
|
|
is treated specially.
|
|
"""
|
|
|
|
__slots__ = ()
|
|
__iter__ = None
|
|
|
|
|
|
# Internal indicator of special typing constructs.
|
|
# See __doc__ instance attribute for specific docs.
|
|
class _SpecialForm(_Final, _NotIterable, _root=True):
|
|
__slots__ = ('_name', '__doc__', '_getitem')
|
|
|
|
def __init__(self, getitem):
|
|
self._getitem = getitem
|
|
self._name = getitem.__name__
|
|
self.__doc__ = getitem.__doc__
|
|
|
|
def __getattr__(self, item):
|
|
if item in {'__name__', '__qualname__'}:
|
|
return self._name
|
|
|
|
raise AttributeError(item)
|
|
|
|
def __mro_entries__(self, bases):
|
|
raise TypeError(f"Cannot subclass {self!r}")
|
|
|
|
def __repr__(self):
|
|
return 'typing.' + self._name
|
|
|
|
def __reduce__(self):
|
|
return self._name
|
|
|
|
def __call__(self, *args, **kwds):
|
|
raise TypeError(f"Cannot instantiate {self!r}")
|
|
|
|
def __or__(self, other):
|
|
return Union[self, other]
|
|
|
|
def __ror__(self, other):
|
|
return Union[other, self]
|
|
|
|
def __instancecheck__(self, obj):
|
|
raise TypeError(f"{self} cannot be used with isinstance()")
|
|
|
|
def __subclasscheck__(self, cls):
|
|
raise TypeError(f"{self} cannot be used with issubclass()")
|
|
|
|
@_tp_cache
|
|
def __getitem__(self, parameters):
|
|
return self._getitem(self, parameters)
|
|
|
|
|
|
class _LiteralSpecialForm(_SpecialForm, _root=True):
|
|
def __getitem__(self, parameters):
|
|
if not isinstance(parameters, tuple):
|
|
parameters = (parameters,)
|
|
return self._getitem(self, *parameters)
|
|
|
|
|
|
class _AnyMeta(type):
|
|
def __instancecheck__(self, obj):
|
|
if self is Any:
|
|
raise TypeError("typing.Any cannot be used with isinstance()")
|
|
return super().__instancecheck__(obj)
|
|
|
|
def __repr__(self):
|
|
if self is Any:
|
|
return "typing.Any"
|
|
return super().__repr__() # respect to subclasses
|
|
|
|
|
|
class Any(metaclass=_AnyMeta):
|
|
"""Special type indicating an unconstrained type.
|
|
|
|
- Any is compatible with every type.
|
|
- Any assumed to have all methods.
|
|
- All values assumed to be instances of Any.
|
|
|
|
Note that all the above statements are true from the point of view of
|
|
static type checkers. At runtime, Any should not be used with instance
|
|
checks.
|
|
"""
|
|
def __new__(cls, *args, **kwargs):
|
|
if cls is Any:
|
|
raise TypeError("Any cannot be instantiated")
|
|
return super().__new__(cls, *args, **kwargs)
|
|
|
|
|
|
@_SpecialForm
|
|
def NoReturn(self, parameters):
|
|
"""Special type indicating functions that never return.
|
|
Example::
|
|
|
|
from typing import NoReturn
|
|
|
|
def stop() -> NoReturn:
|
|
raise Exception('no way')
|
|
|
|
NoReturn can also be used as a bottom type, a type that
|
|
has no values. Starting in Python 3.11, the Never type should
|
|
be used for this concept instead. Type checkers should treat the two
|
|
equivalently.
|
|
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
# This is semantically identical to NoReturn, but it is implemented
|
|
# separately so that type checkers can distinguish between the two
|
|
# if they want.
|
|
@_SpecialForm
|
|
def Never(self, parameters):
|
|
"""The bottom type, a type that has no members.
|
|
|
|
This can be used to define a function that should never be
|
|
called, or a function that never returns::
|
|
|
|
from typing import Never
|
|
|
|
def never_call_me(arg: Never) -> None:
|
|
pass
|
|
|
|
def int_or_str(arg: int | str) -> None:
|
|
never_call_me(arg) # type checker error
|
|
match arg:
|
|
case int():
|
|
print("It's an int")
|
|
case str():
|
|
print("It's a str")
|
|
case _:
|
|
never_call_me(arg) # ok, arg is of type Never
|
|
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
|
|
@_SpecialForm
|
|
def Self(self, parameters):
|
|
"""Used to spell the type of "self" in classes.
|
|
|
|
Example::
|
|
|
|
from typing import Self
|
|
|
|
class Foo:
|
|
def return_self(self) -> Self:
|
|
...
|
|
return self
|
|
|
|
This is especially useful for:
|
|
- classmethods that are used as alternative constructors
|
|
- annotating an `__enter__` method which returns self
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
|
|
@_SpecialForm
|
|
def LiteralString(self, parameters):
|
|
"""Represents an arbitrary literal string.
|
|
|
|
Example::
|
|
|
|
from typing import LiteralString
|
|
|
|
def run_query(sql: LiteralString) -> ...
|
|
...
|
|
|
|
def caller(arbitrary_string: str, literal_string: LiteralString) -> None:
|
|
run_query("SELECT * FROM students") # ok
|
|
run_query(literal_string) # ok
|
|
run_query("SELECT * FROM " + literal_string) # ok
|
|
run_query(arbitrary_string) # type checker error
|
|
run_query( # type checker error
|
|
f"SELECT * FROM students WHERE name = {arbitrary_string}"
|
|
)
|
|
|
|
Only string literals and other LiteralStrings are compatible
|
|
with LiteralString. This provides a tool to help prevent
|
|
security issues such as SQL injection.
|
|
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
|
|
@_SpecialForm
|
|
def ClassVar(self, parameters):
|
|
"""Special type construct to mark class variables.
|
|
|
|
An annotation wrapped in ClassVar indicates that a given
|
|
attribute is intended to be used as a class variable and
|
|
should not be set on instances of that class. Usage::
|
|
|
|
class Starship:
|
|
stats: ClassVar[Dict[str, int]] = {} # class variable
|
|
damage: int = 10 # instance variable
|
|
|
|
ClassVar accepts only types and cannot be further subscribed.
|
|
|
|
Note that ClassVar is not a class itself, and should not
|
|
be used with isinstance() or issubclass().
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
@_SpecialForm
|
|
def Final(self, parameters):
|
|
"""Special typing construct to indicate final names to type checkers.
|
|
|
|
A final name cannot be re-assigned or overridden in a subclass.
|
|
For example:
|
|
|
|
MAX_SIZE: Final = 9000
|
|
MAX_SIZE += 1 # Error reported by type checker
|
|
|
|
class Connection:
|
|
TIMEOUT: Final[int] = 10
|
|
|
|
class FastConnector(Connection):
|
|
TIMEOUT = 1 # Error reported by type checker
|
|
|
|
There is no runtime checking of these properties.
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
@_SpecialForm
|
|
def Union(self, parameters):
|
|
"""Union type; Union[X, Y] means either X or Y.
|
|
|
|
To define a union, use e.g. Union[int, str]. Details:
|
|
- The arguments must be types and there must be at least one.
|
|
- None as an argument is a special case and is replaced by
|
|
type(None).
|
|
- Unions of unions are flattened, e.g.::
|
|
|
|
Union[Union[int, str], float] == Union[int, str, float]
|
|
|
|
- Unions of a single argument vanish, e.g.::
|
|
|
|
Union[int] == int # The constructor actually returns int
|
|
|
|
- Redundant arguments are skipped, e.g.::
|
|
|
|
Union[int, str, int] == Union[int, str]
|
|
|
|
- When comparing unions, the argument order is ignored, e.g.::
|
|
|
|
Union[int, str] == Union[str, int]
|
|
|
|
- You cannot subclass or instantiate a union.
|
|
- You can use Optional[X] as a shorthand for Union[X, None].
|
|
"""
|
|
if parameters == ():
|
|
raise TypeError("Cannot take a Union of no types.")
|
|
if not isinstance(parameters, tuple):
|
|
parameters = (parameters,)
|
|
msg = "Union[arg, ...]: each arg must be a type."
|
|
parameters = tuple(_type_check(p, msg) for p in parameters)
|
|
parameters = _remove_dups_flatten(parameters)
|
|
if len(parameters) == 1:
|
|
return parameters[0]
|
|
if len(parameters) == 2 and type(None) in parameters:
|
|
return _UnionGenericAlias(self, parameters, name="Optional")
|
|
return _UnionGenericAlias(self, parameters)
|
|
|
|
@_SpecialForm
|
|
def Optional(self, parameters):
|
|
"""Optional type.
|
|
|
|
Optional[X] is equivalent to Union[X, None].
|
|
"""
|
|
arg = _type_check(parameters, f"{self} requires a single type.")
|
|
return Union[arg, type(None)]
|
|
|
|
@_LiteralSpecialForm
|
|
@_tp_cache(typed=True)
|
|
def Literal(self, *parameters):
|
|
"""Special typing form to define literal types (a.k.a. value types).
|
|
|
|
This form can be used to indicate to type checkers that the corresponding
|
|
variable or function parameter has a value equivalent to the provided
|
|
literal (or one of several literals):
|
|
|
|
def validate_simple(data: Any) -> Literal[True]: # always returns True
|
|
...
|
|
|
|
MODE = Literal['r', 'rb', 'w', 'wb']
|
|
def open_helper(file: str, mode: MODE) -> str:
|
|
...
|
|
|
|
open_helper('/some/path', 'r') # Passes type check
|
|
open_helper('/other/path', 'typo') # Error in type checker
|
|
|
|
Literal[...] cannot be subclassed. At runtime, an arbitrary value
|
|
is allowed as type argument to Literal[...], but type checkers may
|
|
impose restrictions.
|
|
"""
|
|
# There is no '_type_check' call because arguments to Literal[...] are
|
|
# values, not types.
|
|
parameters = _flatten_literal_params(parameters)
|
|
|
|
try:
|
|
parameters = tuple(p for p, _ in _deduplicate(list(_value_and_type_iter(parameters))))
|
|
except TypeError: # unhashable parameters
|
|
pass
|
|
|
|
return _LiteralGenericAlias(self, parameters)
|
|
|
|
|
|
@_SpecialForm
|
|
def TypeAlias(self, parameters):
|
|
"""Special marker indicating that an assignment should
|
|
be recognized as a proper type alias definition by type
|
|
checkers.
|
|
|
|
For example::
|
|
|
|
Predicate: TypeAlias = Callable[..., bool]
|
|
|
|
It's invalid when used anywhere except as in the example above.
|
|
"""
|
|
raise TypeError(f"{self} is not subscriptable")
|
|
|
|
|
|
@_SpecialForm
|
|
def Concatenate(self, parameters):
|
|
"""Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
|
|
higher order function which adds, removes or transforms parameters of a
|
|
callable.
|
|
|
|
For example::
|
|
|
|
Callable[Concatenate[int, P], int]
|
|
|
|
See PEP 612 for detailed information.
|
|
"""
|
|
if parameters == ():
|
|
raise TypeError("Cannot take a Concatenate of no types.")
|
|
if not isinstance(parameters, tuple):
|
|
parameters = (parameters,)
|
|
if not (parameters[-1] is ... or isinstance(parameters[-1], ParamSpec)):
|
|
raise TypeError("The last parameter to Concatenate should be a "
|
|
"ParamSpec variable or ellipsis.")
|
|
msg = "Concatenate[arg, ...]: each arg must be a type."
|
|
parameters = (*(_type_check(p, msg) for p in parameters[:-1]), parameters[-1])
|
|
return _ConcatenateGenericAlias(self, parameters,
|
|
_paramspec_tvars=True)
|
|
|
|
|
|
@_SpecialForm
|
|
def TypeGuard(self, parameters):
|
|
"""Special typing form used to annotate the return type of a user-defined
|
|
type guard function. ``TypeGuard`` only accepts a single type argument.
|
|
At runtime, functions marked this way should return a boolean.
|
|
|
|
``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
|
|
type checkers to determine a more precise type of an expression within a
|
|
program's code flow. Usually type narrowing is done by analyzing
|
|
conditional code flow and applying the narrowing to a block of code. The
|
|
conditional expression here is sometimes referred to as a "type guard".
|
|
|
|
Sometimes it would be convenient to use a user-defined boolean function
|
|
as a type guard. Such a function should use ``TypeGuard[...]`` as its
|
|
return type to alert static type checkers to this intention.
|
|
|
|
Using ``-> TypeGuard`` tells the static type checker that for a given
|
|
function:
|
|
|
|
1. The return value is a boolean.
|
|
2. If the return value is ``True``, the type of its argument
|
|
is the type inside ``TypeGuard``.
|
|
|
|
For example::
|
|
|
|
def is_str(val: Union[str, float]):
|
|
# "isinstance" type guard
|
|
if isinstance(val, str):
|
|
# Type of ``val`` is narrowed to ``str``
|
|
...
|
|
else:
|
|
# Else, type of ``val`` is narrowed to ``float``.
|
|
...
|
|
|
|
Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
|
|
form of ``TypeA`` (it can even be a wider form) and this may lead to
|
|
type-unsafe results. The main reason is to allow for things like
|
|
narrowing ``List[object]`` to ``List[str]`` even though the latter is not
|
|
a subtype of the former, since ``List`` is invariant. The responsibility of
|
|
writing type-safe type guards is left to the user.
|
|
|
|
``TypeGuard`` also works with type variables. For more information, see
|
|
PEP 647 (User-Defined Type Guards).
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
|
|
class ForwardRef(_Final, _root=True):
|
|
"""Internal wrapper to hold a forward reference."""
|
|
|
|
__slots__ = ('__forward_arg__', '__forward_code__',
|
|
'__forward_evaluated__', '__forward_value__',
|
|
'__forward_is_argument__', '__forward_is_class__',
|
|
'__forward_module__')
|
|
|
|
def __init__(self, arg, is_argument=True, module=None, *, is_class=False):
|
|
if not isinstance(arg, str):
|
|
raise TypeError(f"Forward reference must be a string -- got {arg!r}")
|
|
|
|
# If we do `def f(*args: *Ts)`, then we'll have `arg = '*Ts'`.
|
|
# Unfortunately, this isn't a valid expression on its own, so we
|
|
# do the unpacking manually.
|
|
if arg[0] == '*':
|
|
arg_to_compile = f'({arg},)[0]' # E.g. (*Ts,)[0]
|
|
else:
|
|
arg_to_compile = arg
|
|
try:
|
|
code = compile(arg_to_compile, '<string>', 'eval')
|
|
except SyntaxError:
|
|
raise SyntaxError(f"Forward reference must be an expression -- got {arg!r}")
|
|
|
|
self.__forward_arg__ = arg
|
|
self.__forward_code__ = code
|
|
self.__forward_evaluated__ = False
|
|
self.__forward_value__ = None
|
|
self.__forward_is_argument__ = is_argument
|
|
self.__forward_is_class__ = is_class
|
|
self.__forward_module__ = module
|
|
|
|
def _evaluate(self, globalns, localns, recursive_guard):
|
|
if self.__forward_arg__ in recursive_guard:
|
|
return self
|
|
if not self.__forward_evaluated__ or localns is not globalns:
|
|
if globalns is None and localns is None:
|
|
globalns = localns = {}
|
|
elif globalns is None:
|
|
globalns = localns
|
|
elif localns is None:
|
|
localns = globalns
|
|
if self.__forward_module__ is not None:
|
|
globalns = getattr(
|
|
sys.modules.get(self.__forward_module__, None), '__dict__', globalns
|
|
)
|
|
type_ = _type_check(
|
|
eval(self.__forward_code__, globalns, localns),
|
|
"Forward references must evaluate to types.",
|
|
is_argument=self.__forward_is_argument__,
|
|
allow_special_forms=self.__forward_is_class__,
|
|
)
|
|
self.__forward_value__ = _eval_type(
|
|
type_, globalns, localns, recursive_guard | {self.__forward_arg__}
|
|
)
|
|
self.__forward_evaluated__ = True
|
|
return self.__forward_value__
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, ForwardRef):
|
|
return NotImplemented
|
|
if self.__forward_evaluated__ and other.__forward_evaluated__:
|
|
return (self.__forward_arg__ == other.__forward_arg__ and
|
|
self.__forward_value__ == other.__forward_value__)
|
|
return (self.__forward_arg__ == other.__forward_arg__ and
|
|
self.__forward_module__ == other.__forward_module__)
|
|
|
|
def __hash__(self):
|
|
return hash((self.__forward_arg__, self.__forward_module__))
|
|
|
|
def __or__(self, other):
|
|
return Union[self, other]
|
|
|
|
def __ror__(self, other):
|
|
return Union[other, self]
|
|
|
|
def __repr__(self):
|
|
if self.__forward_module__ is None:
|
|
module_repr = ''
|
|
else:
|
|
module_repr = f', module={self.__forward_module__!r}'
|
|
return f'ForwardRef({self.__forward_arg__!r}{module_repr})'
|
|
|
|
|
|
def _is_unpacked_typevartuple(x: Any) -> bool:
|
|
return ((not isinstance(x, type)) and
|
|
getattr(x, '__typing_is_unpacked_typevartuple__', False))
|
|
|
|
|
|
def _is_typevar_like(x: Any) -> bool:
|
|
return isinstance(x, (TypeVar, ParamSpec)) or _is_unpacked_typevartuple(x)
|
|
|
|
|
|
class _PickleUsingNameMixin:
|
|
"""Mixin enabling pickling based on self.__name__."""
|
|
|
|
def __reduce__(self):
|
|
return self.__name__
|
|
|
|
|
|
class _BoundVarianceMixin:
|
|
"""Mixin giving __init__ bound and variance arguments.
|
|
|
|
This is used by TypeVar and ParamSpec, which both employ the notions of
|
|
a type 'bound' (restricting type arguments to be a subtype of some
|
|
specified type) and type 'variance' (determining subtype relations between
|
|
generic types).
|
|
"""
|
|
def __init__(self, bound, covariant, contravariant):
|
|
"""Used to setup TypeVars and ParamSpec's bound, covariant and
|
|
contravariant attributes.
|
|
"""
|
|
if covariant and contravariant:
|
|
raise ValueError("Bivariant types are not supported.")
|
|
self.__covariant__ = bool(covariant)
|
|
self.__contravariant__ = bool(contravariant)
|
|
if bound:
|
|
self.__bound__ = _type_check(bound, "Bound must be a type.")
|
|
else:
|
|
self.__bound__ = None
|
|
|
|
def __or__(self, right):
|
|
return Union[self, right]
|
|
|
|
def __ror__(self, left):
|
|
return Union[left, self]
|
|
|
|
def __repr__(self):
|
|
if self.__covariant__:
|
|
prefix = '+'
|
|
elif self.__contravariant__:
|
|
prefix = '-'
|
|
else:
|
|
prefix = '~'
|
|
return prefix + self.__name__
|
|
|
|
def __mro_entries__(self, bases):
|
|
raise TypeError(f"Cannot subclass an instance of {type(self).__name__}")
|
|
|
|
|
|
class TypeVar(_Final, _Immutable, _BoundVarianceMixin, _PickleUsingNameMixin,
|
|
_root=True):
|
|
"""Type variable.
|
|
|
|
Usage::
|
|
|
|
T = TypeVar('T') # Can be anything
|
|
A = TypeVar('A', str, bytes) # Must be str or bytes
|
|
|
|
Type variables exist primarily for the benefit of static type
|
|
checkers. They serve as the parameters for generic types as well
|
|
as for generic function definitions. See class Generic for more
|
|
information on generic types. Generic functions work as follows:
|
|
|
|
def repeat(x: T, n: int) -> List[T]:
|
|
'''Return a list containing n references to x.'''
|
|
return [x]*n
|
|
|
|
def longest(x: A, y: A) -> A:
|
|
'''Return the longest of two strings.'''
|
|
return x if len(x) >= len(y) else y
|
|
|
|
The latter example's signature is essentially the overloading
|
|
of (str, str) -> str and (bytes, bytes) -> bytes. Also note
|
|
that if the arguments are instances of some subclass of str,
|
|
the return type is still plain str.
|
|
|
|
At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.
|
|
|
|
Type variables defined with covariant=True or contravariant=True
|
|
can be used to declare covariant or contravariant generic types.
|
|
See PEP 484 for more details. By default generic types are invariant
|
|
in all type variables.
|
|
|
|
Type variables can be introspected. e.g.:
|
|
|
|
T.__name__ == 'T'
|
|
T.__constraints__ == ()
|
|
T.__covariant__ == False
|
|
T.__contravariant__ = False
|
|
A.__constraints__ == (str, bytes)
|
|
|
|
Note that only type variables defined in global scope can be pickled.
|
|
"""
|
|
|
|
def __init__(self, name, *constraints, bound=None,
|
|
covariant=False, contravariant=False):
|
|
self.__name__ = name
|
|
super().__init__(bound, covariant, contravariant)
|
|
if constraints and bound is not None:
|
|
raise TypeError("Constraints cannot be combined with bound=...")
|
|
if constraints and len(constraints) == 1:
|
|
raise TypeError("A single constraint is not allowed")
|
|
msg = "TypeVar(name, constraint, ...): constraints must be types."
|
|
self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
|
|
def_mod = _caller()
|
|
if def_mod != 'typing':
|
|
self.__module__ = def_mod
|
|
|
|
def __typing_subst__(self, arg):
|
|
msg = "Parameters to generic types must be types."
|
|
arg = _type_check(arg, msg, is_argument=True)
|
|
if ((isinstance(arg, _GenericAlias) and arg.__origin__ is Unpack) or
|
|
(isinstance(arg, GenericAlias) and getattr(arg, '__unpacked__', False))):
|
|
raise TypeError(f"{arg} is not valid as type argument")
|
|
return arg
|
|
|
|
|
|
class TypeVarTuple(_Final, _Immutable, _PickleUsingNameMixin, _root=True):
|
|
"""Type variable tuple.
|
|
|
|
Usage:
|
|
|
|
Ts = TypeVarTuple('Ts') # Can be given any name
|
|
|
|
Just as a TypeVar (type variable) is a placeholder for a single type,
|
|
a TypeVarTuple is a placeholder for an *arbitrary* number of types. For
|
|
example, if we define a generic class using a TypeVarTuple:
|
|
|
|
class C(Generic[*Ts]): ...
|
|
|
|
Then we can parameterize that class with an arbitrary number of type
|
|
arguments:
|
|
|
|
C[int] # Fine
|
|
C[int, str] # Also fine
|
|
C[()] # Even this is fine
|
|
|
|
For more details, see PEP 646.
|
|
|
|
Note that only TypeVarTuples defined in global scope can be pickled.
|
|
"""
|
|
|
|
def __init__(self, name):
|
|
self.__name__ = name
|
|
|
|
# Used for pickling.
|
|
def_mod = _caller()
|
|
if def_mod != 'typing':
|
|
self.__module__ = def_mod
|
|
|
|
def __iter__(self):
|
|
yield Unpack[self]
|
|
|
|
def __repr__(self):
|
|
return self.__name__
|
|
|
|
def __typing_subst__(self, arg):
|
|
raise TypeError("Substitution of bare TypeVarTuple is not supported")
|
|
|
|
def __typing_prepare_subst__(self, alias, args):
|
|
params = alias.__parameters__
|
|
typevartuple_index = params.index(self)
|
|
for param in params[typevartuple_index + 1:]:
|
|
if isinstance(param, TypeVarTuple):
|
|
raise TypeError(f"More than one TypeVarTuple parameter in {alias}")
|
|
|
|
alen = len(args)
|
|
plen = len(params)
|
|
left = typevartuple_index
|
|
right = plen - typevartuple_index - 1
|
|
var_tuple_index = None
|
|
fillarg = None
|
|
for k, arg in enumerate(args):
|
|
if not isinstance(arg, type):
|
|
subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
|
|
if subargs and len(subargs) == 2 and subargs[-1] is ...:
|
|
if var_tuple_index is not None:
|
|
raise TypeError("More than one unpacked arbitrary-length tuple argument")
|
|
var_tuple_index = k
|
|
fillarg = subargs[0]
|
|
if var_tuple_index is not None:
|
|
left = min(left, var_tuple_index)
|
|
right = min(right, alen - var_tuple_index - 1)
|
|
elif left + right > alen:
|
|
raise TypeError(f"Too few arguments for {alias};"
|
|
f" actual {alen}, expected at least {plen-1}")
|
|
|
|
return (
|
|
*args[:left],
|
|
*([fillarg]*(typevartuple_index - left)),
|
|
tuple(args[left: alen - right]),
|
|
*([fillarg]*(plen - right - left - typevartuple_index - 1)),
|
|
*args[alen - right:],
|
|
)
|
|
|
|
def __mro_entries__(self, bases):
|
|
raise TypeError(f"Cannot subclass an instance of {type(self).__name__}")
|
|
|
|
|
|
class ParamSpecArgs(_Final, _Immutable, _root=True):
|
|
"""The args for a ParamSpec object.
|
|
|
|
Given a ParamSpec object P, P.args is an instance of ParamSpecArgs.
|
|
|
|
ParamSpecArgs objects have a reference back to their ParamSpec:
|
|
|
|
P.args.__origin__ is P
|
|
|
|
This type is meant for runtime introspection and has no special meaning to
|
|
static type checkers.
|
|
"""
|
|
def __init__(self, origin):
|
|
self.__origin__ = origin
|
|
|
|
def __repr__(self):
|
|
return f"{self.__origin__.__name__}.args"
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, ParamSpecArgs):
|
|
return NotImplemented
|
|
return self.__origin__ == other.__origin__
|
|
|
|
def __mro_entries__(self, bases):
|
|
raise TypeError(f"Cannot subclass an instance of {type(self).__name__}")
|
|
|
|
|
|
class ParamSpecKwargs(_Final, _Immutable, _root=True):
|
|
"""The kwargs for a ParamSpec object.
|
|
|
|
Given a ParamSpec object P, P.kwargs is an instance of ParamSpecKwargs.
|
|
|
|
ParamSpecKwargs objects have a reference back to their ParamSpec:
|
|
|
|
P.kwargs.__origin__ is P
|
|
|
|
This type is meant for runtime introspection and has no special meaning to
|
|
static type checkers.
|
|
"""
|
|
def __init__(self, origin):
|
|
self.__origin__ = origin
|
|
|
|
def __repr__(self):
|
|
return f"{self.__origin__.__name__}.kwargs"
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, ParamSpecKwargs):
|
|
return NotImplemented
|
|
return self.__origin__ == other.__origin__
|
|
|
|
def __mro_entries__(self, bases):
|
|
raise TypeError(f"Cannot subclass an instance of {type(self).__name__}")
|
|
|
|
|
|
class ParamSpec(_Final, _Immutable, _BoundVarianceMixin, _PickleUsingNameMixin,
|
|
_root=True):
|
|
"""Parameter specification variable.
|
|
|
|
Usage::
|
|
|
|
P = ParamSpec('P')
|
|
|
|
Parameter specification variables exist primarily for the benefit of static
|
|
type checkers. They are used to forward the parameter types of one
|
|
callable to another callable, a pattern commonly found in higher order
|
|
functions and decorators. They are only valid when used in ``Concatenate``,
|
|
or as the first argument to ``Callable``, or as parameters for user-defined
|
|
Generics. See class Generic for more information on generic types. An
|
|
example for annotating a decorator::
|
|
|
|
T = TypeVar('T')
|
|
P = ParamSpec('P')
|
|
|
|
def add_logging(f: Callable[P, T]) -> Callable[P, T]:
|
|
'''A type-safe decorator to add logging to a function.'''
|
|
def inner(*args: P.args, **kwargs: P.kwargs) -> T:
|
|
logging.info(f'{f.__name__} was called')
|
|
return f(*args, **kwargs)
|
|
return inner
|
|
|
|
@add_logging
|
|
def add_two(x: float, y: float) -> float:
|
|
'''Add two numbers together.'''
|
|
return x + y
|
|
|
|
Parameter specification variables defined with covariant=True or
|
|
contravariant=True can be used to declare covariant or contravariant
|
|
generic types. These keyword arguments are valid, but their actual semantics
|
|
are yet to be decided. See PEP 612 for details.
|
|
|
|
Parameter specification variables can be introspected. e.g.:
|
|
|
|
P.__name__ == 'T'
|
|
P.__bound__ == None
|
|
P.__covariant__ == False
|
|
P.__contravariant__ == False
|
|
|
|
Note that only parameter specification variables defined in global scope can
|
|
be pickled.
|
|
"""
|
|
|
|
@property
|
|
def args(self):
|
|
return ParamSpecArgs(self)
|
|
|
|
@property
|
|
def kwargs(self):
|
|
return ParamSpecKwargs(self)
|
|
|
|
def __init__(self, name, *, bound=None, covariant=False, contravariant=False):
|
|
self.__name__ = name
|
|
super().__init__(bound, covariant, contravariant)
|
|
def_mod = _caller()
|
|
if def_mod != 'typing':
|
|
self.__module__ = def_mod
|
|
|
|
def __typing_subst__(self, arg):
|
|
if isinstance(arg, (list, tuple)):
|
|
arg = tuple(_type_check(a, "Expected a type.") for a in arg)
|
|
elif not _is_param_expr(arg):
|
|
raise TypeError(f"Expected a list of types, an ellipsis, "
|
|
f"ParamSpec, or Concatenate. Got {arg}")
|
|
return arg
|
|
|
|
def __typing_prepare_subst__(self, alias, args):
|
|
return _prepare_paramspec_params(alias, args)
|
|
|
|
def _is_dunder(attr):
|
|
return attr.startswith('__') and attr.endswith('__')
|
|
|
|
class _BaseGenericAlias(_Final, _root=True):
|
|
"""The central part of internal API.
|
|
|
|
This represents a generic version of type 'origin' with type arguments 'params'.
|
|
There are two kind of these aliases: user defined and special. The special ones
|
|
are wrappers around builtin collections and ABCs in collections.abc. These must
|
|
have 'name' always set. If 'inst' is False, then the alias can't be instantiated,
|
|
this is used by e.g. typing.List and typing.Dict.
|
|
"""
|
|
def __init__(self, origin, *, inst=True, name=None):
|
|
self._inst = inst
|
|
self._name = name
|
|
self.__origin__ = origin
|
|
self.__slots__ = None # This is not documented.
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
if not self._inst:
|
|
raise TypeError(f"Type {self._name} cannot be instantiated; "
|
|
f"use {self.__origin__.__name__}() instead")
|
|
result = self.__origin__(*args, **kwargs)
|
|
try:
|
|
result.__orig_class__ = self
|
|
except AttributeError:
|
|
pass
|
|
return result
|
|
|
|
def __mro_entries__(self, bases):
|
|
res = []
|
|
if self.__origin__ not in bases:
|
|
res.append(self.__origin__)
|
|
i = bases.index(self)
|
|
for b in bases[i+1:]:
|
|
if isinstance(b, _BaseGenericAlias) or issubclass(b, Generic):
|
|
break
|
|
else:
|
|
res.append(Generic)
|
|
return tuple(res)
|
|
|
|
def __getattr__(self, attr):
|
|
if attr in {'__name__', '__qualname__'}:
|
|
return self._name or self.__origin__.__name__
|
|
|
|
# We are careful for copy and pickle.
|
|
# Also for simplicity we don't relay any dunder names
|
|
if '__origin__' in self.__dict__ and not _is_dunder(attr):
|
|
return getattr(self.__origin__, attr)
|
|
raise AttributeError(attr)
|
|
|
|
def __setattr__(self, attr, val):
|
|
if _is_dunder(attr) or attr in {'_name', '_inst', '_nparams',
|
|
'_paramspec_tvars'}:
|
|
super().__setattr__(attr, val)
|
|
else:
|
|
setattr(self.__origin__, attr, val)
|
|
|
|
def __instancecheck__(self, obj):
|
|
return self.__subclasscheck__(type(obj))
|
|
|
|
def __subclasscheck__(self, cls):
|
|
raise TypeError("Subscripted generics cannot be used with"
|
|
" class and instance checks")
|
|
|
|
def __dir__(self):
|
|
return list(set(super().__dir__()
|
|
+ [attr for attr in dir(self.__origin__) if not _is_dunder(attr)]))
|
|
|
|
|
|
# Special typing constructs Union, Optional, Generic, Callable and Tuple
|
|
# use three special attributes for internal bookkeeping of generic types:
|
|
# * __parameters__ is a tuple of unique free type parameters of a generic
|
|
# type, for example, Dict[T, T].__parameters__ == (T,);
|
|
# * __origin__ keeps a reference to a type that was subscripted,
|
|
# e.g., Union[T, int].__origin__ == Union, or the non-generic version of
|
|
# the type.
|
|
# * __args__ is a tuple of all arguments used in subscripting,
|
|
# e.g., Dict[T, int].__args__ == (T, int).
|
|
|
|
|
|
class _GenericAlias(_BaseGenericAlias, _root=True):
|
|
# The type of parameterized generics.
|
|
#
|
|
# That is, for example, `type(List[int])` is `_GenericAlias`.
|
|
#
|
|
# Objects which are instances of this class include:
|
|
# * Parameterized container types, e.g. `Tuple[int]`, `List[int]`.
|
|
# * Note that native container types, e.g. `tuple`, `list`, use
|
|
# `types.GenericAlias` instead.
|
|
# * Parameterized classes:
|
|
# T = TypeVar('T')
|
|
# class C(Generic[T]): pass
|
|
# # C[int] is a _GenericAlias
|
|
# * `Callable` aliases, generic `Callable` aliases, and
|
|
# parameterized `Callable` aliases:
|
|
# T = TypeVar('T')
|
|
# # _CallableGenericAlias inherits from _GenericAlias.
|
|
# A = Callable[[], None] # _CallableGenericAlias
|
|
# B = Callable[[T], None] # _CallableGenericAlias
|
|
# C = B[int] # _CallableGenericAlias
|
|
# * Parameterized `Final`, `ClassVar` and `TypeGuard`:
|
|
# # All _GenericAlias
|
|
# Final[int]
|
|
# ClassVar[float]
|
|
# TypeVar[bool]
|
|
|
|
def __init__(self, origin, args, *, inst=True, name=None,
|
|
_paramspec_tvars=False):
|
|
super().__init__(origin, inst=inst, name=name)
|
|
if not isinstance(args, tuple):
|
|
args = (args,)
|
|
self.__args__ = tuple(... if a is _TypingEllipsis else
|
|
a for a in args)
|
|
self.__parameters__ = _collect_parameters(args)
|
|
self._paramspec_tvars = _paramspec_tvars
|
|
if not name:
|
|
self.__module__ = origin.__module__
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, _GenericAlias):
|
|
return NotImplemented
|
|
return (self.__origin__ == other.__origin__
|
|
and self.__args__ == other.__args__)
|
|
|
|
def __hash__(self):
|
|
return hash((self.__origin__, self.__args__))
|
|
|
|
def __or__(self, right):
|
|
return Union[self, right]
|
|
|
|
def __ror__(self, left):
|
|
return Union[left, self]
|
|
|
|
@_tp_cache
|
|
def __getitem__(self, args):
|
|
# Parameterizes an already-parameterized object.
|
|
#
|
|
# For example, we arrive here doing something like:
|
|
# T1 = TypeVar('T1')
|
|
# T2 = TypeVar('T2')
|
|
# T3 = TypeVar('T3')
|
|
# class A(Generic[T1]): pass
|
|
# B = A[T2] # B is a _GenericAlias
|
|
# C = B[T3] # Invokes _GenericAlias.__getitem__
|
|
#
|
|
# We also arrive here when parameterizing a generic `Callable` alias:
|
|
# T = TypeVar('T')
|
|
# C = Callable[[T], None]
|
|
# C[int] # Invokes _GenericAlias.__getitem__
|
|
|
|
if self.__origin__ in (Generic, Protocol):
|
|
# Can't subscript Generic[...] or Protocol[...].
|
|
raise TypeError(f"Cannot subscript already-subscripted {self}")
|
|
if not self.__parameters__:
|
|
raise TypeError(f"{self} is not a generic class")
|
|
|
|
# Preprocess `args`.
|
|
if not isinstance(args, tuple):
|
|
args = (args,)
|
|
args = tuple(_type_convert(p) for p in args)
|
|
args = _unpack_args(args)
|
|
new_args = self._determine_new_args(args)
|
|
r = self.copy_with(new_args)
|
|
return r
|
|
|
|
def _determine_new_args(self, args):
|
|
# Determines new __args__ for __getitem__.
|
|
#
|
|
# For example, suppose we had:
|
|
# T1 = TypeVar('T1')
|
|
# T2 = TypeVar('T2')
|
|
# class A(Generic[T1, T2]): pass
|
|
# T3 = TypeVar('T3')
|
|
# B = A[int, T3]
|
|
# C = B[str]
|
|
# `B.__args__` is `(int, T3)`, so `C.__args__` should be `(int, str)`.
|
|
# Unfortunately, this is harder than it looks, because if `T3` is
|
|
# anything more exotic than a plain `TypeVar`, we need to consider
|
|
# edge cases.
|
|
|
|
params = self.__parameters__
|
|
# In the example above, this would be {T3: str}
|
|
for param in params:
|
|
prepare = getattr(param, '__typing_prepare_subst__', None)
|
|
if prepare is not None:
|
|
args = prepare(self, args)
|
|
alen = len(args)
|
|
plen = len(params)
|
|
if alen != plen:
|
|
raise TypeError(f"Too {'many' if alen > plen else 'few'} arguments for {self};"
|
|
f" actual {alen}, expected {plen}")
|
|
new_arg_by_param = dict(zip(params, args))
|
|
|
|
new_args = []
|
|
for old_arg in self.__args__:
|
|
|
|
substfunc = getattr(old_arg, '__typing_subst__', None)
|
|
if substfunc:
|
|
new_arg = substfunc(new_arg_by_param[old_arg])
|
|
else:
|
|
subparams = getattr(old_arg, '__parameters__', ())
|
|
if not subparams:
|
|
new_arg = old_arg
|
|
else:
|
|
subargs = []
|
|
for x in subparams:
|
|
if isinstance(x, TypeVarTuple):
|
|
subargs.extend(new_arg_by_param[x])
|
|
else:
|
|
subargs.append(new_arg_by_param[x])
|
|
new_arg = old_arg[tuple(subargs)]
|
|
|
|
if self.__origin__ == collections.abc.Callable and isinstance(new_arg, tuple):
|
|
# Consider the following `Callable`.
|
|
# C = Callable[[int], str]
|
|
# Here, `C.__args__` should be (int, str) - NOT ([int], str).
|
|
# That means that if we had something like...
|
|
# P = ParamSpec('P')
|
|
# T = TypeVar('T')
|
|
# C = Callable[P, T]
|
|
# D = C[[int, str], float]
|
|
# ...we need to be careful; `new_args` should end up as
|
|
# `(int, str, float)` rather than `([int, str], float)`.
|
|
new_args.extend(new_arg)
|
|
elif _is_unpacked_typevartuple(old_arg):
|
|
# Consider the following `_GenericAlias`, `B`:
|
|
# class A(Generic[*Ts]): ...
|
|
# B = A[T, *Ts]
|
|
# If we then do:
|
|
# B[float, int, str]
|
|
# The `new_arg` corresponding to `T` will be `float`, and the
|
|
# `new_arg` corresponding to `*Ts` will be `(int, str)`. We
|
|
# should join all these types together in a flat list
|
|
# `(float, int, str)` - so again, we should `extend`.
|
|
new_args.extend(new_arg)
|
|
else:
|
|
new_args.append(new_arg)
|
|
|
|
return tuple(new_args)
|
|
|
|
def copy_with(self, args):
|
|
return self.__class__(self.__origin__, args, name=self._name, inst=self._inst,
|
|
_paramspec_tvars=self._paramspec_tvars)
|
|
|
|
def __repr__(self):
|
|
if self._name:
|
|
name = 'typing.' + self._name
|
|
else:
|
|
name = _type_repr(self.__origin__)
|
|
if self.__args__:
|
|
args = ", ".join([_type_repr(a) for a in self.__args__])
|
|
else:
|
|
# To ensure the repr is eval-able.
|
|
args = "()"
|
|
return f'{name}[{args}]'
|
|
|
|
def __reduce__(self):
|
|
if self._name:
|
|
origin = globals()[self._name]
|
|
else:
|
|
origin = self.__origin__
|
|
args = tuple(self.__args__)
|
|
if len(args) == 1 and not isinstance(args[0], tuple):
|
|
args, = args
|
|
return operator.getitem, (origin, args)
|
|
|
|
def __mro_entries__(self, bases):
|
|
if isinstance(self.__origin__, _SpecialForm):
|
|
raise TypeError(f"Cannot subclass {self!r}")
|
|
|
|
if self._name: # generic version of an ABC or built-in class
|
|
return super().__mro_entries__(bases)
|
|
if self.__origin__ is Generic:
|
|
if Protocol in bases:
|
|
return ()
|
|
i = bases.index(self)
|
|
for b in bases[i+1:]:
|
|
if isinstance(b, _BaseGenericAlias) and b is not self:
|
|
return ()
|
|
return (self.__origin__,)
|
|
|
|
def __iter__(self):
|
|
yield Unpack[self]
|
|
|
|
|
|
# _nparams is the number of accepted parameters, e.g. 0 for Hashable,
|
|
# 1 for List and 2 for Dict. It may be -1 if variable number of
|
|
# parameters are accepted (needs custom __getitem__).
|
|
|
|
class _SpecialGenericAlias(_NotIterable, _BaseGenericAlias, _root=True):
|
|
def __init__(self, origin, nparams, *, inst=True, name=None):
|
|
if name is None:
|
|
name = origin.__name__
|
|
super().__init__(origin, inst=inst, name=name)
|
|
self._nparams = nparams
|
|
if origin.__module__ == 'builtins':
|
|
self.__doc__ = f'A generic version of {origin.__qualname__}.'
|
|
else:
|
|
self.__doc__ = f'A generic version of {origin.__module__}.{origin.__qualname__}.'
|
|
|
|
@_tp_cache
|
|
def __getitem__(self, params):
|
|
if not isinstance(params, tuple):
|
|
params = (params,)
|
|
msg = "Parameters to generic types must be types."
|
|
params = tuple(_type_check(p, msg) for p in params)
|
|
_check_generic(self, params, self._nparams)
|
|
return self.copy_with(params)
|
|
|
|
def copy_with(self, params):
|
|
return _GenericAlias(self.__origin__, params,
|
|
name=self._name, inst=self._inst)
|
|
|
|
def __repr__(self):
|
|
return 'typing.' + self._name
|
|
|
|
def __subclasscheck__(self, cls):
|
|
if isinstance(cls, _SpecialGenericAlias):
|
|
return issubclass(cls.__origin__, self.__origin__)
|
|
if not isinstance(cls, _GenericAlias):
|
|
return issubclass(cls, self.__origin__)
|
|
return super().__subclasscheck__(cls)
|
|
|
|
def __reduce__(self):
|
|
return self._name
|
|
|
|
def __or__(self, right):
|
|
return Union[self, right]
|
|
|
|
def __ror__(self, left):
|
|
return Union[left, self]
|
|
|
|
class _CallableGenericAlias(_NotIterable, _GenericAlias, _root=True):
|
|
def __repr__(self):
|
|
assert self._name == 'Callable'
|
|
args = self.__args__
|
|
if len(args) == 2 and _is_param_expr(args[0]):
|
|
return super().__repr__()
|
|
return (f'typing.Callable'
|
|
f'[[{", ".join([_type_repr(a) for a in args[:-1]])}], '
|
|
f'{_type_repr(args[-1])}]')
|
|
|
|
def __reduce__(self):
|
|
args = self.__args__
|
|
if not (len(args) == 2 and _is_param_expr(args[0])):
|
|
args = list(args[:-1]), args[-1]
|
|
return operator.getitem, (Callable, args)
|
|
|
|
|
|
class _CallableType(_SpecialGenericAlias, _root=True):
|
|
def copy_with(self, params):
|
|
return _CallableGenericAlias(self.__origin__, params,
|
|
name=self._name, inst=self._inst,
|
|
_paramspec_tvars=True)
|
|
|
|
def __getitem__(self, params):
|
|
if not isinstance(params, tuple) or len(params) != 2:
|
|
raise TypeError("Callable must be used as "
|
|
"Callable[[arg, ...], result].")
|
|
args, result = params
|
|
# This relaxes what args can be on purpose to allow things like
|
|
# PEP 612 ParamSpec. Responsibility for whether a user is using
|
|
# Callable[...] properly is deferred to static type checkers.
|
|
if isinstance(args, list):
|
|
params = (tuple(args), result)
|
|
else:
|
|
params = (args, result)
|
|
return self.__getitem_inner__(params)
|
|
|
|
@_tp_cache
|
|
def __getitem_inner__(self, params):
|
|
args, result = params
|
|
msg = "Callable[args, result]: result must be a type."
|
|
result = _type_check(result, msg)
|
|
if args is Ellipsis:
|
|
return self.copy_with((_TypingEllipsis, result))
|
|
if not isinstance(args, tuple):
|
|
args = (args,)
|
|
args = tuple(_type_convert(arg) for arg in args)
|
|
params = args + (result,)
|
|
return self.copy_with(params)
|
|
|
|
|
|
class _TupleType(_SpecialGenericAlias, _root=True):
|
|
@_tp_cache
|
|
def __getitem__(self, params):
|
|
if not isinstance(params, tuple):
|
|
params = (params,)
|
|
if len(params) >= 2 and params[-1] is ...:
|
|
msg = "Tuple[t, ...]: t must be a type."
|
|
params = tuple(_type_check(p, msg) for p in params[:-1])
|
|
return self.copy_with((*params, _TypingEllipsis))
|
|
msg = "Tuple[t0, t1, ...]: each t must be a type."
|
|
params = tuple(_type_check(p, msg) for p in params)
|
|
return self.copy_with(params)
|
|
|
|
|
|
class _UnionGenericAlias(_NotIterable, _GenericAlias, _root=True):
|
|
def copy_with(self, params):
|
|
return Union[params]
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, (_UnionGenericAlias, types.UnionType)):
|
|
return NotImplemented
|
|
return set(self.__args__) == set(other.__args__)
|
|
|
|
def __hash__(self):
|
|
return hash(frozenset(self.__args__))
|
|
|
|
def __repr__(self):
|
|
args = self.__args__
|
|
if len(args) == 2:
|
|
if args[0] is type(None):
|
|
return f'typing.Optional[{_type_repr(args[1])}]'
|
|
elif args[1] is type(None):
|
|
return f'typing.Optional[{_type_repr(args[0])}]'
|
|
return super().__repr__()
|
|
|
|
def __instancecheck__(self, obj):
|
|
return self.__subclasscheck__(type(obj))
|
|
|
|
def __subclasscheck__(self, cls):
|
|
for arg in self.__args__:
|
|
if issubclass(cls, arg):
|
|
return True
|
|
|
|
def __reduce__(self):
|
|
func, (origin, args) = super().__reduce__()
|
|
return func, (Union, args)
|
|
|
|
|
|
def _value_and_type_iter(parameters):
|
|
return ((p, type(p)) for p in parameters)
|
|
|
|
|
|
class _LiteralGenericAlias(_GenericAlias, _root=True):
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, _LiteralGenericAlias):
|
|
return NotImplemented
|
|
|
|
return set(_value_and_type_iter(self.__args__)) == set(_value_and_type_iter(other.__args__))
|
|
|
|
def __hash__(self):
|
|
return hash(frozenset(_value_and_type_iter(self.__args__)))
|
|
|
|
|
|
class _ConcatenateGenericAlias(_GenericAlias, _root=True):
|
|
def copy_with(self, params):
|
|
if isinstance(params[-1], (list, tuple)):
|
|
return (*params[:-1], *params[-1])
|
|
if isinstance(params[-1], _ConcatenateGenericAlias):
|
|
params = (*params[:-1], *params[-1].__args__)
|
|
return super().copy_with(params)
|
|
|
|
|
|
@_SpecialForm
|
|
def Unpack(self, parameters):
|
|
"""Type unpack operator.
|
|
|
|
The type unpack operator takes the child types from some container type,
|
|
such as `tuple[int, str]` or a `TypeVarTuple`, and 'pulls them out'. For
|
|
example:
|
|
|
|
# For some generic class `Foo`:
|
|
Foo[Unpack[tuple[int, str]]] # Equivalent to Foo[int, str]
|
|
|
|
Ts = TypeVarTuple('Ts')
|
|
# Specifies that `Bar` is generic in an arbitrary number of types.
|
|
# (Think of `Ts` as a tuple of an arbitrary number of individual
|
|
# `TypeVar`s, which the `Unpack` is 'pulling out' directly into the
|
|
# `Generic[]`.)
|
|
class Bar(Generic[Unpack[Ts]]): ...
|
|
Bar[int] # Valid
|
|
Bar[int, str] # Also valid
|
|
|
|
From Python 3.11, this can also be done using the `*` operator:
|
|
|
|
Foo[*tuple[int, str]]
|
|
class Bar(Generic[*Ts]): ...
|
|
|
|
Note that there is only some runtime checking of this operator. Not
|
|
everything the runtime allows may be accepted by static type checkers.
|
|
|
|
For more information, see PEP 646.
|
|
"""
|
|
item = _type_check(parameters, f'{self} accepts only single type.')
|
|
return _UnpackGenericAlias(origin=self, args=(item,))
|
|
|
|
|
|
class _UnpackGenericAlias(_GenericAlias, _root=True):
|
|
|
|
def __repr__(self):
|
|
# `Unpack` only takes one argument, so __args__ should contain only
|
|
# a single item.
|
|
return '*' + repr(self.__args__[0])
|
|
|
|
def __getitem__(self, args):
|
|
if self.__typing_is_unpacked_typevartuple__:
|
|
return args
|
|
return super().__getitem__(args)
|
|
|
|
@property
|
|
def __typing_unpacked_tuple_args__(self):
|
|
assert self.__origin__ is Unpack
|
|
assert len(self.__args__) == 1
|
|
arg, = self.__args__
|
|
if isinstance(arg, _GenericAlias):
|
|
assert arg.__origin__ is tuple
|
|
return arg.__args__
|
|
return None
|
|
|
|
@property
|
|
def __typing_is_unpacked_typevartuple__(self):
|
|
assert self.__origin__ is Unpack
|
|
assert len(self.__args__) == 1
|
|
return isinstance(self.__args__[0], TypeVarTuple)
|
|
|
|
|
|
class Generic:
|
|
"""Abstract base class for generic types.
|
|
|
|
A generic type is typically declared by inheriting from
|
|
this class parameterized with one or more type variables.
|
|
For example, a generic mapping type might be defined as::
|
|
|
|
class Mapping(Generic[KT, VT]):
|
|
def __getitem__(self, key: KT) -> VT:
|
|
...
|
|
# Etc.
|
|
|
|
This class can then be used as follows::
|
|
|
|
def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
|
|
try:
|
|
return mapping[key]
|
|
except KeyError:
|
|
return default
|
|
"""
|
|
__slots__ = ()
|
|
_is_protocol = False
|
|
|
|
@_tp_cache
|
|
def __class_getitem__(cls, params):
|
|
"""Parameterizes a generic class.
|
|
|
|
At least, parameterizing a generic class is the *main* thing this method
|
|
does. For example, for some generic class `Foo`, this is called when we
|
|
do `Foo[int]` - there, with `cls=Foo` and `params=int`.
|
|
|
|
However, note that this method is also called when defining generic
|
|
classes in the first place with `class Foo(Generic[T]): ...`.
|
|
"""
|
|
if not isinstance(params, tuple):
|
|
params = (params,)
|
|
|
|
if not params:
|
|
# We're only ok with `params` being empty if the class's only type
|
|
# parameter is a `TypeVarTuple` (which can contain zero types).
|
|
class_params = getattr(cls, "__parameters__", None)
|
|
only_class_parameter_is_typevartuple = (
|
|
class_params is not None
|
|
and len(class_params) == 1
|
|
and isinstance(class_params[0], TypeVarTuple)
|
|
)
|
|
if not only_class_parameter_is_typevartuple:
|
|
raise TypeError(
|
|
f"Parameter list to {cls.__qualname__}[...] cannot be empty"
|
|
)
|
|
|
|
params = tuple(_type_convert(p) for p in params)
|
|
if cls in (Generic, Protocol):
|
|
# Generic and Protocol can only be subscripted with unique type variables.
|
|
if not all(_is_typevar_like(p) for p in params):
|
|
raise TypeError(
|
|
f"Parameters to {cls.__name__}[...] must all be type variables "
|
|
f"or parameter specification variables.")
|
|
if len(set(params)) != len(params):
|
|
raise TypeError(
|
|
f"Parameters to {cls.__name__}[...] must all be unique")
|
|
else:
|
|
# Subscripting a regular Generic subclass.
|
|
if any(isinstance(t, ParamSpec) for t in cls.__parameters__):
|
|
params = _prepare_paramspec_params(cls, params)
|
|
elif not any(isinstance(p, TypeVarTuple) for p in cls.__parameters__):
|
|
# We only run this if there are no TypeVarTuples, because we
|
|
# don't check variadic generic arity at runtime (to reduce
|
|
# complexity of typing.py).
|
|
_check_generic(cls, params, len(cls.__parameters__))
|
|
return _GenericAlias(cls, params,
|
|
_paramspec_tvars=True)
|
|
|
|
def __init_subclass__(cls, *args, **kwargs):
|
|
super().__init_subclass__(*args, **kwargs)
|
|
tvars = []
|
|
if '__orig_bases__' in cls.__dict__:
|
|
error = Generic in cls.__orig_bases__
|
|
else:
|
|
error = (Generic in cls.__bases__ and
|
|
cls.__name__ != 'Protocol' and
|
|
type(cls) != _TypedDictMeta)
|
|
if error:
|
|
raise TypeError("Cannot inherit from plain Generic")
|
|
if '__orig_bases__' in cls.__dict__:
|
|
tvars = _collect_parameters(cls.__orig_bases__)
|
|
# Look for Generic[T1, ..., Tn].
|
|
# If found, tvars must be a subset of it.
|
|
# If not found, tvars is it.
|
|
# Also check for and reject plain Generic,
|
|
# and reject multiple Generic[...].
|
|
gvars = None
|
|
for base in cls.__orig_bases__:
|
|
if (isinstance(base, _GenericAlias) and
|
|
base.__origin__ is Generic):
|
|
if gvars is not None:
|
|
raise TypeError(
|
|
"Cannot inherit from Generic[...] multiple types.")
|
|
gvars = base.__parameters__
|
|
if gvars is not None:
|
|
tvarset = set(tvars)
|
|
gvarset = set(gvars)
|
|
if not tvarset <= gvarset:
|
|
s_vars = ', '.join(str(t) for t in tvars if t not in gvarset)
|
|
s_args = ', '.join(str(g) for g in gvars)
|
|
raise TypeError(f"Some type variables ({s_vars}) are"
|
|
f" not listed in Generic[{s_args}]")
|
|
tvars = gvars
|
|
cls.__parameters__ = tuple(tvars)
|
|
|
|
|
|
class _TypingEllipsis:
|
|
"""Internal placeholder for ... (ellipsis)."""
|
|
|
|
|
|
_TYPING_INTERNALS = ['__parameters__', '__orig_bases__', '__orig_class__',
|
|
'_is_protocol', '_is_runtime_protocol']
|
|
|
|
_SPECIAL_NAMES = ['__abstractmethods__', '__annotations__', '__dict__', '__doc__',
|
|
'__init__', '__module__', '__new__', '__slots__',
|
|
'__subclasshook__', '__weakref__', '__class_getitem__']
|
|
|
|
# These special attributes will be not collected as protocol members.
|
|
EXCLUDED_ATTRIBUTES = _TYPING_INTERNALS + _SPECIAL_NAMES + ['_MutableMapping__marker']
|
|
|
|
|
|
def _get_protocol_attrs(cls):
|
|
"""Collect protocol members from a protocol class objects.
|
|
|
|
This includes names actually defined in the class dictionary, as well
|
|
as names that appear in annotations. Special names (above) are skipped.
|
|
"""
|
|
attrs = set()
|
|
for base in cls.__mro__[:-1]: # without object
|
|
if base.__name__ in ('Protocol', 'Generic'):
|
|
continue
|
|
annotations = getattr(base, '__annotations__', {})
|
|
for attr in list(base.__dict__.keys()) + list(annotations.keys()):
|
|
if not attr.startswith('_abc_') and attr not in EXCLUDED_ATTRIBUTES:
|
|
attrs.add(attr)
|
|
return attrs
|
|
|
|
|
|
def _is_callable_members_only(cls):
|
|
# PEP 544 prohibits using issubclass() with protocols that have non-method members.
|
|
return all(callable(getattr(cls, attr, None)) for attr in _get_protocol_attrs(cls))
|
|
|
|
|
|
def _no_init_or_replace_init(self, *args, **kwargs):
|
|
cls = type(self)
|
|
|
|
if cls._is_protocol:
|
|
raise TypeError('Protocols cannot be instantiated')
|
|
|
|
# Already using a custom `__init__`. No need to calculate correct
|
|
# `__init__` to call. This can lead to RecursionError. See bpo-45121.
|
|
if cls.__init__ is not _no_init_or_replace_init:
|
|
return
|
|
|
|
# Initially, `__init__` of a protocol subclass is set to `_no_init_or_replace_init`.
|
|
# The first instantiation of the subclass will call `_no_init_or_replace_init` which
|
|
# searches for a proper new `__init__` in the MRO. The new `__init__`
|
|
# replaces the subclass' old `__init__` (ie `_no_init_or_replace_init`). Subsequent
|
|
# instantiation of the protocol subclass will thus use the new
|
|
# `__init__` and no longer call `_no_init_or_replace_init`.
|
|
for base in cls.__mro__:
|
|
init = base.__dict__.get('__init__', _no_init_or_replace_init)
|
|
if init is not _no_init_or_replace_init:
|
|
cls.__init__ = init
|
|
break
|
|
else:
|
|
# should not happen
|
|
cls.__init__ = object.__init__
|
|
|
|
cls.__init__(self, *args, **kwargs)
|
|
|
|
|
|
def _caller(depth=1, default='__main__'):
|
|
try:
|
|
return sys._getframe(depth + 1).f_globals.get('__name__', default)
|
|
except (AttributeError, ValueError): # For platforms without _getframe()
|
|
return None
|
|
|
|
|
|
def _allow_reckless_class_checks(depth=3):
|
|
"""Allow instance and class checks for special stdlib modules.
|
|
|
|
The abc and functools modules indiscriminately call isinstance() and
|
|
issubclass() on the whole MRO of a user class, which may contain protocols.
|
|
"""
|
|
return _caller(depth) in {'abc', 'functools', None}
|
|
|
|
|
|
_PROTO_ALLOWLIST = {
|
|
'collections.abc': [
|
|
'Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable',
|
|
'Hashable', 'Sized', 'Container', 'Collection', 'Reversible',
|
|
],
|
|
'contextlib': ['AbstractContextManager', 'AbstractAsyncContextManager'],
|
|
}
|
|
|
|
|
|
class _ProtocolMeta(ABCMeta):
|
|
# This metaclass is really unfortunate and exists only because of
|
|
# the lack of __instancehook__.
|
|
def __instancecheck__(cls, instance):
|
|
# We need this method for situations where attributes are
|
|
# assigned in __init__.
|
|
if (
|
|
getattr(cls, '_is_protocol', False) and
|
|
not getattr(cls, '_is_runtime_protocol', False) and
|
|
not _allow_reckless_class_checks(depth=2)
|
|
):
|
|
raise TypeError("Instance and class checks can only be used with"
|
|
" @runtime_checkable protocols")
|
|
|
|
if ((not getattr(cls, '_is_protocol', False) or
|
|
_is_callable_members_only(cls)) and
|
|
issubclass(instance.__class__, cls)):
|
|
return True
|
|
if cls._is_protocol:
|
|
if all(hasattr(instance, attr) and
|
|
# All *methods* can be blocked by setting them to None.
|
|
(not callable(getattr(cls, attr, None)) or
|
|
getattr(instance, attr) is not None)
|
|
for attr in _get_protocol_attrs(cls)):
|
|
return True
|
|
return super().__instancecheck__(instance)
|
|
|
|
|
|
class Protocol(Generic, metaclass=_ProtocolMeta):
|
|
"""Base class for protocol classes.
|
|
|
|
Protocol classes are defined as::
|
|
|
|
class Proto(Protocol):
|
|
def meth(self) -> int:
|
|
...
|
|
|
|
Such classes are primarily used with static type checkers that recognize
|
|
structural subtyping (static duck-typing), for example::
|
|
|
|
class C:
|
|
def meth(self) -> int:
|
|
return 0
|
|
|
|
def func(x: Proto) -> int:
|
|
return x.meth()
|
|
|
|
func(C()) # Passes static type check
|
|
|
|
See PEP 544 for details. Protocol classes decorated with
|
|
@typing.runtime_checkable act as simple-minded runtime protocols that check
|
|
only the presence of given attributes, ignoring their type signatures.
|
|
Protocol classes can be generic, they are defined as::
|
|
|
|
class GenProto(Protocol[T]):
|
|
def meth(self) -> T:
|
|
...
|
|
"""
|
|
__slots__ = ()
|
|
_is_protocol = True
|
|
_is_runtime_protocol = False
|
|
|
|
def __init_subclass__(cls, *args, **kwargs):
|
|
super().__init_subclass__(*args, **kwargs)
|
|
|
|
# Determine if this is a protocol or a concrete subclass.
|
|
if not cls.__dict__.get('_is_protocol', False):
|
|
cls._is_protocol = any(b is Protocol for b in cls.__bases__)
|
|
|
|
# Set (or override) the protocol subclass hook.
|
|
def _proto_hook(other):
|
|
if not cls.__dict__.get('_is_protocol', False):
|
|
return NotImplemented
|
|
|
|
# First, perform various sanity checks.
|
|
if not getattr(cls, '_is_runtime_protocol', False):
|
|
if _allow_reckless_class_checks():
|
|
return NotImplemented
|
|
raise TypeError("Instance and class checks can only be used with"
|
|
" @runtime_checkable protocols")
|
|
if not _is_callable_members_only(cls):
|
|
if _allow_reckless_class_checks():
|
|
return NotImplemented
|
|
raise TypeError("Protocols with non-method members"
|
|
" don't support issubclass()")
|
|
if not isinstance(other, type):
|
|
# Same error message as for issubclass(1, int).
|
|
raise TypeError('issubclass() arg 1 must be a class')
|
|
|
|
# Second, perform the actual structural compatibility check.
|
|
for attr in _get_protocol_attrs(cls):
|
|
for base in other.__mro__:
|
|
# Check if the members appears in the class dictionary...
|
|
if attr in base.__dict__:
|
|
if base.__dict__[attr] is None:
|
|
return NotImplemented
|
|
break
|
|
|
|
# ...or in annotations, if it is a sub-protocol.
|
|
annotations = getattr(base, '__annotations__', {})
|
|
if (isinstance(annotations, collections.abc.Mapping) and
|
|
attr in annotations and
|
|
issubclass(other, Generic) and other._is_protocol):
|
|
break
|
|
else:
|
|
return NotImplemented
|
|
return True
|
|
|
|
if '__subclasshook__' not in cls.__dict__:
|
|
cls.__subclasshook__ = _proto_hook
|
|
|
|
# We have nothing more to do for non-protocols...
|
|
if not cls._is_protocol:
|
|
return
|
|
|
|
# ... otherwise check consistency of bases, and prohibit instantiation.
|
|
for base in cls.__bases__:
|
|
if not (base in (object, Generic) or
|
|
base.__module__ in _PROTO_ALLOWLIST and
|
|
base.__name__ in _PROTO_ALLOWLIST[base.__module__] or
|
|
issubclass(base, Generic) and base._is_protocol):
|
|
raise TypeError('Protocols can only inherit from other'
|
|
' protocols, got %r' % base)
|
|
if cls.__init__ is Protocol.__init__:
|
|
cls.__init__ = _no_init_or_replace_init
|
|
|
|
|
|
class _AnnotatedAlias(_NotIterable, _GenericAlias, _root=True):
|
|
"""Runtime representation of an annotated type.
|
|
|
|
At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't'
|
|
with extra annotations. The alias behaves like a normal typing alias,
|
|
instantiating is the same as instantiating the underlying type, binding
|
|
it to types is also the same.
|
|
"""
|
|
def __init__(self, origin, metadata):
|
|
if isinstance(origin, _AnnotatedAlias):
|
|
metadata = origin.__metadata__ + metadata
|
|
origin = origin.__origin__
|
|
super().__init__(origin, origin, name='Annotated')
|
|
self.__metadata__ = metadata
|
|
|
|
def copy_with(self, params):
|
|
assert len(params) == 1
|
|
new_type = params[0]
|
|
return _AnnotatedAlias(new_type, self.__metadata__)
|
|
|
|
def __repr__(self):
|
|
return "typing.Annotated[{}, {}]".format(
|
|
_type_repr(self.__origin__),
|
|
", ".join(repr(a) for a in self.__metadata__)
|
|
)
|
|
|
|
def __reduce__(self):
|
|
return operator.getitem, (
|
|
Annotated, (self.__origin__,) + self.__metadata__
|
|
)
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, _AnnotatedAlias):
|
|
return NotImplemented
|
|
return (self.__origin__ == other.__origin__
|
|
and self.__metadata__ == other.__metadata__)
|
|
|
|
def __hash__(self):
|
|
return hash((self.__origin__, self.__metadata__))
|
|
|
|
def __getattr__(self, attr):
|
|
if attr in {'__name__', '__qualname__'}:
|
|
return 'Annotated'
|
|
return super().__getattr__(attr)
|
|
|
|
def __mro_entries__(self, bases):
|
|
return (self.__origin__,)
|
|
|
|
|
|
class Annotated:
|
|
"""Add context specific metadata to a type.
|
|
|
|
Example: Annotated[int, runtime_check.Unsigned] indicates to the
|
|
hypothetical runtime_check module that this type is an unsigned int.
|
|
Every other consumer of this type can ignore this metadata and treat
|
|
this type as int.
|
|
|
|
The first argument to Annotated must be a valid type.
|
|
|
|
Details:
|
|
|
|
- It's an error to call `Annotated` with less than two arguments.
|
|
- Nested Annotated are flattened::
|
|
|
|
Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]
|
|
|
|
- Instantiating an annotated type is equivalent to instantiating the
|
|
underlying type::
|
|
|
|
Annotated[C, Ann1](5) == C(5)
|
|
|
|
- Annotated can be used as a generic type alias::
|
|
|
|
Optimized = Annotated[T, runtime.Optimize()]
|
|
Optimized[int] == Annotated[int, runtime.Optimize()]
|
|
|
|
OptimizedList = Annotated[List[T], runtime.Optimize()]
|
|
OptimizedList[int] == Annotated[List[int], runtime.Optimize()]
|
|
|
|
- Annotated cannot be used with an unpacked TypeVarTuple::
|
|
|
|
Annotated[*Ts, Ann1] # NOT valid
|
|
|
|
This would be equivalent to
|
|
|
|
Annotated[T1, T2, T3, ..., Ann1]
|
|
|
|
where T1, T2 etc. are TypeVars, which would be invalid, because
|
|
only one type should be passed to Annotated.
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
raise TypeError("Type Annotated cannot be instantiated.")
|
|
|
|
@_tp_cache
|
|
def __class_getitem__(cls, params):
|
|
if not isinstance(params, tuple) or len(params) < 2:
|
|
raise TypeError("Annotated[...] should be used "
|
|
"with at least two arguments (a type and an "
|
|
"annotation).")
|
|
if _is_unpacked_typevartuple(params[0]):
|
|
raise TypeError("Annotated[...] should not be used with an "
|
|
"unpacked TypeVarTuple")
|
|
msg = "Annotated[t, ...]: t must be a type."
|
|
origin = _type_check(params[0], msg, allow_special_forms=True)
|
|
metadata = tuple(params[1:])
|
|
return _AnnotatedAlias(origin, metadata)
|
|
|
|
def __init_subclass__(cls, *args, **kwargs):
|
|
raise TypeError(
|
|
"Cannot subclass {}.Annotated".format(cls.__module__)
|
|
)
|
|
|
|
|
|
def runtime_checkable(cls):
|
|
"""Mark a protocol class as a runtime protocol.
|
|
|
|
Such protocol can be used with isinstance() and issubclass().
|
|
Raise TypeError if applied to a non-protocol class.
|
|
This allows a simple-minded structural check very similar to
|
|
one trick ponies in collections.abc such as Iterable.
|
|
For example::
|
|
|
|
@runtime_checkable
|
|
class Closable(Protocol):
|
|
def close(self): ...
|
|
|
|
assert isinstance(open('/some/file'), Closable)
|
|
|
|
Warning: this will check only the presence of the required methods,
|
|
not their type signatures!
|
|
"""
|
|
if not issubclass(cls, Generic) or not cls._is_protocol:
|
|
raise TypeError('@runtime_checkable can be only applied to protocol classes,'
|
|
' got %r' % cls)
|
|
cls._is_runtime_protocol = True
|
|
return cls
|
|
|
|
|
|
def cast(typ, val):
|
|
"""Cast a value to a type.
|
|
|
|
This returns the value unchanged. To the type checker this
|
|
signals that the return value has the designated type, but at
|
|
runtime we intentionally don't check anything (we want this
|
|
to be as fast as possible).
|
|
"""
|
|
return val
|
|
|
|
|
|
def assert_type(val, typ, /):
|
|
"""Ask a static type checker to confirm that the value is of the given type.
|
|
|
|
When the type checker encounters a call to assert_type(), it
|
|
emits an error if the value is not of the specified type::
|
|
|
|
def greet(name: str) -> None:
|
|
assert_type(name, str) # ok
|
|
assert_type(name, int) # type checker error
|
|
|
|
At runtime this returns the first argument unchanged and otherwise
|
|
does nothing.
|
|
"""
|
|
return val
|
|
|
|
|
|
_allowed_types = (types.FunctionType, types.BuiltinFunctionType,
|
|
types.MethodType, types.ModuleType,
|
|
WrapperDescriptorType, MethodWrapperType, MethodDescriptorType)
|
|
|
|
|
|
def get_type_hints(obj, globalns=None, localns=None, include_extras=False):
|
|
"""Return type hints for an object.
|
|
|
|
This is often the same as obj.__annotations__, but it handles
|
|
forward references encoded as string literals and recursively replaces all
|
|
'Annotated[T, ...]' with 'T' (unless 'include_extras=True').
|
|
|
|
The argument may be a module, class, method, or function. The annotations
|
|
are returned as a dictionary. For classes, annotations include also
|
|
inherited members.
|
|
|
|
TypeError is raised if the argument is not of a type that can contain
|
|
annotations, and an empty dictionary is returned if no annotations are
|
|
present.
|
|
|
|
BEWARE -- the behavior of globalns and localns is counterintuitive
|
|
(unless you are familiar with how eval() and exec() work). The
|
|
search order is locals first, then globals.
|
|
|
|
- If no dict arguments are passed, an attempt is made to use the
|
|
globals from obj (or the respective module's globals for classes),
|
|
and these are also used as the locals. If the object does not appear
|
|
to have globals, an empty dictionary is used. For classes, the search
|
|
order is globals first then locals.
|
|
|
|
- If one dict argument is passed, it is used for both globals and
|
|
locals.
|
|
|
|
- If two dict arguments are passed, they specify globals and
|
|
locals, respectively.
|
|
"""
|
|
|
|
if getattr(obj, '__no_type_check__', None):
|
|
return {}
|
|
# Classes require a special treatment.
|
|
if isinstance(obj, type):
|
|
hints = {}
|
|
for base in reversed(obj.__mro__):
|
|
if globalns is None:
|
|
base_globals = getattr(sys.modules.get(base.__module__, None), '__dict__', {})
|
|
else:
|
|
base_globals = globalns
|
|
ann = base.__dict__.get('__annotations__', {})
|
|
if isinstance(ann, types.GetSetDescriptorType):
|
|
ann = {}
|
|
base_locals = dict(vars(base)) if localns is None else localns
|
|
if localns is None and globalns is None:
|
|
# This is surprising, but required. Before Python 3.10,
|
|
# get_type_hints only evaluated the globalns of
|
|
# a class. To maintain backwards compatibility, we reverse
|
|
# the globalns and localns order so that eval() looks into
|
|
# *base_globals* first rather than *base_locals*.
|
|
# This only affects ForwardRefs.
|
|
base_globals, base_locals = base_locals, base_globals
|
|
for name, value in ann.items():
|
|
if value is None:
|
|
value = type(None)
|
|
if isinstance(value, str):
|
|
value = ForwardRef(value, is_argument=False, is_class=True)
|
|
value = _eval_type(value, base_globals, base_locals)
|
|
hints[name] = value
|
|
return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}
|
|
|
|
if globalns is None:
|
|
if isinstance(obj, types.ModuleType):
|
|
globalns = obj.__dict__
|
|
else:
|
|
nsobj = obj
|
|
# Find globalns for the unwrapped object.
|
|
while hasattr(nsobj, '__wrapped__'):
|
|
nsobj = nsobj.__wrapped__
|
|
globalns = getattr(nsobj, '__globals__', {})
|
|
if localns is None:
|
|
localns = globalns
|
|
elif localns is None:
|
|
localns = globalns
|
|
hints = getattr(obj, '__annotations__', None)
|
|
if hints is None:
|
|
# Return empty annotations for something that _could_ have them.
|
|
if isinstance(obj, _allowed_types):
|
|
return {}
|
|
else:
|
|
raise TypeError('{!r} is not a module, class, method, '
|
|
'or function.'.format(obj))
|
|
hints = dict(hints)
|
|
for name, value in hints.items():
|
|
if value is None:
|
|
value = type(None)
|
|
if isinstance(value, str):
|
|
# class-level forward refs were handled above, this must be either
|
|
# a module-level annotation or a function argument annotation
|
|
value = ForwardRef(
|
|
value,
|
|
is_argument=not isinstance(obj, types.ModuleType),
|
|
is_class=False,
|
|
)
|
|
hints[name] = _eval_type(value, globalns, localns)
|
|
return hints if include_extras else {k: _strip_annotations(t) for k, t in hints.items()}
|
|
|
|
|
|
def _strip_annotations(t):
|
|
"""Strips the annotations from a given type.
|
|
"""
|
|
if isinstance(t, _AnnotatedAlias):
|
|
return _strip_annotations(t.__origin__)
|
|
if hasattr(t, "__origin__") and t.__origin__ in (Required, NotRequired):
|
|
return _strip_annotations(t.__args__[0])
|
|
if isinstance(t, _GenericAlias):
|
|
stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
|
|
if stripped_args == t.__args__:
|
|
return t
|
|
return t.copy_with(stripped_args)
|
|
if isinstance(t, GenericAlias):
|
|
stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
|
|
if stripped_args == t.__args__:
|
|
return t
|
|
return GenericAlias(t.__origin__, stripped_args)
|
|
if isinstance(t, types.UnionType):
|
|
stripped_args = tuple(_strip_annotations(a) for a in t.__args__)
|
|
if stripped_args == t.__args__:
|
|
return t
|
|
return functools.reduce(operator.or_, stripped_args)
|
|
|
|
return t
|
|
|
|
|
|
def get_origin(tp):
|
|
"""Get the unsubscripted version of a type.
|
|
|
|
This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar
|
|
and Annotated. Return None for unsupported types. Examples::
|
|
|
|
get_origin(Literal[42]) is Literal
|
|
get_origin(int) is None
|
|
get_origin(ClassVar[int]) is ClassVar
|
|
get_origin(Generic) is Generic
|
|
get_origin(Generic[T]) is Generic
|
|
get_origin(Union[T, int]) is Union
|
|
get_origin(List[Tuple[T, T]][int]) == list
|
|
get_origin(P.args) is P
|
|
"""
|
|
if isinstance(tp, _AnnotatedAlias):
|
|
return Annotated
|
|
if isinstance(tp, (_BaseGenericAlias, GenericAlias,
|
|
ParamSpecArgs, ParamSpecKwargs)):
|
|
return tp.__origin__
|
|
if tp is Generic:
|
|
return Generic
|
|
if isinstance(tp, types.UnionType):
|
|
return types.UnionType
|
|
return None
|
|
|
|
|
|
def get_args(tp):
|
|
"""Get type arguments with all substitutions performed.
|
|
|
|
For unions, basic simplifications used by Union constructor are performed.
|
|
Examples::
|
|
get_args(Dict[str, int]) == (str, int)
|
|
get_args(int) == ()
|
|
get_args(Union[int, Union[T, int], str][int]) == (int, str)
|
|
get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
|
|
get_args(Callable[[], T][int]) == ([], int)
|
|
"""
|
|
if isinstance(tp, _AnnotatedAlias):
|
|
return (tp.__origin__,) + tp.__metadata__
|
|
if isinstance(tp, (_GenericAlias, GenericAlias)):
|
|
res = tp.__args__
|
|
if _should_unflatten_callable_args(tp, res):
|
|
res = (list(res[:-1]), res[-1])
|
|
return res
|
|
if isinstance(tp, types.UnionType):
|
|
return tp.__args__
|
|
return ()
|
|
|
|
|
|
def is_typeddict(tp):
|
|
"""Check if an annotation is a TypedDict class
|
|
|
|
For example::
|
|
class Film(TypedDict):
|
|
title: str
|
|
year: int
|
|
|
|
is_typeddict(Film) # => True
|
|
is_typeddict(Union[list, str]) # => False
|
|
"""
|
|
return isinstance(tp, _TypedDictMeta)
|
|
|
|
|
|
_ASSERT_NEVER_REPR_MAX_LENGTH = 100
|
|
|
|
|
|
def assert_never(arg: Never, /) -> Never:
|
|
"""Statically assert that a line of code is unreachable.
|
|
|
|
Example::
|
|
|
|
def int_or_str(arg: int | str) -> None:
|
|
match arg:
|
|
case int():
|
|
print("It's an int")
|
|
case str():
|
|
print("It's a str")
|
|
case _:
|
|
assert_never(arg)
|
|
|
|
If a type checker finds that a call to assert_never() is
|
|
reachable, it will emit an error.
|
|
|
|
At runtime, this throws an exception when called.
|
|
|
|
"""
|
|
value = repr(arg)
|
|
if len(value) > _ASSERT_NEVER_REPR_MAX_LENGTH:
|
|
value = value[:_ASSERT_NEVER_REPR_MAX_LENGTH] + '...'
|
|
raise AssertionError(f"Expected code to be unreachable, but got: {value}")
|
|
|
|
|
|
def no_type_check(arg):
|
|
"""Decorator to indicate that annotations are not type hints.
|
|
|
|
The argument must be a class or function; if it is a class, it
|
|
applies recursively to all methods and classes defined in that class
|
|
(but not to methods defined in its superclasses or subclasses).
|
|
|
|
This mutates the function(s) or class(es) in place.
|
|
"""
|
|
if isinstance(arg, type):
|
|
for key in dir(arg):
|
|
obj = getattr(arg, key)
|
|
if (
|
|
not hasattr(obj, '__qualname__')
|
|
or obj.__qualname__ != f'{arg.__qualname__}.{obj.__name__}'
|
|
or getattr(obj, '__module__', None) != arg.__module__
|
|
):
|
|
# We only modify objects that are defined in this type directly.
|
|
# If classes / methods are nested in multiple layers,
|
|
# we will modify them when processing their direct holders.
|
|
continue
|
|
# Instance, class, and static methods:
|
|
if isinstance(obj, types.FunctionType):
|
|
obj.__no_type_check__ = True
|
|
if isinstance(obj, types.MethodType):
|
|
obj.__func__.__no_type_check__ = True
|
|
# Nested types:
|
|
if isinstance(obj, type):
|
|
no_type_check(obj)
|
|
try:
|
|
arg.__no_type_check__ = True
|
|
except TypeError: # built-in classes
|
|
pass
|
|
return arg
|
|
|
|
|
|
def no_type_check_decorator(decorator):
|
|
"""Decorator to give another decorator the @no_type_check effect.
|
|
|
|
This wraps the decorator with something that wraps the decorated
|
|
function in @no_type_check.
|
|
"""
|
|
|
|
@functools.wraps(decorator)
|
|
def wrapped_decorator(*args, **kwds):
|
|
func = decorator(*args, **kwds)
|
|
func = no_type_check(func)
|
|
return func
|
|
|
|
return wrapped_decorator
|
|
|
|
|
|
def _overload_dummy(*args, **kwds):
|
|
"""Helper for @overload to raise when called."""
|
|
raise NotImplementedError(
|
|
"You should not call an overloaded function. "
|
|
"A series of @overload-decorated functions "
|
|
"outside a stub module should always be followed "
|
|
"by an implementation that is not @overload-ed.")
|
|
|
|
|
|
# {module: {qualname: {firstlineno: func}}}
|
|
_overload_registry = defaultdict(functools.partial(defaultdict, dict))
|
|
|
|
|
|
def overload(func):
|
|
"""Decorator for overloaded functions/methods.
|
|
|
|
In a stub file, place two or more stub definitions for the same
|
|
function in a row, each decorated with @overload. For example:
|
|
|
|
@overload
|
|
def utf8(value: None) -> None: ...
|
|
@overload
|
|
def utf8(value: bytes) -> bytes: ...
|
|
@overload
|
|
def utf8(value: str) -> bytes: ...
|
|
|
|
In a non-stub file (i.e. a regular .py file), do the same but
|
|
follow it with an implementation. The implementation should *not*
|
|
be decorated with @overload. For example:
|
|
|
|
@overload
|
|
def utf8(value: None) -> None: ...
|
|
@overload
|
|
def utf8(value: bytes) -> bytes: ...
|
|
@overload
|
|
def utf8(value: str) -> bytes: ...
|
|
def utf8(value):
|
|
# implementation goes here
|
|
|
|
The overloads for a function can be retrieved at runtime using the
|
|
get_overloads() function.
|
|
"""
|
|
# classmethod and staticmethod
|
|
f = getattr(func, "__func__", func)
|
|
try:
|
|
_overload_registry[f.__module__][f.__qualname__][f.__code__.co_firstlineno] = func
|
|
except AttributeError:
|
|
# Not a normal function; ignore.
|
|
pass
|
|
return _overload_dummy
|
|
|
|
|
|
def get_overloads(func):
|
|
"""Return all defined overloads for *func* as a sequence."""
|
|
# classmethod and staticmethod
|
|
f = getattr(func, "__func__", func)
|
|
if f.__module__ not in _overload_registry:
|
|
return []
|
|
mod_dict = _overload_registry[f.__module__]
|
|
if f.__qualname__ not in mod_dict:
|
|
return []
|
|
return list(mod_dict[f.__qualname__].values())
|
|
|
|
|
|
def clear_overloads():
|
|
"""Clear all overloads in the registry."""
|
|
_overload_registry.clear()
|
|
|
|
|
|
def final(f):
|
|
"""A decorator to indicate final methods and final classes.
|
|
|
|
Use this decorator to indicate to type checkers that the decorated
|
|
method cannot be overridden, and decorated class cannot be subclassed.
|
|
For example:
|
|
|
|
class Base:
|
|
@final
|
|
def done(self) -> None:
|
|
...
|
|
class Sub(Base):
|
|
def done(self) -> None: # Error reported by type checker
|
|
...
|
|
|
|
@final
|
|
class Leaf:
|
|
...
|
|
class Other(Leaf): # Error reported by type checker
|
|
...
|
|
|
|
There is no runtime checking of these properties. The decorator
|
|
sets the ``__final__`` attribute to ``True`` on the decorated object
|
|
to allow runtime introspection.
|
|
"""
|
|
try:
|
|
f.__final__ = True
|
|
except (AttributeError, TypeError):
|
|
# Skip the attribute silently if it is not writable.
|
|
# AttributeError happens if the object has __slots__ or a
|
|
# read-only property, TypeError if it's a builtin class.
|
|
pass
|
|
return f
|
|
|
|
|
|
# Some unconstrained type variables. These are used by the container types.
|
|
# (These are not for export.)
|
|
T = TypeVar('T') # Any type.
|
|
KT = TypeVar('KT') # Key type.
|
|
VT = TypeVar('VT') # Value type.
|
|
T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
|
|
V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
|
|
VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
|
|
T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
|
|
# Internal type variable used for Type[].
|
|
CT_co = TypeVar('CT_co', covariant=True, bound=type)
|
|
|
|
# A useful type variable with constraints. This represents string types.
|
|
# (This one *is* for export!)
|
|
AnyStr = TypeVar('AnyStr', bytes, str)
|
|
|
|
|
|
# Various ABCs mimicking those in collections.abc.
|
|
_alias = _SpecialGenericAlias
|
|
|
|
Hashable = _alias(collections.abc.Hashable, 0) # Not generic.
|
|
Awaitable = _alias(collections.abc.Awaitable, 1)
|
|
Coroutine = _alias(collections.abc.Coroutine, 3)
|
|
AsyncIterable = _alias(collections.abc.AsyncIterable, 1)
|
|
AsyncIterator = _alias(collections.abc.AsyncIterator, 1)
|
|
Iterable = _alias(collections.abc.Iterable, 1)
|
|
Iterator = _alias(collections.abc.Iterator, 1)
|
|
Reversible = _alias(collections.abc.Reversible, 1)
|
|
Sized = _alias(collections.abc.Sized, 0) # Not generic.
|
|
Container = _alias(collections.abc.Container, 1)
|
|
Collection = _alias(collections.abc.Collection, 1)
|
|
Callable = _CallableType(collections.abc.Callable, 2)
|
|
Callable.__doc__ = \
|
|
"""Callable type; Callable[[int], str] is a function of (int) -> str.
|
|
|
|
The subscription syntax must always be used with exactly two
|
|
values: the argument list and the return type. The argument list
|
|
must be a list of types or ellipsis; the return type must be a single type.
|
|
|
|
There is no syntax to indicate optional or keyword arguments,
|
|
such function types are rarely used as callback types.
|
|
"""
|
|
AbstractSet = _alias(collections.abc.Set, 1, name='AbstractSet')
|
|
MutableSet = _alias(collections.abc.MutableSet, 1)
|
|
# NOTE: Mapping is only covariant in the value type.
|
|
Mapping = _alias(collections.abc.Mapping, 2)
|
|
MutableMapping = _alias(collections.abc.MutableMapping, 2)
|
|
Sequence = _alias(collections.abc.Sequence, 1)
|
|
MutableSequence = _alias(collections.abc.MutableSequence, 1)
|
|
ByteString = _alias(collections.abc.ByteString, 0) # Not generic
|
|
# Tuple accepts variable number of parameters.
|
|
Tuple = _TupleType(tuple, -1, inst=False, name='Tuple')
|
|
Tuple.__doc__ = \
|
|
"""Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
|
|
|
|
Example: Tuple[T1, T2] is a tuple of two elements corresponding
|
|
to type variables T1 and T2. Tuple[int, float, str] is a tuple
|
|
of an int, a float and a string.
|
|
|
|
To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
|
|
"""
|
|
List = _alias(list, 1, inst=False, name='List')
|
|
Deque = _alias(collections.deque, 1, name='Deque')
|
|
Set = _alias(set, 1, inst=False, name='Set')
|
|
FrozenSet = _alias(frozenset, 1, inst=False, name='FrozenSet')
|
|
MappingView = _alias(collections.abc.MappingView, 1)
|
|
KeysView = _alias(collections.abc.KeysView, 1)
|
|
ItemsView = _alias(collections.abc.ItemsView, 2)
|
|
ValuesView = _alias(collections.abc.ValuesView, 1)
|
|
ContextManager = _alias(contextlib.AbstractContextManager, 1, name='ContextManager')
|
|
AsyncContextManager = _alias(contextlib.AbstractAsyncContextManager, 1, name='AsyncContextManager')
|
|
Dict = _alias(dict, 2, inst=False, name='Dict')
|
|
DefaultDict = _alias(collections.defaultdict, 2, name='DefaultDict')
|
|
OrderedDict = _alias(collections.OrderedDict, 2)
|
|
Counter = _alias(collections.Counter, 1)
|
|
ChainMap = _alias(collections.ChainMap, 2)
|
|
Generator = _alias(collections.abc.Generator, 3)
|
|
AsyncGenerator = _alias(collections.abc.AsyncGenerator, 2)
|
|
Type = _alias(type, 1, inst=False, name='Type')
|
|
Type.__doc__ = \
|
|
"""A special construct usable to annotate class objects.
|
|
|
|
For example, suppose we have the following classes::
|
|
|
|
class User: ... # Abstract base for User classes
|
|
class BasicUser(User): ...
|
|
class ProUser(User): ...
|
|
class TeamUser(User): ...
|
|
|
|
And a function that takes a class argument that's a subclass of
|
|
User and returns an instance of the corresponding class::
|
|
|
|
U = TypeVar('U', bound=User)
|
|
def new_user(user_class: Type[U]) -> U:
|
|
user = user_class()
|
|
# (Here we could write the user object to a database)
|
|
return user
|
|
|
|
joe = new_user(BasicUser)
|
|
|
|
At this point the type checker knows that joe has type BasicUser.
|
|
"""
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsInt(Protocol):
|
|
"""An ABC with one abstract method __int__."""
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __int__(self) -> int:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsFloat(Protocol):
|
|
"""An ABC with one abstract method __float__."""
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __float__(self) -> float:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsComplex(Protocol):
|
|
"""An ABC with one abstract method __complex__."""
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __complex__(self) -> complex:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsBytes(Protocol):
|
|
"""An ABC with one abstract method __bytes__."""
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __bytes__(self) -> bytes:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsIndex(Protocol):
|
|
"""An ABC with one abstract method __index__."""
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __index__(self) -> int:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsAbs(Protocol[T_co]):
|
|
"""An ABC with one abstract method __abs__ that is covariant in its return type."""
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __abs__(self) -> T_co:
|
|
pass
|
|
|
|
|
|
@runtime_checkable
|
|
class SupportsRound(Protocol[T_co]):
|
|
"""An ABC with one abstract method __round__ that is covariant in its return type."""
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def __round__(self, ndigits: int = 0) -> T_co:
|
|
pass
|
|
|
|
|
|
def _make_nmtuple(name, types, module, defaults = ()):
|
|
fields = [n for n, t in types]
|
|
types = {n: _type_check(t, f"field {n} annotation must be a type")
|
|
for n, t in types}
|
|
nm_tpl = collections.namedtuple(name, fields,
|
|
defaults=defaults, module=module)
|
|
nm_tpl.__annotations__ = nm_tpl.__new__.__annotations__ = types
|
|
return nm_tpl
|
|
|
|
|
|
# attributes prohibited to set in NamedTuple class syntax
|
|
_prohibited = frozenset({'__new__', '__init__', '__slots__', '__getnewargs__',
|
|
'_fields', '_field_defaults',
|
|
'_make', '_replace', '_asdict', '_source'})
|
|
|
|
_special = frozenset({'__module__', '__name__', '__annotations__'})
|
|
|
|
|
|
class NamedTupleMeta(type):
|
|
|
|
def __new__(cls, typename, bases, ns):
|
|
assert _NamedTuple in bases
|
|
for base in bases:
|
|
if base is not _NamedTuple and base is not Generic:
|
|
raise TypeError(
|
|
'can only inherit from a NamedTuple type and Generic')
|
|
bases = tuple(tuple if base is _NamedTuple else base for base in bases)
|
|
types = ns.get('__annotations__', {})
|
|
default_names = []
|
|
for field_name in types:
|
|
if field_name in ns:
|
|
default_names.append(field_name)
|
|
elif default_names:
|
|
raise TypeError(f"Non-default namedtuple field {field_name} "
|
|
f"cannot follow default field"
|
|
f"{'s' if len(default_names) > 1 else ''} "
|
|
f"{', '.join(default_names)}")
|
|
nm_tpl = _make_nmtuple(typename, types.items(),
|
|
defaults=[ns[n] for n in default_names],
|
|
module=ns['__module__'])
|
|
nm_tpl.__bases__ = bases
|
|
if Generic in bases:
|
|
class_getitem = Generic.__class_getitem__.__func__
|
|
nm_tpl.__class_getitem__ = classmethod(class_getitem)
|
|
# update from user namespace without overriding special namedtuple attributes
|
|
for key in ns:
|
|
if key in _prohibited:
|
|
raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
|
|
elif key not in _special and key not in nm_tpl._fields:
|
|
setattr(nm_tpl, key, ns[key])
|
|
if Generic in bases:
|
|
nm_tpl.__init_subclass__()
|
|
return nm_tpl
|
|
|
|
|
|
def NamedTuple(typename, fields=None, /, **kwargs):
|
|
"""Typed version of namedtuple.
|
|
|
|
Usage in Python versions >= 3.6::
|
|
|
|
class Employee(NamedTuple):
|
|
name: str
|
|
id: int
|
|
|
|
This is equivalent to::
|
|
|
|
Employee = collections.namedtuple('Employee', ['name', 'id'])
|
|
|
|
The resulting class has an extra __annotations__ attribute, giving a
|
|
dict that maps field names to types. (The field names are also in
|
|
the _fields attribute, which is part of the namedtuple API.)
|
|
Alternative equivalent keyword syntax is also accepted::
|
|
|
|
Employee = NamedTuple('Employee', name=str, id=int)
|
|
|
|
In Python versions <= 3.5 use::
|
|
|
|
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
|
|
"""
|
|
if fields is None:
|
|
fields = kwargs.items()
|
|
elif kwargs:
|
|
raise TypeError("Either list of fields or keywords"
|
|
" can be provided to NamedTuple, not both")
|
|
return _make_nmtuple(typename, fields, module=_caller())
|
|
|
|
_NamedTuple = type.__new__(NamedTupleMeta, 'NamedTuple', (), {})
|
|
|
|
def _namedtuple_mro_entries(bases):
|
|
assert NamedTuple in bases
|
|
return (_NamedTuple,)
|
|
|
|
NamedTuple.__mro_entries__ = _namedtuple_mro_entries
|
|
|
|
|
|
class _TypedDictMeta(type):
|
|
def __new__(cls, name, bases, ns, total=True):
|
|
"""Create new typed dict class object.
|
|
|
|
This method is called when TypedDict is subclassed,
|
|
or when TypedDict is instantiated. This way
|
|
TypedDict supports all three syntax forms described in its docstring.
|
|
Subclasses and instances of TypedDict return actual dictionaries.
|
|
"""
|
|
for base in bases:
|
|
if type(base) is not _TypedDictMeta and base is not Generic:
|
|
raise TypeError('cannot inherit from both a TypedDict type '
|
|
'and a non-TypedDict base class')
|
|
|
|
if any(issubclass(b, Generic) for b in bases):
|
|
generic_base = (Generic,)
|
|
else:
|
|
generic_base = ()
|
|
|
|
tp_dict = type.__new__(_TypedDictMeta, name, (*generic_base, dict), ns)
|
|
|
|
annotations = {}
|
|
own_annotations = ns.get('__annotations__', {})
|
|
msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
|
|
own_annotations = {
|
|
n: _type_check(tp, msg, module=tp_dict.__module__)
|
|
for n, tp in own_annotations.items()
|
|
}
|
|
required_keys = set()
|
|
optional_keys = set()
|
|
|
|
for base in bases:
|
|
annotations.update(base.__dict__.get('__annotations__', {}))
|
|
required_keys.update(base.__dict__.get('__required_keys__', ()))
|
|
optional_keys.update(base.__dict__.get('__optional_keys__', ()))
|
|
|
|
annotations.update(own_annotations)
|
|
for annotation_key, annotation_type in own_annotations.items():
|
|
annotation_origin = get_origin(annotation_type)
|
|
if annotation_origin is Annotated:
|
|
annotation_args = get_args(annotation_type)
|
|
if annotation_args:
|
|
annotation_type = annotation_args[0]
|
|
annotation_origin = get_origin(annotation_type)
|
|
|
|
if annotation_origin is Required:
|
|
required_keys.add(annotation_key)
|
|
elif annotation_origin is NotRequired:
|
|
optional_keys.add(annotation_key)
|
|
elif total:
|
|
required_keys.add(annotation_key)
|
|
else:
|
|
optional_keys.add(annotation_key)
|
|
|
|
tp_dict.__annotations__ = annotations
|
|
tp_dict.__required_keys__ = frozenset(required_keys)
|
|
tp_dict.__optional_keys__ = frozenset(optional_keys)
|
|
if not hasattr(tp_dict, '__total__'):
|
|
tp_dict.__total__ = total
|
|
return tp_dict
|
|
|
|
__call__ = dict # static method
|
|
|
|
def __subclasscheck__(cls, other):
|
|
# Typed dicts are only for static structural subtyping.
|
|
raise TypeError('TypedDict does not support instance and class checks')
|
|
|
|
__instancecheck__ = __subclasscheck__
|
|
|
|
|
|
def TypedDict(typename, fields=None, /, *, total=True, **kwargs):
|
|
"""A simple typed namespace. At runtime it is equivalent to a plain dict.
|
|
|
|
TypedDict creates a dictionary type that expects all of its
|
|
instances to have a certain set of keys, where each key is
|
|
associated with a value of a consistent type. This expectation
|
|
is not checked at runtime but is only enforced by type checkers.
|
|
Usage::
|
|
|
|
class Point2D(TypedDict):
|
|
x: int
|
|
y: int
|
|
label: str
|
|
|
|
a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK
|
|
b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check
|
|
|
|
assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
|
|
|
|
The type info can be accessed via the Point2D.__annotations__ dict, and
|
|
the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets.
|
|
TypedDict supports an additional equivalent form::
|
|
|
|
Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
|
|
|
|
By default, all keys must be present in a TypedDict. It is possible
|
|
to override this by specifying totality.
|
|
Usage::
|
|
|
|
class point2D(TypedDict, total=False):
|
|
x: int
|
|
y: int
|
|
|
|
This means that a point2D TypedDict can have any of the keys omitted.A type
|
|
checker is only expected to support a literal False or True as the value of
|
|
the total argument. True is the default, and makes all items defined in the
|
|
class body be required.
|
|
|
|
The class syntax is only supported in Python 3.6+, while the other
|
|
syntax form works for Python 2.7 and 3.2+
|
|
"""
|
|
if fields is None:
|
|
fields = kwargs
|
|
elif kwargs:
|
|
raise TypeError("TypedDict takes either a dict or keyword arguments,"
|
|
" but not both")
|
|
if kwargs:
|
|
warnings.warn(
|
|
"The kwargs-based syntax for TypedDict definitions is deprecated "
|
|
"in Python 3.11, will be removed in Python 3.13, and may not be "
|
|
"understood by third-party type checkers.",
|
|
DeprecationWarning,
|
|
stacklevel=2,
|
|
)
|
|
|
|
ns = {'__annotations__': dict(fields)}
|
|
module = _caller()
|
|
if module is not None:
|
|
# Setting correct module is necessary to make typed dict classes pickleable.
|
|
ns['__module__'] = module
|
|
|
|
return _TypedDictMeta(typename, (), ns, total=total)
|
|
|
|
_TypedDict = type.__new__(_TypedDictMeta, 'TypedDict', (), {})
|
|
TypedDict.__mro_entries__ = lambda bases: (_TypedDict,)
|
|
|
|
|
|
@_SpecialForm
|
|
def Required(self, parameters):
|
|
"""A special typing construct to mark a key of a total=False TypedDict
|
|
as required. For example:
|
|
|
|
class Movie(TypedDict, total=False):
|
|
title: Required[str]
|
|
year: int
|
|
|
|
m = Movie(
|
|
title='The Matrix', # typechecker error if key is omitted
|
|
year=1999,
|
|
)
|
|
|
|
There is no runtime checking that a required key is actually provided
|
|
when instantiating a related TypedDict.
|
|
"""
|
|
item = _type_check(parameters, f'{self._name} accepts only a single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
|
|
@_SpecialForm
|
|
def NotRequired(self, parameters):
|
|
"""A special typing construct to mark a key of a TypedDict as
|
|
potentially missing. For example:
|
|
|
|
class Movie(TypedDict):
|
|
title: str
|
|
year: NotRequired[int]
|
|
|
|
m = Movie(
|
|
title='The Matrix', # typechecker error if key is omitted
|
|
year=1999,
|
|
)
|
|
"""
|
|
item = _type_check(parameters, f'{self._name} accepts only a single type.')
|
|
return _GenericAlias(self, (item,))
|
|
|
|
|
|
class NewType:
|
|
"""NewType creates simple unique types with almost zero
|
|
runtime overhead. NewType(name, tp) is considered a subtype of tp
|
|
by static type checkers. At runtime, NewType(name, tp) returns
|
|
a dummy callable that simply returns its argument. Usage::
|
|
|
|
UserId = NewType('UserId', int)
|
|
|
|
def name_by_id(user_id: UserId) -> str:
|
|
...
|
|
|
|
UserId('user') # Fails type check
|
|
|
|
name_by_id(42) # Fails type check
|
|
name_by_id(UserId(42)) # OK
|
|
|
|
num = UserId(5) + 1 # type: int
|
|
"""
|
|
|
|
__call__ = _idfunc
|
|
|
|
def __init__(self, name, tp):
|
|
self.__qualname__ = name
|
|
if '.' in name:
|
|
name = name.rpartition('.')[-1]
|
|
self.__name__ = name
|
|
self.__supertype__ = tp
|
|
def_mod = _caller()
|
|
if def_mod != 'typing':
|
|
self.__module__ = def_mod
|
|
|
|
def __mro_entries__(self, bases):
|
|
# We defined __mro_entries__ to get a better error message
|
|
# if a user attempts to subclass a NewType instance. bpo-46170
|
|
superclass_name = self.__name__
|
|
|
|
class Dummy:
|
|
def __init_subclass__(cls):
|
|
subclass_name = cls.__name__
|
|
raise TypeError(
|
|
f"Cannot subclass an instance of NewType. Perhaps you were looking for: "
|
|
f"`{subclass_name} = NewType({subclass_name!r}, {superclass_name})`"
|
|
)
|
|
|
|
return (Dummy,)
|
|
|
|
def __repr__(self):
|
|
return f'{self.__module__}.{self.__qualname__}'
|
|
|
|
def __reduce__(self):
|
|
return self.__qualname__
|
|
|
|
def __or__(self, other):
|
|
return Union[self, other]
|
|
|
|
def __ror__(self, other):
|
|
return Union[other, self]
|
|
|
|
|
|
# Python-version-specific alias (Python 2: unicode; Python 3: str)
|
|
Text = str
|
|
|
|
|
|
# Constant that's True when type checking, but False here.
|
|
TYPE_CHECKING = False
|
|
|
|
|
|
class IO(Generic[AnyStr]):
|
|
"""Generic base class for TextIO and BinaryIO.
|
|
|
|
This is an abstract, generic version of the return of open().
|
|
|
|
NOTE: This does not distinguish between the different possible
|
|
classes (text vs. binary, read vs. write vs. read/write,
|
|
append-only, unbuffered). The TextIO and BinaryIO subclasses
|
|
below capture the distinctions between text vs. binary, which is
|
|
pervasive in the interface; however we currently do not offer a
|
|
way to track the other distinctions in the type system.
|
|
"""
|
|
|
|
__slots__ = ()
|
|
|
|
@property
|
|
@abstractmethod
|
|
def mode(self) -> str:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def name(self) -> str:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def close(self) -> None:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def closed(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def fileno(self) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def flush(self) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def isatty(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def read(self, n: int = -1) -> AnyStr:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def readable(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def readline(self, limit: int = -1) -> AnyStr:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def readlines(self, hint: int = -1) -> List[AnyStr]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def seek(self, offset: int, whence: int = 0) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def seekable(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def tell(self) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def truncate(self, size: int = None) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def writable(self) -> bool:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def write(self, s: AnyStr) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def writelines(self, lines: List[AnyStr]) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __enter__(self) -> 'IO[AnyStr]':
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __exit__(self, type, value, traceback) -> None:
|
|
pass
|
|
|
|
|
|
class BinaryIO(IO[bytes]):
|
|
"""Typed version of the return of open() in binary mode."""
|
|
|
|
__slots__ = ()
|
|
|
|
@abstractmethod
|
|
def write(self, s: Union[bytes, bytearray]) -> int:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __enter__(self) -> 'BinaryIO':
|
|
pass
|
|
|
|
|
|
class TextIO(IO[str]):
|
|
"""Typed version of the return of open() in text mode."""
|
|
|
|
__slots__ = ()
|
|
|
|
@property
|
|
@abstractmethod
|
|
def buffer(self) -> BinaryIO:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def encoding(self) -> str:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def errors(self) -> Optional[str]:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def line_buffering(self) -> bool:
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def newlines(self) -> Any:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def __enter__(self) -> 'TextIO':
|
|
pass
|
|
|
|
|
|
class _DeprecatedType(type):
|
|
def __getattribute__(cls, name):
|
|
if name not in ("__dict__", "__module__") and name in cls.__dict__:
|
|
warnings.warn(
|
|
f"{cls.__name__} is deprecated, import directly "
|
|
f"from typing instead. {cls.__name__} will be removed "
|
|
"in Python 3.12.",
|
|
DeprecationWarning,
|
|
stacklevel=2,
|
|
)
|
|
return super().__getattribute__(name)
|
|
|
|
|
|
class io(metaclass=_DeprecatedType):
|
|
"""Wrapper namespace for IO generic classes."""
|
|
|
|
__all__ = ['IO', 'TextIO', 'BinaryIO']
|
|
IO = IO
|
|
TextIO = TextIO
|
|
BinaryIO = BinaryIO
|
|
|
|
|
|
io.__name__ = __name__ + '.io'
|
|
sys.modules[io.__name__] = io
|
|
|
|
Pattern = _alias(stdlib_re.Pattern, 1)
|
|
Match = _alias(stdlib_re.Match, 1)
|
|
|
|
class re(metaclass=_DeprecatedType):
|
|
"""Wrapper namespace for re type aliases."""
|
|
|
|
__all__ = ['Pattern', 'Match']
|
|
Pattern = Pattern
|
|
Match = Match
|
|
|
|
|
|
re.__name__ = __name__ + '.re'
|
|
sys.modules[re.__name__] = re
|
|
|
|
|
|
def reveal_type(obj: T, /) -> T:
|
|
"""Reveal the inferred type of a variable.
|
|
|
|
When a static type checker encounters a call to ``reveal_type()``,
|
|
it will emit the inferred type of the argument::
|
|
|
|
x: int = 1
|
|
reveal_type(x)
|
|
|
|
Running a static type checker (e.g., ``mypy``) on this example
|
|
will produce output similar to 'Revealed type is "builtins.int"'.
|
|
|
|
At runtime, the function prints the runtime type of the
|
|
argument and returns it unchanged.
|
|
|
|
"""
|
|
print(f"Runtime type is {type(obj).__name__!r}", file=sys.stderr)
|
|
return obj
|
|
|
|
|
|
def dataclass_transform(
|
|
*,
|
|
eq_default: bool = True,
|
|
order_default: bool = False,
|
|
kw_only_default: bool = False,
|
|
field_specifiers: tuple[type[Any] | Callable[..., Any], ...] = (),
|
|
**kwargs: Any,
|
|
) -> Callable[[T], T]:
|
|
"""Decorator that marks a function, class, or metaclass as providing
|
|
dataclass-like behavior.
|
|
|
|
Example usage with a decorator function:
|
|
|
|
T = TypeVar("T")
|
|
|
|
@dataclass_transform()
|
|
def create_model(cls: type[T]) -> type[T]:
|
|
...
|
|
return cls
|
|
|
|
@create_model
|
|
class CustomerModel:
|
|
id: int
|
|
name: str
|
|
|
|
On a base class:
|
|
|
|
@dataclass_transform()
|
|
class ModelBase: ...
|
|
|
|
class CustomerModel(ModelBase):
|
|
id: int
|
|
name: str
|
|
|
|
On a metaclass:
|
|
|
|
@dataclass_transform()
|
|
class ModelMeta(type): ...
|
|
|
|
class ModelBase(metaclass=ModelMeta): ...
|
|
|
|
class CustomerModel(ModelBase):
|
|
id: int
|
|
name: str
|
|
|
|
The ``CustomerModel`` classes defined above will
|
|
be treated by type checkers similarly to classes created with
|
|
``@dataclasses.dataclass``.
|
|
For example, type checkers will assume these classes have
|
|
``__init__`` methods that accept ``id`` and ``name``.
|
|
|
|
The arguments to this decorator can be used to customize this behavior:
|
|
- ``eq_default`` indicates whether the ``eq`` parameter is assumed to be
|
|
``True`` or ``False`` if it is omitted by the caller.
|
|
- ``order_default`` indicates whether the ``order`` parameter is
|
|
assumed to be True or False if it is omitted by the caller.
|
|
- ``kw_only_default`` indicates whether the ``kw_only`` parameter is
|
|
assumed to be True or False if it is omitted by the caller.
|
|
- ``field_specifiers`` specifies a static list of supported classes
|
|
or functions that describe fields, similar to ``dataclasses.field()``.
|
|
- Arbitrary other keyword arguments are accepted in order to allow for
|
|
possible future extensions.
|
|
|
|
At runtime, this decorator records its arguments in the
|
|
``__dataclass_transform__`` attribute on the decorated object.
|
|
It has no other runtime effect.
|
|
|
|
See PEP 681 for more details.
|
|
"""
|
|
def decorator(cls_or_fn):
|
|
cls_or_fn.__dataclass_transform__ = {
|
|
"eq_default": eq_default,
|
|
"order_default": order_default,
|
|
"kw_only_default": kw_only_default,
|
|
"field_specifiers": field_specifiers,
|
|
"kwargs": kwargs,
|
|
}
|
|
return cls_or_fn
|
|
return decorator
|