mirror of https://github.com/python/cpython
3073 lines
99 KiB
C
3073 lines
99 KiB
C
#include "Python.h"
|
|
#include "pycore_pymem.h" // _PyTraceMalloc_Config
|
|
|
|
#include <stdbool.h>
|
|
|
|
|
|
/* Defined in tracemalloc.c */
|
|
extern void _PyMem_DumpTraceback(int fd, const void *ptr);
|
|
|
|
|
|
/* Python's malloc wrappers (see pymem.h) */
|
|
|
|
#undef uint
|
|
#define uint unsigned int /* assuming >= 16 bits */
|
|
|
|
/* Forward declaration */
|
|
static void* _PyMem_DebugRawMalloc(void *ctx, size_t size);
|
|
static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);
|
|
static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);
|
|
static void _PyMem_DebugRawFree(void *ctx, void *ptr);
|
|
|
|
static void* _PyMem_DebugMalloc(void *ctx, size_t size);
|
|
static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);
|
|
static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);
|
|
static void _PyMem_DebugFree(void *ctx, void *p);
|
|
|
|
static void _PyObject_DebugDumpAddress(const void *p);
|
|
static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p);
|
|
|
|
static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain);
|
|
|
|
#if defined(__has_feature) /* Clang */
|
|
# if __has_feature(address_sanitizer) /* is ASAN enabled? */
|
|
# define _Py_NO_SANITIZE_ADDRESS \
|
|
__attribute__((no_sanitize("address")))
|
|
# endif
|
|
# if __has_feature(thread_sanitizer) /* is TSAN enabled? */
|
|
# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
|
|
# endif
|
|
# if __has_feature(memory_sanitizer) /* is MSAN enabled? */
|
|
# define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
|
|
# endif
|
|
#elif defined(__GNUC__)
|
|
# if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */
|
|
# define _Py_NO_SANITIZE_ADDRESS \
|
|
__attribute__((no_sanitize_address))
|
|
# endif
|
|
// TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro
|
|
// is provided only since GCC 7.
|
|
# if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1)
|
|
# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef _Py_NO_SANITIZE_ADDRESS
|
|
# define _Py_NO_SANITIZE_ADDRESS
|
|
#endif
|
|
#ifndef _Py_NO_SANITIZE_THREAD
|
|
# define _Py_NO_SANITIZE_THREAD
|
|
#endif
|
|
#ifndef _Py_NO_SANITIZE_MEMORY
|
|
# define _Py_NO_SANITIZE_MEMORY
|
|
#endif
|
|
|
|
#ifdef WITH_PYMALLOC
|
|
|
|
#ifdef MS_WINDOWS
|
|
# include <windows.h>
|
|
#elif defined(HAVE_MMAP)
|
|
# include <sys/mman.h>
|
|
# ifdef MAP_ANONYMOUS
|
|
# define ARENAS_USE_MMAP
|
|
# endif
|
|
#endif
|
|
|
|
/* Forward declaration */
|
|
static void* _PyObject_Malloc(void *ctx, size_t size);
|
|
static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
|
|
static void _PyObject_Free(void *ctx, void *p);
|
|
static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
|
|
#endif
|
|
|
|
|
|
/* bpo-35053: Declare tracemalloc configuration here rather than
|
|
Modules/_tracemalloc.c because _tracemalloc can be compiled as dynamic
|
|
library, whereas _Py_NewReference() requires it. */
|
|
struct _PyTraceMalloc_Config _Py_tracemalloc_config = _PyTraceMalloc_Config_INIT;
|
|
|
|
|
|
static void *
|
|
_PyMem_RawMalloc(void *ctx, size_t size)
|
|
{
|
|
/* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
|
|
for malloc(0), which would be treated as an error. Some platforms would
|
|
return a pointer with no memory behind it, which would break pymalloc.
|
|
To solve these problems, allocate an extra byte. */
|
|
if (size == 0)
|
|
size = 1;
|
|
return malloc(size);
|
|
}
|
|
|
|
static void *
|
|
_PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize)
|
|
{
|
|
/* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
|
|
for calloc(0, 0), which would be treated as an error. Some platforms
|
|
would return a pointer with no memory behind it, which would break
|
|
pymalloc. To solve these problems, allocate an extra byte. */
|
|
if (nelem == 0 || elsize == 0) {
|
|
nelem = 1;
|
|
elsize = 1;
|
|
}
|
|
return calloc(nelem, elsize);
|
|
}
|
|
|
|
static void *
|
|
_PyMem_RawRealloc(void *ctx, void *ptr, size_t size)
|
|
{
|
|
if (size == 0)
|
|
size = 1;
|
|
return realloc(ptr, size);
|
|
}
|
|
|
|
static void
|
|
_PyMem_RawFree(void *ctx, void *ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
|
|
|
|
#ifdef MS_WINDOWS
|
|
static void *
|
|
_PyObject_ArenaVirtualAlloc(void *ctx, size_t size)
|
|
{
|
|
return VirtualAlloc(NULL, size,
|
|
MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
|
|
}
|
|
|
|
static void
|
|
_PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size)
|
|
{
|
|
VirtualFree(ptr, 0, MEM_RELEASE);
|
|
}
|
|
|
|
#elif defined(ARENAS_USE_MMAP)
|
|
static void *
|
|
_PyObject_ArenaMmap(void *ctx, size_t size)
|
|
{
|
|
void *ptr;
|
|
ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
|
|
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
if (ptr == MAP_FAILED)
|
|
return NULL;
|
|
assert(ptr != NULL);
|
|
return ptr;
|
|
}
|
|
|
|
static void
|
|
_PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size)
|
|
{
|
|
munmap(ptr, size);
|
|
}
|
|
|
|
#else
|
|
static void *
|
|
_PyObject_ArenaMalloc(void *ctx, size_t size)
|
|
{
|
|
return malloc(size);
|
|
}
|
|
|
|
static void
|
|
_PyObject_ArenaFree(void *ctx, void *ptr, size_t size)
|
|
{
|
|
free(ptr);
|
|
}
|
|
#endif
|
|
|
|
#define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree}
|
|
#ifdef WITH_PYMALLOC
|
|
# define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free}
|
|
#endif
|
|
|
|
#define PYRAW_ALLOC MALLOC_ALLOC
|
|
#ifdef WITH_PYMALLOC
|
|
# define PYOBJ_ALLOC PYMALLOC_ALLOC
|
|
#else
|
|
# define PYOBJ_ALLOC MALLOC_ALLOC
|
|
#endif
|
|
#define PYMEM_ALLOC PYOBJ_ALLOC
|
|
|
|
typedef struct {
|
|
/* We tag each block with an API ID in order to tag API violations */
|
|
char api_id;
|
|
PyMemAllocatorEx alloc;
|
|
} debug_alloc_api_t;
|
|
static struct {
|
|
debug_alloc_api_t raw;
|
|
debug_alloc_api_t mem;
|
|
debug_alloc_api_t obj;
|
|
} _PyMem_Debug = {
|
|
{'r', PYRAW_ALLOC},
|
|
{'m', PYMEM_ALLOC},
|
|
{'o', PYOBJ_ALLOC}
|
|
};
|
|
|
|
#define PYDBGRAW_ALLOC \
|
|
{&_PyMem_Debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree}
|
|
#define PYDBGMEM_ALLOC \
|
|
{&_PyMem_Debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
|
|
#define PYDBGOBJ_ALLOC \
|
|
{&_PyMem_Debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
|
|
|
|
#ifdef Py_DEBUG
|
|
static PyMemAllocatorEx _PyMem_Raw = PYDBGRAW_ALLOC;
|
|
static PyMemAllocatorEx _PyMem = PYDBGMEM_ALLOC;
|
|
static PyMemAllocatorEx _PyObject = PYDBGOBJ_ALLOC;
|
|
#else
|
|
static PyMemAllocatorEx _PyMem_Raw = PYRAW_ALLOC;
|
|
static PyMemAllocatorEx _PyMem = PYMEM_ALLOC;
|
|
static PyMemAllocatorEx _PyObject = PYOBJ_ALLOC;
|
|
#endif
|
|
|
|
|
|
static int
|
|
pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug,
|
|
PyMemAllocatorEx *old_alloc)
|
|
{
|
|
if (old_alloc != NULL) {
|
|
PyMem_GetAllocator(domain, old_alloc);
|
|
}
|
|
|
|
|
|
PyMemAllocatorEx new_alloc;
|
|
switch(domain)
|
|
{
|
|
case PYMEM_DOMAIN_RAW:
|
|
new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC;
|
|
break;
|
|
case PYMEM_DOMAIN_MEM:
|
|
new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC;
|
|
break;
|
|
case PYMEM_DOMAIN_OBJ:
|
|
new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC;
|
|
break;
|
|
default:
|
|
/* unknown domain */
|
|
return -1;
|
|
}
|
|
PyMem_SetAllocator(domain, &new_alloc);
|
|
if (debug) {
|
|
_PyMem_SetupDebugHooksDomain(domain);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
_PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain,
|
|
PyMemAllocatorEx *old_alloc)
|
|
{
|
|
#ifdef Py_DEBUG
|
|
const int debug = 1;
|
|
#else
|
|
const int debug = 0;
|
|
#endif
|
|
return pymem_set_default_allocator(domain, debug, old_alloc);
|
|
}
|
|
|
|
|
|
int
|
|
_PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator)
|
|
{
|
|
if (name == NULL || *name == '\0') {
|
|
/* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
|
|
nameions): use default memory allocators */
|
|
*allocator = PYMEM_ALLOCATOR_DEFAULT;
|
|
}
|
|
else if (strcmp(name, "default") == 0) {
|
|
*allocator = PYMEM_ALLOCATOR_DEFAULT;
|
|
}
|
|
else if (strcmp(name, "debug") == 0) {
|
|
*allocator = PYMEM_ALLOCATOR_DEBUG;
|
|
}
|
|
#ifdef WITH_PYMALLOC
|
|
else if (strcmp(name, "pymalloc") == 0) {
|
|
*allocator = PYMEM_ALLOCATOR_PYMALLOC;
|
|
}
|
|
else if (strcmp(name, "pymalloc_debug") == 0) {
|
|
*allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG;
|
|
}
|
|
#endif
|
|
else if (strcmp(name, "malloc") == 0) {
|
|
*allocator = PYMEM_ALLOCATOR_MALLOC;
|
|
}
|
|
else if (strcmp(name, "malloc_debug") == 0) {
|
|
*allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG;
|
|
}
|
|
else {
|
|
/* unknown allocator */
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
_PyMem_SetupAllocators(PyMemAllocatorName allocator)
|
|
{
|
|
switch (allocator) {
|
|
case PYMEM_ALLOCATOR_NOT_SET:
|
|
/* do nothing */
|
|
break;
|
|
|
|
case PYMEM_ALLOCATOR_DEFAULT:
|
|
(void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL);
|
|
(void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL);
|
|
(void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL);
|
|
break;
|
|
|
|
case PYMEM_ALLOCATOR_DEBUG:
|
|
(void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL);
|
|
(void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL);
|
|
(void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL);
|
|
break;
|
|
|
|
#ifdef WITH_PYMALLOC
|
|
case PYMEM_ALLOCATOR_PYMALLOC:
|
|
case PYMEM_ALLOCATOR_PYMALLOC_DEBUG:
|
|
{
|
|
PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
|
|
|
|
PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc);
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc);
|
|
|
|
if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) {
|
|
PyMem_SetupDebugHooks();
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
case PYMEM_ALLOCATOR_MALLOC:
|
|
case PYMEM_ALLOCATOR_MALLOC_DEBUG:
|
|
{
|
|
PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc);
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc);
|
|
|
|
if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) {
|
|
PyMem_SetupDebugHooks();
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
/* unknown allocator */
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b)
|
|
{
|
|
return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0);
|
|
}
|
|
|
|
|
|
const char*
|
|
_PyMem_GetCurrentAllocatorName(void)
|
|
{
|
|
PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
|
|
#ifdef WITH_PYMALLOC
|
|
PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
|
|
#endif
|
|
|
|
if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
|
|
pymemallocator_eq(&_PyMem, &malloc_alloc) &&
|
|
pymemallocator_eq(&_PyObject, &malloc_alloc))
|
|
{
|
|
return "malloc";
|
|
}
|
|
#ifdef WITH_PYMALLOC
|
|
if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
|
|
pymemallocator_eq(&_PyMem, &pymalloc) &&
|
|
pymemallocator_eq(&_PyObject, &pymalloc))
|
|
{
|
|
return "pymalloc";
|
|
}
|
|
#endif
|
|
|
|
PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC;
|
|
PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC;
|
|
PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC;
|
|
|
|
if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) &&
|
|
pymemallocator_eq(&_PyMem, &dbg_mem) &&
|
|
pymemallocator_eq(&_PyObject, &dbg_obj))
|
|
{
|
|
/* Debug hooks installed */
|
|
if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
|
|
pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) &&
|
|
pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc))
|
|
{
|
|
return "malloc_debug";
|
|
}
|
|
#ifdef WITH_PYMALLOC
|
|
if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
|
|
pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) &&
|
|
pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc))
|
|
{
|
|
return "pymalloc_debug";
|
|
}
|
|
#endif
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
#undef MALLOC_ALLOC
|
|
#undef PYMALLOC_ALLOC
|
|
#undef PYRAW_ALLOC
|
|
#undef PYMEM_ALLOC
|
|
#undef PYOBJ_ALLOC
|
|
#undef PYDBGRAW_ALLOC
|
|
#undef PYDBGMEM_ALLOC
|
|
#undef PYDBGOBJ_ALLOC
|
|
|
|
|
|
static PyObjectArenaAllocator _PyObject_Arena = {NULL,
|
|
#ifdef MS_WINDOWS
|
|
_PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree
|
|
#elif defined(ARENAS_USE_MMAP)
|
|
_PyObject_ArenaMmap, _PyObject_ArenaMunmap
|
|
#else
|
|
_PyObject_ArenaMalloc, _PyObject_ArenaFree
|
|
#endif
|
|
};
|
|
|
|
#ifdef WITH_PYMALLOC
|
|
static int
|
|
_PyMem_DebugEnabled(void)
|
|
{
|
|
return (_PyObject.malloc == _PyMem_DebugMalloc);
|
|
}
|
|
|
|
static int
|
|
_PyMem_PymallocEnabled(void)
|
|
{
|
|
if (_PyMem_DebugEnabled()) {
|
|
return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
|
|
}
|
|
else {
|
|
return (_PyObject.malloc == _PyObject_Malloc);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
static void
|
|
_PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain)
|
|
{
|
|
PyMemAllocatorEx alloc;
|
|
|
|
if (domain == PYMEM_DOMAIN_RAW) {
|
|
if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) {
|
|
return;
|
|
}
|
|
|
|
PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);
|
|
alloc.ctx = &_PyMem_Debug.raw;
|
|
alloc.malloc = _PyMem_DebugRawMalloc;
|
|
alloc.calloc = _PyMem_DebugRawCalloc;
|
|
alloc.realloc = _PyMem_DebugRawRealloc;
|
|
alloc.free = _PyMem_DebugRawFree;
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
|
|
}
|
|
else if (domain == PYMEM_DOMAIN_MEM) {
|
|
if (_PyMem.malloc == _PyMem_DebugMalloc) {
|
|
return;
|
|
}
|
|
|
|
PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);
|
|
alloc.ctx = &_PyMem_Debug.mem;
|
|
alloc.malloc = _PyMem_DebugMalloc;
|
|
alloc.calloc = _PyMem_DebugCalloc;
|
|
alloc.realloc = _PyMem_DebugRealloc;
|
|
alloc.free = _PyMem_DebugFree;
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
|
|
}
|
|
else if (domain == PYMEM_DOMAIN_OBJ) {
|
|
if (_PyObject.malloc == _PyMem_DebugMalloc) {
|
|
return;
|
|
}
|
|
|
|
PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);
|
|
alloc.ctx = &_PyMem_Debug.obj;
|
|
alloc.malloc = _PyMem_DebugMalloc;
|
|
alloc.calloc = _PyMem_DebugCalloc;
|
|
alloc.realloc = _PyMem_DebugRealloc;
|
|
alloc.free = _PyMem_DebugFree;
|
|
PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
PyMem_SetupDebugHooks(void)
|
|
{
|
|
_PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW);
|
|
_PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM);
|
|
_PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ);
|
|
}
|
|
|
|
void
|
|
PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
|
|
{
|
|
switch(domain)
|
|
{
|
|
case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
|
|
case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
|
|
case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
|
|
default:
|
|
/* unknown domain: set all attributes to NULL */
|
|
allocator->ctx = NULL;
|
|
allocator->malloc = NULL;
|
|
allocator->calloc = NULL;
|
|
allocator->realloc = NULL;
|
|
allocator->free = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
|
|
{
|
|
switch(domain)
|
|
{
|
|
case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
|
|
case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
|
|
case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
|
|
/* ignore unknown domain */
|
|
}
|
|
}
|
|
|
|
void
|
|
PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
|
|
{
|
|
*allocator = _PyObject_Arena;
|
|
}
|
|
|
|
void
|
|
PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
|
|
{
|
|
_PyObject_Arena = *allocator;
|
|
}
|
|
|
|
void *
|
|
PyMem_RawMalloc(size_t size)
|
|
{
|
|
/*
|
|
* Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
|
|
* Most python internals blindly use a signed Py_ssize_t to track
|
|
* things without checking for overflows or negatives.
|
|
* As size_t is unsigned, checking for size < 0 is not required.
|
|
*/
|
|
if (size > (size_t)PY_SSIZE_T_MAX)
|
|
return NULL;
|
|
return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
|
|
}
|
|
|
|
void *
|
|
PyMem_RawCalloc(size_t nelem, size_t elsize)
|
|
{
|
|
/* see PyMem_RawMalloc() */
|
|
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
|
|
return NULL;
|
|
return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
|
|
}
|
|
|
|
void*
|
|
PyMem_RawRealloc(void *ptr, size_t new_size)
|
|
{
|
|
/* see PyMem_RawMalloc() */
|
|
if (new_size > (size_t)PY_SSIZE_T_MAX)
|
|
return NULL;
|
|
return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
|
|
}
|
|
|
|
void PyMem_RawFree(void *ptr)
|
|
{
|
|
_PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
|
|
}
|
|
|
|
|
|
void *
|
|
PyMem_Malloc(size_t size)
|
|
{
|
|
/* see PyMem_RawMalloc() */
|
|
if (size > (size_t)PY_SSIZE_T_MAX)
|
|
return NULL;
|
|
return _PyMem.malloc(_PyMem.ctx, size);
|
|
}
|
|
|
|
void *
|
|
PyMem_Calloc(size_t nelem, size_t elsize)
|
|
{
|
|
/* see PyMem_RawMalloc() */
|
|
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
|
|
return NULL;
|
|
return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
|
|
}
|
|
|
|
void *
|
|
PyMem_Realloc(void *ptr, size_t new_size)
|
|
{
|
|
/* see PyMem_RawMalloc() */
|
|
if (new_size > (size_t)PY_SSIZE_T_MAX)
|
|
return NULL;
|
|
return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
|
|
}
|
|
|
|
void
|
|
PyMem_Free(void *ptr)
|
|
{
|
|
_PyMem.free(_PyMem.ctx, ptr);
|
|
}
|
|
|
|
|
|
wchar_t*
|
|
_PyMem_RawWcsdup(const wchar_t *str)
|
|
{
|
|
assert(str != NULL);
|
|
|
|
size_t len = wcslen(str);
|
|
if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) {
|
|
return NULL;
|
|
}
|
|
|
|
size_t size = (len + 1) * sizeof(wchar_t);
|
|
wchar_t *str2 = PyMem_RawMalloc(size);
|
|
if (str2 == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(str2, str, size);
|
|
return str2;
|
|
}
|
|
|
|
char *
|
|
_PyMem_RawStrdup(const char *str)
|
|
{
|
|
assert(str != NULL);
|
|
size_t size = strlen(str) + 1;
|
|
char *copy = PyMem_RawMalloc(size);
|
|
if (copy == NULL) {
|
|
return NULL;
|
|
}
|
|
memcpy(copy, str, size);
|
|
return copy;
|
|
}
|
|
|
|
char *
|
|
_PyMem_Strdup(const char *str)
|
|
{
|
|
assert(str != NULL);
|
|
size_t size = strlen(str) + 1;
|
|
char *copy = PyMem_Malloc(size);
|
|
if (copy == NULL) {
|
|
return NULL;
|
|
}
|
|
memcpy(copy, str, size);
|
|
return copy;
|
|
}
|
|
|
|
void *
|
|
PyObject_Malloc(size_t size)
|
|
{
|
|
/* see PyMem_RawMalloc() */
|
|
if (size > (size_t)PY_SSIZE_T_MAX)
|
|
return NULL;
|
|
return _PyObject.malloc(_PyObject.ctx, size);
|
|
}
|
|
|
|
void *
|
|
PyObject_Calloc(size_t nelem, size_t elsize)
|
|
{
|
|
/* see PyMem_RawMalloc() */
|
|
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
|
|
return NULL;
|
|
return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
|
|
}
|
|
|
|
void *
|
|
PyObject_Realloc(void *ptr, size_t new_size)
|
|
{
|
|
/* see PyMem_RawMalloc() */
|
|
if (new_size > (size_t)PY_SSIZE_T_MAX)
|
|
return NULL;
|
|
return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
|
|
}
|
|
|
|
void
|
|
PyObject_Free(void *ptr)
|
|
{
|
|
_PyObject.free(_PyObject.ctx, ptr);
|
|
}
|
|
|
|
|
|
/* If we're using GCC, use __builtin_expect() to reduce overhead of
|
|
the valgrind checks */
|
|
#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
|
|
# define UNLIKELY(value) __builtin_expect((value), 0)
|
|
# define LIKELY(value) __builtin_expect((value), 1)
|
|
#else
|
|
# define UNLIKELY(value) (value)
|
|
# define LIKELY(value) (value)
|
|
#endif
|
|
|
|
#ifdef WITH_PYMALLOC
|
|
|
|
#ifdef WITH_VALGRIND
|
|
#include <valgrind/valgrind.h>
|
|
|
|
/* -1 indicates that we haven't checked that we're running on valgrind yet. */
|
|
static int running_on_valgrind = -1;
|
|
#endif
|
|
|
|
|
|
/* An object allocator for Python.
|
|
|
|
Here is an introduction to the layers of the Python memory architecture,
|
|
showing where the object allocator is actually used (layer +2), It is
|
|
called for every object allocation and deallocation (PyObject_New/Del),
|
|
unless the object-specific allocators implement a proprietary allocation
|
|
scheme (ex.: ints use a simple free list). This is also the place where
|
|
the cyclic garbage collector operates selectively on container objects.
|
|
|
|
|
|
Object-specific allocators
|
|
_____ ______ ______ ________
|
|
[ int ] [ dict ] [ list ] ... [ string ] Python core |
|
|
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
|
|
_______________________________ | |
|
|
[ Python's object allocator ] | |
|
|
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
|
|
______________________________________________________________ |
|
|
[ Python's raw memory allocator (PyMem_ API) ] |
|
|
+1 | <----- Python memory (under PyMem manager's control) ------> | |
|
|
__________________________________________________________________
|
|
[ Underlying general-purpose allocator (ex: C library malloc) ]
|
|
0 | <------ Virtual memory allocated for the python process -------> |
|
|
|
|
=========================================================================
|
|
_______________________________________________________________________
|
|
[ OS-specific Virtual Memory Manager (VMM) ]
|
|
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
|
|
__________________________________ __________________________________
|
|
[ ] [ ]
|
|
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
|
|
|
|
*/
|
|
/*==========================================================================*/
|
|
|
|
/* A fast, special-purpose memory allocator for small blocks, to be used
|
|
on top of a general-purpose malloc -- heavily based on previous art. */
|
|
|
|
/* Vladimir Marangozov -- August 2000 */
|
|
|
|
/*
|
|
* "Memory management is where the rubber meets the road -- if we do the wrong
|
|
* thing at any level, the results will not be good. And if we don't make the
|
|
* levels work well together, we are in serious trouble." (1)
|
|
*
|
|
* (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
|
|
* "Dynamic Storage Allocation: A Survey and Critical Review",
|
|
* in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
|
|
*/
|
|
|
|
/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
|
|
|
|
/*==========================================================================*/
|
|
|
|
/*
|
|
* Allocation strategy abstract:
|
|
*
|
|
* For small requests, the allocator sub-allocates <Big> blocks of memory.
|
|
* Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
|
|
* system's allocator.
|
|
*
|
|
* Small requests are grouped in size classes spaced 8 bytes apart, due
|
|
* to the required valid alignment of the returned address. Requests of
|
|
* a particular size are serviced from memory pools of 4K (one VMM page).
|
|
* Pools are fragmented on demand and contain free lists of blocks of one
|
|
* particular size class. In other words, there is a fixed-size allocator
|
|
* for each size class. Free pools are shared by the different allocators
|
|
* thus minimizing the space reserved for a particular size class.
|
|
*
|
|
* This allocation strategy is a variant of what is known as "simple
|
|
* segregated storage based on array of free lists". The main drawback of
|
|
* simple segregated storage is that we might end up with lot of reserved
|
|
* memory for the different free lists, which degenerate in time. To avoid
|
|
* this, we partition each free list in pools and we share dynamically the
|
|
* reserved space between all free lists. This technique is quite efficient
|
|
* for memory intensive programs which allocate mainly small-sized blocks.
|
|
*
|
|
* For small requests we have the following table:
|
|
*
|
|
* Request in bytes Size of allocated block Size class idx
|
|
* ----------------------------------------------------------------
|
|
* 1-8 8 0
|
|
* 9-16 16 1
|
|
* 17-24 24 2
|
|
* 25-32 32 3
|
|
* 33-40 40 4
|
|
* 41-48 48 5
|
|
* 49-56 56 6
|
|
* 57-64 64 7
|
|
* 65-72 72 8
|
|
* ... ... ...
|
|
* 497-504 504 62
|
|
* 505-512 512 63
|
|
*
|
|
* 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
|
|
* allocator.
|
|
*/
|
|
|
|
/*==========================================================================*/
|
|
|
|
/*
|
|
* -- Main tunable settings section --
|
|
*/
|
|
|
|
/*
|
|
* Alignment of addresses returned to the user. 8-bytes alignment works
|
|
* on most current architectures (with 32-bit or 64-bit address busses).
|
|
* The alignment value is also used for grouping small requests in size
|
|
* classes spaced ALIGNMENT bytes apart.
|
|
*
|
|
* You shouldn't change this unless you know what you are doing.
|
|
*/
|
|
|
|
#if SIZEOF_VOID_P > 4
|
|
#define ALIGNMENT 16 /* must be 2^N */
|
|
#define ALIGNMENT_SHIFT 4
|
|
#else
|
|
#define ALIGNMENT 8 /* must be 2^N */
|
|
#define ALIGNMENT_SHIFT 3
|
|
#endif
|
|
|
|
/* Return the number of bytes in size class I, as a uint. */
|
|
#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
|
|
|
|
/*
|
|
* Max size threshold below which malloc requests are considered to be
|
|
* small enough in order to use preallocated memory pools. You can tune
|
|
* this value according to your application behaviour and memory needs.
|
|
*
|
|
* Note: a size threshold of 512 guarantees that newly created dictionaries
|
|
* will be allocated from preallocated memory pools on 64-bit.
|
|
*
|
|
* The following invariants must hold:
|
|
* 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
|
|
* 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
|
|
*
|
|
* Although not required, for better performance and space efficiency,
|
|
* it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
|
|
*/
|
|
#define SMALL_REQUEST_THRESHOLD 512
|
|
#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
|
|
|
|
/*
|
|
* The system's VMM page size can be obtained on most unices with a
|
|
* getpagesize() call or deduced from various header files. To make
|
|
* things simpler, we assume that it is 4K, which is OK for most systems.
|
|
* It is probably better if this is the native page size, but it doesn't
|
|
* have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
|
|
* size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
|
|
* violation fault. 4K is apparently OK for all the platforms that python
|
|
* currently targets.
|
|
*/
|
|
#define SYSTEM_PAGE_SIZE (4 * 1024)
|
|
#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
|
|
|
|
/*
|
|
* Maximum amount of memory managed by the allocator for small requests.
|
|
*/
|
|
#ifdef WITH_MEMORY_LIMITS
|
|
#ifndef SMALL_MEMORY_LIMIT
|
|
#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
|
|
#endif
|
|
#endif
|
|
|
|
#if !defined(WITH_PYMALLOC_RADIX_TREE)
|
|
/* Use radix-tree to track arena memory regions, for address_in_range().
|
|
* Enable by default since it allows larger pool sizes. Can be disabled
|
|
* using -DWITH_PYMALLOC_RADIX_TREE=0 */
|
|
#define WITH_PYMALLOC_RADIX_TREE 1
|
|
#endif
|
|
|
|
#if SIZEOF_VOID_P > 4
|
|
/* on 64-bit platforms use larger pools and arenas if we can */
|
|
#define USE_LARGE_ARENAS
|
|
#if WITH_PYMALLOC_RADIX_TREE
|
|
/* large pools only supported if radix-tree is enabled */
|
|
#define USE_LARGE_POOLS
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
|
|
* on a page boundary. This is a reserved virtual address space for the
|
|
* current process (obtained through a malloc()/mmap() call). In no way this
|
|
* means that the memory arenas will be used entirely. A malloc(<Big>) is
|
|
* usually an address range reservation for <Big> bytes, unless all pages within
|
|
* this space are referenced subsequently. So malloc'ing big blocks and not
|
|
* using them does not mean "wasting memory". It's an addressable range
|
|
* wastage...
|
|
*
|
|
* Arenas are allocated with mmap() on systems supporting anonymous memory
|
|
* mappings to reduce heap fragmentation.
|
|
*/
|
|
#ifdef USE_LARGE_ARENAS
|
|
#define ARENA_BITS 20 /* 1 MiB */
|
|
#else
|
|
#define ARENA_BITS 18 /* 256 KiB */
|
|
#endif
|
|
#define ARENA_SIZE (1 << ARENA_BITS)
|
|
#define ARENA_SIZE_MASK (ARENA_SIZE - 1)
|
|
|
|
#ifdef WITH_MEMORY_LIMITS
|
|
#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
|
|
#endif
|
|
|
|
/*
|
|
* Size of the pools used for small blocks. Must be a power of 2.
|
|
*/
|
|
#ifdef USE_LARGE_POOLS
|
|
#define POOL_BITS 14 /* 16 KiB */
|
|
#else
|
|
#define POOL_BITS 12 /* 4 KiB */
|
|
#endif
|
|
#define POOL_SIZE (1 << POOL_BITS)
|
|
#define POOL_SIZE_MASK (POOL_SIZE - 1)
|
|
|
|
#if !WITH_PYMALLOC_RADIX_TREE
|
|
#if POOL_SIZE != SYSTEM_PAGE_SIZE
|
|
# error "pool size must be equal to system page size"
|
|
#endif
|
|
#endif
|
|
|
|
#define MAX_POOLS_IN_ARENA (ARENA_SIZE / POOL_SIZE)
|
|
#if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE
|
|
# error "arena size not an exact multiple of pool size"
|
|
#endif
|
|
|
|
/*
|
|
* -- End of tunable settings section --
|
|
*/
|
|
|
|
/*==========================================================================*/
|
|
|
|
/* When you say memory, my mind reasons in terms of (pointers to) blocks */
|
|
typedef uint8_t block;
|
|
|
|
/* Pool for small blocks. */
|
|
struct pool_header {
|
|
union { block *_padding;
|
|
uint count; } ref; /* number of allocated blocks */
|
|
block *freeblock; /* pool's free list head */
|
|
struct pool_header *nextpool; /* next pool of this size class */
|
|
struct pool_header *prevpool; /* previous pool "" */
|
|
uint arenaindex; /* index into arenas of base adr */
|
|
uint szidx; /* block size class index */
|
|
uint nextoffset; /* bytes to virgin block */
|
|
uint maxnextoffset; /* largest valid nextoffset */
|
|
};
|
|
|
|
typedef struct pool_header *poolp;
|
|
|
|
/* Record keeping for arenas. */
|
|
struct arena_object {
|
|
/* The address of the arena, as returned by malloc. Note that 0
|
|
* will never be returned by a successful malloc, and is used
|
|
* here to mark an arena_object that doesn't correspond to an
|
|
* allocated arena.
|
|
*/
|
|
uintptr_t address;
|
|
|
|
/* Pool-aligned pointer to the next pool to be carved off. */
|
|
block* pool_address;
|
|
|
|
/* The number of available pools in the arena: free pools + never-
|
|
* allocated pools.
|
|
*/
|
|
uint nfreepools;
|
|
|
|
/* The total number of pools in the arena, whether or not available. */
|
|
uint ntotalpools;
|
|
|
|
/* Singly-linked list of available pools. */
|
|
struct pool_header* freepools;
|
|
|
|
/* Whenever this arena_object is not associated with an allocated
|
|
* arena, the nextarena member is used to link all unassociated
|
|
* arena_objects in the singly-linked `unused_arena_objects` list.
|
|
* The prevarena member is unused in this case.
|
|
*
|
|
* When this arena_object is associated with an allocated arena
|
|
* with at least one available pool, both members are used in the
|
|
* doubly-linked `usable_arenas` list, which is maintained in
|
|
* increasing order of `nfreepools` values.
|
|
*
|
|
* Else this arena_object is associated with an allocated arena
|
|
* all of whose pools are in use. `nextarena` and `prevarena`
|
|
* are both meaningless in this case.
|
|
*/
|
|
struct arena_object* nextarena;
|
|
struct arena_object* prevarena;
|
|
};
|
|
|
|
#define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)
|
|
|
|
#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
|
|
|
|
/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
|
|
#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))
|
|
|
|
/* Return total number of blocks in pool of size index I, as a uint. */
|
|
#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
|
|
|
|
/*==========================================================================*/
|
|
|
|
/*
|
|
* Pool table -- headed, circular, doubly-linked lists of partially used pools.
|
|
|
|
This is involved. For an index i, usedpools[i+i] is the header for a list of
|
|
all partially used pools holding small blocks with "size class idx" i. So
|
|
usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
|
|
16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
|
|
|
|
Pools are carved off an arena's highwater mark (an arena_object's pool_address
|
|
member) as needed. Once carved off, a pool is in one of three states forever
|
|
after:
|
|
|
|
used == partially used, neither empty nor full
|
|
At least one block in the pool is currently allocated, and at least one
|
|
block in the pool is not currently allocated (note this implies a pool
|
|
has room for at least two blocks).
|
|
This is a pool's initial state, as a pool is created only when malloc
|
|
needs space.
|
|
The pool holds blocks of a fixed size, and is in the circular list headed
|
|
at usedpools[i] (see above). It's linked to the other used pools of the
|
|
same size class via the pool_header's nextpool and prevpool members.
|
|
If all but one block is currently allocated, a malloc can cause a
|
|
transition to the full state. If all but one block is not currently
|
|
allocated, a free can cause a transition to the empty state.
|
|
|
|
full == all the pool's blocks are currently allocated
|
|
On transition to full, a pool is unlinked from its usedpools[] list.
|
|
It's not linked to from anything then anymore, and its nextpool and
|
|
prevpool members are meaningless until it transitions back to used.
|
|
A free of a block in a full pool puts the pool back in the used state.
|
|
Then it's linked in at the front of the appropriate usedpools[] list, so
|
|
that the next allocation for its size class will reuse the freed block.
|
|
|
|
empty == all the pool's blocks are currently available for allocation
|
|
On transition to empty, a pool is unlinked from its usedpools[] list,
|
|
and linked to the front of its arena_object's singly-linked freepools list,
|
|
via its nextpool member. The prevpool member has no meaning in this case.
|
|
Empty pools have no inherent size class: the next time a malloc finds
|
|
an empty list in usedpools[], it takes the first pool off of freepools.
|
|
If the size class needed happens to be the same as the size class the pool
|
|
last had, some pool initialization can be skipped.
|
|
|
|
|
|
Block Management
|
|
|
|
Blocks within pools are again carved out as needed. pool->freeblock points to
|
|
the start of a singly-linked list of free blocks within the pool. When a
|
|
block is freed, it's inserted at the front of its pool's freeblock list. Note
|
|
that the available blocks in a pool are *not* linked all together when a pool
|
|
is initialized. Instead only "the first two" (lowest addresses) blocks are
|
|
set up, returning the first such block, and setting pool->freeblock to a
|
|
one-block list holding the second such block. This is consistent with that
|
|
pymalloc strives at all levels (arena, pool, and block) never to touch a piece
|
|
of memory until it's actually needed.
|
|
|
|
So long as a pool is in the used state, we're certain there *is* a block
|
|
available for allocating, and pool->freeblock is not NULL. If pool->freeblock
|
|
points to the end of the free list before we've carved the entire pool into
|
|
blocks, that means we simply haven't yet gotten to one of the higher-address
|
|
blocks. The offset from the pool_header to the start of "the next" virgin
|
|
block is stored in the pool_header nextoffset member, and the largest value
|
|
of nextoffset that makes sense is stored in the maxnextoffset member when a
|
|
pool is initialized. All the blocks in a pool have been passed out at least
|
|
once when and only when nextoffset > maxnextoffset.
|
|
|
|
|
|
Major obscurity: While the usedpools vector is declared to have poolp
|
|
entries, it doesn't really. It really contains two pointers per (conceptual)
|
|
poolp entry, the nextpool and prevpool members of a pool_header. The
|
|
excruciating initialization code below fools C so that
|
|
|
|
usedpool[i+i]
|
|
|
|
"acts like" a genuine poolp, but only so long as you only reference its
|
|
nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
|
|
compensating for that a pool_header's nextpool and prevpool members
|
|
immediately follow a pool_header's first two members:
|
|
|
|
union { block *_padding;
|
|
uint count; } ref;
|
|
block *freeblock;
|
|
|
|
each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
|
|
contains is a fudged-up pointer p such that *if* C believes it's a poolp
|
|
pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
|
|
circular list is empty).
|
|
|
|
It's unclear why the usedpools setup is so convoluted. It could be to
|
|
minimize the amount of cache required to hold this heavily-referenced table
|
|
(which only *needs* the two interpool pointer members of a pool_header). OTOH,
|
|
referencing code has to remember to "double the index" and doing so isn't
|
|
free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
|
|
on that C doesn't insert any padding anywhere in a pool_header at or before
|
|
the prevpool member.
|
|
**************************************************************************** */
|
|
|
|
#define PTA(x) ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
|
|
#define PT(x) PTA(x), PTA(x)
|
|
|
|
static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
|
|
PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
|
|
#if NB_SMALL_SIZE_CLASSES > 8
|
|
, PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
|
|
#if NB_SMALL_SIZE_CLASSES > 16
|
|
, PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
|
|
#if NB_SMALL_SIZE_CLASSES > 24
|
|
, PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
|
|
#if NB_SMALL_SIZE_CLASSES > 32
|
|
, PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
|
|
#if NB_SMALL_SIZE_CLASSES > 40
|
|
, PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
|
|
#if NB_SMALL_SIZE_CLASSES > 48
|
|
, PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
|
|
#if NB_SMALL_SIZE_CLASSES > 56
|
|
, PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
|
|
#if NB_SMALL_SIZE_CLASSES > 64
|
|
#error "NB_SMALL_SIZE_CLASSES should be less than 64"
|
|
#endif /* NB_SMALL_SIZE_CLASSES > 64 */
|
|
#endif /* NB_SMALL_SIZE_CLASSES > 56 */
|
|
#endif /* NB_SMALL_SIZE_CLASSES > 48 */
|
|
#endif /* NB_SMALL_SIZE_CLASSES > 40 */
|
|
#endif /* NB_SMALL_SIZE_CLASSES > 32 */
|
|
#endif /* NB_SMALL_SIZE_CLASSES > 24 */
|
|
#endif /* NB_SMALL_SIZE_CLASSES > 16 */
|
|
#endif /* NB_SMALL_SIZE_CLASSES > 8 */
|
|
};
|
|
|
|
/*==========================================================================
|
|
Arena management.
|
|
|
|
`arenas` is a vector of arena_objects. It contains maxarenas entries, some of
|
|
which may not be currently used (== they're arena_objects that aren't
|
|
currently associated with an allocated arena). Note that arenas proper are
|
|
separately malloc'ed.
|
|
|
|
Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
|
|
we do try to free() arenas, and use some mild heuristic strategies to increase
|
|
the likelihood that arenas eventually can be freed.
|
|
|
|
unused_arena_objects
|
|
|
|
This is a singly-linked list of the arena_objects that are currently not
|
|
being used (no arena is associated with them). Objects are taken off the
|
|
head of the list in new_arena(), and are pushed on the head of the list in
|
|
PyObject_Free() when the arena is empty. Key invariant: an arena_object
|
|
is on this list if and only if its .address member is 0.
|
|
|
|
usable_arenas
|
|
|
|
This is a doubly-linked list of the arena_objects associated with arenas
|
|
that have pools available. These pools are either waiting to be reused,
|
|
or have not been used before. The list is sorted to have the most-
|
|
allocated arenas first (ascending order based on the nfreepools member).
|
|
This means that the next allocation will come from a heavily used arena,
|
|
which gives the nearly empty arenas a chance to be returned to the system.
|
|
In my unscientific tests this dramatically improved the number of arenas
|
|
that could be freed.
|
|
|
|
Note that an arena_object associated with an arena all of whose pools are
|
|
currently in use isn't on either list.
|
|
|
|
Changed in Python 3.8: keeping usable_arenas sorted by number of free pools
|
|
used to be done by one-at-a-time linear search when an arena's number of
|
|
free pools changed. That could, overall, consume time quadratic in the
|
|
number of arenas. That didn't really matter when there were only a few
|
|
hundred arenas (typical!), but could be a timing disaster when there were
|
|
hundreds of thousands. See bpo-37029.
|
|
|
|
Now we have a vector of "search fingers" to eliminate the need to search:
|
|
nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas
|
|
with nfp free pools. This is NULL if and only if there is no arena with
|
|
nfp free pools in usable_arenas.
|
|
*/
|
|
|
|
/* Array of objects used to track chunks of memory (arenas). */
|
|
static struct arena_object* arenas = NULL;
|
|
/* Number of slots currently allocated in the `arenas` vector. */
|
|
static uint maxarenas = 0;
|
|
|
|
/* The head of the singly-linked, NULL-terminated list of available
|
|
* arena_objects.
|
|
*/
|
|
static struct arena_object* unused_arena_objects = NULL;
|
|
|
|
/* The head of the doubly-linked, NULL-terminated at each end, list of
|
|
* arena_objects associated with arenas that have pools available.
|
|
*/
|
|
static struct arena_object* usable_arenas = NULL;
|
|
|
|
/* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */
|
|
static struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1] = { NULL };
|
|
|
|
/* How many arena_objects do we initially allocate?
|
|
* 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
|
|
* `arenas` vector.
|
|
*/
|
|
#define INITIAL_ARENA_OBJECTS 16
|
|
|
|
/* Number of arenas allocated that haven't been free()'d. */
|
|
static size_t narenas_currently_allocated = 0;
|
|
|
|
/* Total number of times malloc() called to allocate an arena. */
|
|
static size_t ntimes_arena_allocated = 0;
|
|
/* High water mark (max value ever seen) for narenas_currently_allocated. */
|
|
static size_t narenas_highwater = 0;
|
|
|
|
static Py_ssize_t raw_allocated_blocks;
|
|
|
|
Py_ssize_t
|
|
_Py_GetAllocatedBlocks(void)
|
|
{
|
|
Py_ssize_t n = raw_allocated_blocks;
|
|
/* add up allocated blocks for used pools */
|
|
for (uint i = 0; i < maxarenas; ++i) {
|
|
/* Skip arenas which are not allocated. */
|
|
if (arenas[i].address == 0) {
|
|
continue;
|
|
}
|
|
|
|
uintptr_t base = (uintptr_t)_Py_ALIGN_UP(arenas[i].address, POOL_SIZE);
|
|
|
|
/* visit every pool in the arena */
|
|
assert(base <= (uintptr_t) arenas[i].pool_address);
|
|
for (; base < (uintptr_t) arenas[i].pool_address; base += POOL_SIZE) {
|
|
poolp p = (poolp)base;
|
|
n += p->ref.count;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
#if WITH_PYMALLOC_RADIX_TREE
|
|
/*==========================================================================*/
|
|
/* radix tree for tracking arena usage
|
|
|
|
bit allocation for keys
|
|
|
|
64-bit pointers and 2^20 arena size:
|
|
16 -> ignored (POINTER_BITS - ADDRESS_BITS)
|
|
10 -> MAP_TOP
|
|
10 -> MAP_MID
|
|
8 -> MAP_BOT
|
|
20 -> ideal aligned arena
|
|
----
|
|
64
|
|
|
|
32-bit pointers and 2^18 arena size:
|
|
14 -> MAP_BOT
|
|
18 -> ideal aligned arena
|
|
----
|
|
32
|
|
|
|
*/
|
|
|
|
#if SIZEOF_VOID_P == 8
|
|
|
|
/* number of bits in a pointer */
|
|
#define POINTER_BITS 64
|
|
|
|
/* Current 64-bit processors are limited to 48-bit physical addresses. For
|
|
* now, the top 17 bits of addresses will all be equal to bit 2**47. If that
|
|
* changes in the future, this must be adjusted upwards.
|
|
*/
|
|
#define ADDRESS_BITS 48
|
|
|
|
/* use the top and mid layers of the radix tree */
|
|
#define USE_INTERIOR_NODES
|
|
|
|
#elif SIZEOF_VOID_P == 4
|
|
|
|
#define POINTER_BITS 32
|
|
#define ADDRESS_BITS 32
|
|
|
|
#else
|
|
|
|
/* Currently this code works for 64-bit or 32-bit pointers only. */
|
|
#error "obmalloc radix tree requires 64-bit or 32-bit pointers."
|
|
|
|
#endif /* SIZEOF_VOID_P */
|
|
|
|
/* arena_coverage_t members require this to be true */
|
|
#if ARENA_BITS >= 32
|
|
# error "arena size must be < 2^32"
|
|
#endif
|
|
|
|
#ifdef USE_INTERIOR_NODES
|
|
/* number of bits used for MAP_TOP and MAP_MID nodes */
|
|
#define INTERIOR_BITS ((ADDRESS_BITS - ARENA_BITS + 2) / 3)
|
|
#else
|
|
#define INTERIOR_BITS 0
|
|
#endif
|
|
|
|
#define MAP_TOP_BITS INTERIOR_BITS
|
|
#define MAP_TOP_LENGTH (1 << MAP_TOP_BITS)
|
|
#define MAP_TOP_MASK (MAP_BOT_LENGTH - 1)
|
|
|
|
#define MAP_MID_BITS INTERIOR_BITS
|
|
#define MAP_MID_LENGTH (1 << MAP_MID_BITS)
|
|
#define MAP_MID_MASK (MAP_MID_LENGTH - 1)
|
|
|
|
#define MAP_BOT_BITS (ADDRESS_BITS - ARENA_BITS - 2*INTERIOR_BITS)
|
|
#define MAP_BOT_LENGTH (1 << MAP_BOT_BITS)
|
|
#define MAP_BOT_MASK (MAP_BOT_LENGTH - 1)
|
|
|
|
#define MAP_BOT_SHIFT ARENA_BITS
|
|
#define MAP_MID_SHIFT (MAP_BOT_BITS + MAP_BOT_SHIFT)
|
|
#define MAP_TOP_SHIFT (MAP_MID_BITS + MAP_MID_SHIFT)
|
|
|
|
#define AS_UINT(p) ((uintptr_t)(p))
|
|
#define MAP_BOT_INDEX(p) ((AS_UINT(p) >> MAP_BOT_SHIFT) & MAP_BOT_MASK)
|
|
#define MAP_MID_INDEX(p) ((AS_UINT(p) >> MAP_MID_SHIFT) & MAP_MID_MASK)
|
|
#define MAP_TOP_INDEX(p) ((AS_UINT(p) >> MAP_TOP_SHIFT) & MAP_TOP_MASK)
|
|
|
|
#if ADDRESS_BITS > POINTER_BITS
|
|
/* Return non-physical address bits of a pointer. Those bits should be same
|
|
* for all valid pointers if ADDRESS_BITS set correctly. Linux has support for
|
|
* 57-bit address space (Intel 5-level paging) but will not currently give
|
|
* those addresses to user space.
|
|
*/
|
|
#define HIGH_BITS(p) (AS_UINT(p) >> ADDRESS_BITS)
|
|
#else
|
|
#define HIGH_BITS(p) 0
|
|
#endif
|
|
|
|
|
|
/* This is the leaf of the radix tree. See arena_map_mark_used() for the
|
|
* meaning of these members. */
|
|
typedef struct {
|
|
int32_t tail_hi;
|
|
int32_t tail_lo;
|
|
} arena_coverage_t;
|
|
|
|
typedef struct arena_map_bot {
|
|
/* The members tail_hi and tail_lo are accessed together. So, it
|
|
* better to have them as an array of structs, rather than two
|
|
* arrays.
|
|
*/
|
|
arena_coverage_t arenas[MAP_BOT_LENGTH];
|
|
} arena_map_bot_t;
|
|
|
|
#ifdef USE_INTERIOR_NODES
|
|
typedef struct arena_map_mid {
|
|
struct arena_map_bot *ptrs[MAP_MID_LENGTH];
|
|
} arena_map_mid_t;
|
|
|
|
typedef struct arena_map_top {
|
|
struct arena_map_mid *ptrs[MAP_TOP_LENGTH];
|
|
} arena_map_top_t;
|
|
#endif
|
|
|
|
/* The root of radix tree. Note that by initializing like this, the memory
|
|
* should be in the BSS. The OS will only memory map pages as the MAP_MID
|
|
* nodes get used (OS pages are demand loaded as needed).
|
|
*/
|
|
#ifdef USE_INTERIOR_NODES
|
|
static arena_map_top_t arena_map_root;
|
|
/* accounting for number of used interior nodes */
|
|
static int arena_map_mid_count;
|
|
static int arena_map_bot_count;
|
|
#else
|
|
static arena_map_bot_t arena_map_root;
|
|
#endif
|
|
|
|
/* Return a pointer to a bottom tree node, return NULL if it doesn't exist or
|
|
* it cannot be created */
|
|
static arena_map_bot_t *
|
|
arena_map_get(block *p, int create)
|
|
{
|
|
#ifdef USE_INTERIOR_NODES
|
|
/* sanity check that ADDRESS_BITS is correct */
|
|
assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root));
|
|
int i1 = MAP_TOP_INDEX(p);
|
|
if (arena_map_root.ptrs[i1] == NULL) {
|
|
if (!create) {
|
|
return NULL;
|
|
}
|
|
arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t));
|
|
if (n == NULL) {
|
|
return NULL;
|
|
}
|
|
arena_map_root.ptrs[i1] = n;
|
|
arena_map_mid_count++;
|
|
}
|
|
int i2 = MAP_MID_INDEX(p);
|
|
if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) {
|
|
if (!create) {
|
|
return NULL;
|
|
}
|
|
arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t));
|
|
if (n == NULL) {
|
|
return NULL;
|
|
}
|
|
arena_map_root.ptrs[i1]->ptrs[i2] = n;
|
|
arena_map_bot_count++;
|
|
}
|
|
return arena_map_root.ptrs[i1]->ptrs[i2];
|
|
#else
|
|
return &arena_map_root;
|
|
#endif
|
|
}
|
|
|
|
|
|
/* The radix tree only tracks arenas. So, for 16 MiB arenas, we throw
|
|
* away 24 bits of the address. That reduces the space requirement of
|
|
* the tree compared to similar radix tree page-map schemes. In
|
|
* exchange for slashing the space requirement, it needs more
|
|
* computation to check an address.
|
|
*
|
|
* Tracking coverage is done by "ideal" arena address. It is easier to
|
|
* explain in decimal so let's say that the arena size is 100 bytes.
|
|
* Then, ideal addresses are 100, 200, 300, etc. For checking if a
|
|
* pointer address is inside an actual arena, we have to check two ideal
|
|
* arena addresses. E.g. if pointer is 357, we need to check 200 and
|
|
* 300. In the rare case that an arena is aligned in the ideal way
|
|
* (e.g. base address of arena is 200) then we only have to check one
|
|
* ideal address.
|
|
*
|
|
* The tree nodes for 200 and 300 both store the address of arena.
|
|
* There are two cases: the arena starts at a lower ideal arena and
|
|
* extends to this one, or the arena starts in this arena and extends to
|
|
* the next ideal arena. The tail_lo and tail_hi members correspond to
|
|
* these two cases.
|
|
*/
|
|
|
|
|
|
/* mark or unmark addresses covered by arena */
|
|
static int
|
|
arena_map_mark_used(uintptr_t arena_base, int is_used)
|
|
{
|
|
/* sanity check that ADDRESS_BITS is correct */
|
|
assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root));
|
|
arena_map_bot_t *n_hi = arena_map_get((block *)arena_base, is_used);
|
|
if (n_hi == NULL) {
|
|
assert(is_used); /* otherwise node should already exist */
|
|
return 0; /* failed to allocate space for node */
|
|
}
|
|
int i3 = MAP_BOT_INDEX((block *)arena_base);
|
|
int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK);
|
|
if (tail == 0) {
|
|
/* is ideal arena address */
|
|
n_hi->arenas[i3].tail_hi = is_used ? -1 : 0;
|
|
}
|
|
else {
|
|
/* arena_base address is not ideal (aligned to arena size) and
|
|
* so it potentially covers two MAP_BOT nodes. Get the MAP_BOT node
|
|
* for the next arena. Note that it might be in different MAP_TOP
|
|
* and MAP_MID nodes as well so we need to call arena_map_get()
|
|
* again (do the full tree traversal).
|
|
*/
|
|
n_hi->arenas[i3].tail_hi = is_used ? tail : 0;
|
|
uintptr_t arena_base_next = arena_base + ARENA_SIZE;
|
|
/* If arena_base is a legit arena address, so is arena_base_next - 1
|
|
* (last address in arena). If arena_base_next overflows then it
|
|
* must overflow to 0. However, that would mean arena_base was
|
|
* "ideal" and we should not be in this case. */
|
|
assert(arena_base < arena_base_next);
|
|
arena_map_bot_t *n_lo = arena_map_get((block *)arena_base_next, is_used);
|
|
if (n_lo == NULL) {
|
|
assert(is_used); /* otherwise should already exist */
|
|
n_hi->arenas[i3].tail_hi = 0;
|
|
return 0; /* failed to allocate space for node */
|
|
}
|
|
int i3_next = MAP_BOT_INDEX(arena_base_next);
|
|
n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Return true if 'p' is a pointer inside an obmalloc arena.
|
|
* _PyObject_Free() calls this so it needs to be very fast. */
|
|
static int
|
|
arena_map_is_used(block *p)
|
|
{
|
|
arena_map_bot_t *n = arena_map_get(p, 0);
|
|
if (n == NULL) {
|
|
return 0;
|
|
}
|
|
int i3 = MAP_BOT_INDEX(p);
|
|
/* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */
|
|
int32_t hi = n->arenas[i3].tail_hi;
|
|
int32_t lo = n->arenas[i3].tail_lo;
|
|
int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK);
|
|
return (tail < lo) || (tail >= hi && hi != 0);
|
|
}
|
|
|
|
/* end of radix tree logic */
|
|
/*==========================================================================*/
|
|
#endif /* WITH_PYMALLOC_RADIX_TREE */
|
|
|
|
|
|
/* Allocate a new arena. If we run out of memory, return NULL. Else
|
|
* allocate a new arena, and return the address of an arena_object
|
|
* describing the new arena. It's expected that the caller will set
|
|
* `usable_arenas` to the return value.
|
|
*/
|
|
static struct arena_object*
|
|
new_arena(void)
|
|
{
|
|
struct arena_object* arenaobj;
|
|
uint excess; /* number of bytes above pool alignment */
|
|
void *address;
|
|
static int debug_stats = -1;
|
|
|
|
if (debug_stats == -1) {
|
|
const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
|
|
debug_stats = (opt != NULL && *opt != '\0');
|
|
}
|
|
if (debug_stats)
|
|
_PyObject_DebugMallocStats(stderr);
|
|
|
|
if (unused_arena_objects == NULL) {
|
|
uint i;
|
|
uint numarenas;
|
|
size_t nbytes;
|
|
|
|
/* Double the number of arena objects on each allocation.
|
|
* Note that it's possible for `numarenas` to overflow.
|
|
*/
|
|
numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
|
|
if (numarenas <= maxarenas)
|
|
return NULL; /* overflow */
|
|
#if SIZEOF_SIZE_T <= SIZEOF_INT
|
|
if (numarenas > SIZE_MAX / sizeof(*arenas))
|
|
return NULL; /* overflow */
|
|
#endif
|
|
nbytes = numarenas * sizeof(*arenas);
|
|
arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
|
|
if (arenaobj == NULL)
|
|
return NULL;
|
|
arenas = arenaobj;
|
|
|
|
/* We might need to fix pointers that were copied. However,
|
|
* new_arena only gets called when all the pages in the
|
|
* previous arenas are full. Thus, there are *no* pointers
|
|
* into the old array. Thus, we don't have to worry about
|
|
* invalid pointers. Just to be sure, some asserts:
|
|
*/
|
|
assert(usable_arenas == NULL);
|
|
assert(unused_arena_objects == NULL);
|
|
|
|
/* Put the new arenas on the unused_arena_objects list. */
|
|
for (i = maxarenas; i < numarenas; ++i) {
|
|
arenas[i].address = 0; /* mark as unassociated */
|
|
arenas[i].nextarena = i < numarenas - 1 ?
|
|
&arenas[i+1] : NULL;
|
|
}
|
|
|
|
/* Update globals. */
|
|
unused_arena_objects = &arenas[maxarenas];
|
|
maxarenas = numarenas;
|
|
}
|
|
|
|
/* Take the next available arena object off the head of the list. */
|
|
assert(unused_arena_objects != NULL);
|
|
arenaobj = unused_arena_objects;
|
|
unused_arena_objects = arenaobj->nextarena;
|
|
assert(arenaobj->address == 0);
|
|
address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
|
|
#if WITH_PYMALLOC_RADIX_TREE
|
|
if (address != NULL) {
|
|
if (!arena_map_mark_used((uintptr_t)address, 1)) {
|
|
/* marking arena in radix tree failed, abort */
|
|
_PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE);
|
|
address = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
if (address == NULL) {
|
|
/* The allocation failed: return NULL after putting the
|
|
* arenaobj back.
|
|
*/
|
|
arenaobj->nextarena = unused_arena_objects;
|
|
unused_arena_objects = arenaobj;
|
|
return NULL;
|
|
}
|
|
arenaobj->address = (uintptr_t)address;
|
|
|
|
++narenas_currently_allocated;
|
|
++ntimes_arena_allocated;
|
|
if (narenas_currently_allocated > narenas_highwater)
|
|
narenas_highwater = narenas_currently_allocated;
|
|
arenaobj->freepools = NULL;
|
|
/* pool_address <- first pool-aligned address in the arena
|
|
nfreepools <- number of whole pools that fit after alignment */
|
|
arenaobj->pool_address = (block*)arenaobj->address;
|
|
arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
|
|
excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
|
|
if (excess != 0) {
|
|
--arenaobj->nfreepools;
|
|
arenaobj->pool_address += POOL_SIZE - excess;
|
|
}
|
|
arenaobj->ntotalpools = arenaobj->nfreepools;
|
|
|
|
return arenaobj;
|
|
}
|
|
|
|
|
|
|
|
#if WITH_PYMALLOC_RADIX_TREE
|
|
/* Return true if and only if P is an address that was allocated by
|
|
pymalloc. When the radix tree is used, 'poolp' is unused.
|
|
*/
|
|
static bool
|
|
address_in_range(void *p, poolp pool)
|
|
{
|
|
return arena_map_is_used(p);
|
|
}
|
|
#else
|
|
/*
|
|
address_in_range(P, POOL)
|
|
|
|
Return true if and only if P is an address that was allocated by pymalloc.
|
|
POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
|
|
(the caller is asked to compute this because the macro expands POOL more than
|
|
once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
|
|
variable and pass the latter to the macro; because address_in_range is
|
|
called on every alloc/realloc/free, micro-efficiency is important here).
|
|
|
|
Tricky: Let B be the arena base address associated with the pool, B =
|
|
arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
|
|
|
|
B <= P < B + ARENA_SIZE
|
|
|
|
Subtracting B throughout, this is true iff
|
|
|
|
0 <= P-B < ARENA_SIZE
|
|
|
|
By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
|
|
|
|
Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
|
|
before the first arena has been allocated. `arenas` is still NULL in that
|
|
case. We're relying on that maxarenas is also 0 in that case, so that
|
|
(POOL)->arenaindex < maxarenas must be false, saving us from trying to index
|
|
into a NULL arenas.
|
|
|
|
Details: given P and POOL, the arena_object corresponding to P is AO =
|
|
arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
|
|
stores, etc), POOL is the correct address of P's pool, AO.address is the
|
|
correct base address of the pool's arena, and P must be within ARENA_SIZE of
|
|
AO.address. In addition, AO.address is not 0 (no arena can start at address 0
|
|
(NULL)). Therefore address_in_range correctly reports that obmalloc
|
|
controls P.
|
|
|
|
Now suppose obmalloc does not control P (e.g., P was obtained via a direct
|
|
call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
|
|
in this case -- it may even be uninitialized trash. If the trash arenaindex
|
|
is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
|
|
control P.
|
|
|
|
Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
|
|
allocated arena, obmalloc controls all the memory in slice AO.address :
|
|
AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
|
|
so P doesn't lie in that slice, so the macro correctly reports that P is not
|
|
controlled by obmalloc.
|
|
|
|
Finally, if P is not controlled by obmalloc and AO corresponds to an unused
|
|
arena_object (one not currently associated with an allocated arena),
|
|
AO.address is 0, and the second test in the macro reduces to:
|
|
|
|
P < ARENA_SIZE
|
|
|
|
If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
|
|
that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
|
|
of the test still passes, and the third clause (AO.address != 0) is necessary
|
|
to get the correct result: AO.address is 0 in this case, so the macro
|
|
correctly reports that P is not controlled by obmalloc (despite that P lies in
|
|
slice AO.address : AO.address + ARENA_SIZE).
|
|
|
|
Note: The third (AO.address != 0) clause was added in Python 2.5. Before
|
|
2.5, arenas were never free()'ed, and an arenaindex < maxarena always
|
|
corresponded to a currently-allocated arena, so the "P is not controlled by
|
|
obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
|
|
was impossible.
|
|
|
|
Note that the logic is excruciating, and reading up possibly uninitialized
|
|
memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
|
|
creates problems for some memory debuggers. The overwhelming advantage is
|
|
that this test determines whether an arbitrary address is controlled by
|
|
obmalloc in a small constant time, independent of the number of arenas
|
|
obmalloc controls. Since this test is needed at every entry point, it's
|
|
extremely desirable that it be this fast.
|
|
*/
|
|
|
|
static bool _Py_NO_SANITIZE_ADDRESS
|
|
_Py_NO_SANITIZE_THREAD
|
|
_Py_NO_SANITIZE_MEMORY
|
|
address_in_range(void *p, poolp pool)
|
|
{
|
|
// Since address_in_range may be reading from memory which was not allocated
|
|
// by Python, it is important that pool->arenaindex is read only once, as
|
|
// another thread may be concurrently modifying the value without holding
|
|
// the GIL. The following dance forces the compiler to read pool->arenaindex
|
|
// only once.
|
|
uint arenaindex = *((volatile uint *)&pool->arenaindex);
|
|
return arenaindex < maxarenas &&
|
|
(uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&
|
|
arenas[arenaindex].address != 0;
|
|
}
|
|
|
|
#endif /* !WITH_PYMALLOC_RADIX_TREE */
|
|
|
|
/*==========================================================================*/
|
|
|
|
// Called when freelist is exhausted. Extend the freelist if there is
|
|
// space for a block. Otherwise, remove this pool from usedpools.
|
|
static void
|
|
pymalloc_pool_extend(poolp pool, uint size)
|
|
{
|
|
if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) {
|
|
/* There is room for another block. */
|
|
pool->freeblock = (block*)pool + pool->nextoffset;
|
|
pool->nextoffset += INDEX2SIZE(size);
|
|
*(block **)(pool->freeblock) = NULL;
|
|
return;
|
|
}
|
|
|
|
/* Pool is full, unlink from used pools. */
|
|
poolp next;
|
|
next = pool->nextpool;
|
|
pool = pool->prevpool;
|
|
next->prevpool = pool;
|
|
pool->nextpool = next;
|
|
}
|
|
|
|
/* called when pymalloc_alloc can not allocate a block from usedpool.
|
|
* This function takes new pool and allocate a block from it.
|
|
*/
|
|
static void*
|
|
allocate_from_new_pool(uint size)
|
|
{
|
|
/* There isn't a pool of the right size class immediately
|
|
* available: use a free pool.
|
|
*/
|
|
if (UNLIKELY(usable_arenas == NULL)) {
|
|
/* No arena has a free pool: allocate a new arena. */
|
|
#ifdef WITH_MEMORY_LIMITS
|
|
if (narenas_currently_allocated >= MAX_ARENAS) {
|
|
return NULL;
|
|
}
|
|
#endif
|
|
usable_arenas = new_arena();
|
|
if (usable_arenas == NULL) {
|
|
return NULL;
|
|
}
|
|
usable_arenas->nextarena = usable_arenas->prevarena = NULL;
|
|
assert(nfp2lasta[usable_arenas->nfreepools] == NULL);
|
|
nfp2lasta[usable_arenas->nfreepools] = usable_arenas;
|
|
}
|
|
assert(usable_arenas->address != 0);
|
|
|
|
/* This arena already had the smallest nfreepools value, so decreasing
|
|
* nfreepools doesn't change that, and we don't need to rearrange the
|
|
* usable_arenas list. However, if the arena becomes wholly allocated,
|
|
* we need to remove its arena_object from usable_arenas.
|
|
*/
|
|
assert(usable_arenas->nfreepools > 0);
|
|
if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) {
|
|
/* It's the last of this size, so there won't be any. */
|
|
nfp2lasta[usable_arenas->nfreepools] = NULL;
|
|
}
|
|
/* If any free pools will remain, it will be the new smallest. */
|
|
if (usable_arenas->nfreepools > 1) {
|
|
assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL);
|
|
nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas;
|
|
}
|
|
|
|
/* Try to get a cached free pool. */
|
|
poolp pool = usable_arenas->freepools;
|
|
if (LIKELY(pool != NULL)) {
|
|
/* Unlink from cached pools. */
|
|
usable_arenas->freepools = pool->nextpool;
|
|
usable_arenas->nfreepools--;
|
|
if (UNLIKELY(usable_arenas->nfreepools == 0)) {
|
|
/* Wholly allocated: remove. */
|
|
assert(usable_arenas->freepools == NULL);
|
|
assert(usable_arenas->nextarena == NULL ||
|
|
usable_arenas->nextarena->prevarena ==
|
|
usable_arenas);
|
|
usable_arenas = usable_arenas->nextarena;
|
|
if (usable_arenas != NULL) {
|
|
usable_arenas->prevarena = NULL;
|
|
assert(usable_arenas->address != 0);
|
|
}
|
|
}
|
|
else {
|
|
/* nfreepools > 0: it must be that freepools
|
|
* isn't NULL, or that we haven't yet carved
|
|
* off all the arena's pools for the first
|
|
* time.
|
|
*/
|
|
assert(usable_arenas->freepools != NULL ||
|
|
usable_arenas->pool_address <=
|
|
(block*)usable_arenas->address +
|
|
ARENA_SIZE - POOL_SIZE);
|
|
}
|
|
}
|
|
else {
|
|
/* Carve off a new pool. */
|
|
assert(usable_arenas->nfreepools > 0);
|
|
assert(usable_arenas->freepools == NULL);
|
|
pool = (poolp)usable_arenas->pool_address;
|
|
assert((block*)pool <= (block*)usable_arenas->address +
|
|
ARENA_SIZE - POOL_SIZE);
|
|
pool->arenaindex = (uint)(usable_arenas - arenas);
|
|
assert(&arenas[pool->arenaindex] == usable_arenas);
|
|
pool->szidx = DUMMY_SIZE_IDX;
|
|
usable_arenas->pool_address += POOL_SIZE;
|
|
--usable_arenas->nfreepools;
|
|
|
|
if (usable_arenas->nfreepools == 0) {
|
|
assert(usable_arenas->nextarena == NULL ||
|
|
usable_arenas->nextarena->prevarena ==
|
|
usable_arenas);
|
|
/* Unlink the arena: it is completely allocated. */
|
|
usable_arenas = usable_arenas->nextarena;
|
|
if (usable_arenas != NULL) {
|
|
usable_arenas->prevarena = NULL;
|
|
assert(usable_arenas->address != 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Frontlink to used pools. */
|
|
block *bp;
|
|
poolp next = usedpools[size + size]; /* == prev */
|
|
pool->nextpool = next;
|
|
pool->prevpool = next;
|
|
next->nextpool = pool;
|
|
next->prevpool = pool;
|
|
pool->ref.count = 1;
|
|
if (pool->szidx == size) {
|
|
/* Luckily, this pool last contained blocks
|
|
* of the same size class, so its header
|
|
* and free list are already initialized.
|
|
*/
|
|
bp = pool->freeblock;
|
|
assert(bp != NULL);
|
|
pool->freeblock = *(block **)bp;
|
|
return bp;
|
|
}
|
|
/*
|
|
* Initialize the pool header, set up the free list to
|
|
* contain just the second block, and return the first
|
|
* block.
|
|
*/
|
|
pool->szidx = size;
|
|
size = INDEX2SIZE(size);
|
|
bp = (block *)pool + POOL_OVERHEAD;
|
|
pool->nextoffset = POOL_OVERHEAD + (size << 1);
|
|
pool->maxnextoffset = POOL_SIZE - size;
|
|
pool->freeblock = bp + size;
|
|
*(block **)(pool->freeblock) = NULL;
|
|
return bp;
|
|
}
|
|
|
|
/* pymalloc allocator
|
|
|
|
Return a pointer to newly allocated memory if pymalloc allocated memory.
|
|
|
|
Return NULL if pymalloc failed to allocate the memory block: on bigger
|
|
requests, on error in the code below (as a last chance to serve the request)
|
|
or when the max memory limit has been reached.
|
|
*/
|
|
static inline void*
|
|
pymalloc_alloc(void *ctx, size_t nbytes)
|
|
{
|
|
#ifdef WITH_VALGRIND
|
|
if (UNLIKELY(running_on_valgrind == -1)) {
|
|
running_on_valgrind = RUNNING_ON_VALGRIND;
|
|
}
|
|
if (UNLIKELY(running_on_valgrind)) {
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
if (UNLIKELY(nbytes == 0)) {
|
|
return NULL;
|
|
}
|
|
if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {
|
|
return NULL;
|
|
}
|
|
|
|
uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
|
|
poolp pool = usedpools[size + size];
|
|
block *bp;
|
|
|
|
if (LIKELY(pool != pool->nextpool)) {
|
|
/*
|
|
* There is a used pool for this size class.
|
|
* Pick up the head block of its free list.
|
|
*/
|
|
++pool->ref.count;
|
|
bp = pool->freeblock;
|
|
assert(bp != NULL);
|
|
|
|
if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {
|
|
// Reached the end of the free list, try to extend it.
|
|
pymalloc_pool_extend(pool, size);
|
|
}
|
|
}
|
|
else {
|
|
/* There isn't a pool of the right size class immediately
|
|
* available: use a free pool.
|
|
*/
|
|
bp = allocate_from_new_pool(size);
|
|
}
|
|
|
|
return (void *)bp;
|
|
}
|
|
|
|
|
|
static void *
|
|
_PyObject_Malloc(void *ctx, size_t nbytes)
|
|
{
|
|
void* ptr = pymalloc_alloc(ctx, nbytes);
|
|
if (LIKELY(ptr != NULL)) {
|
|
return ptr;
|
|
}
|
|
|
|
ptr = PyMem_RawMalloc(nbytes);
|
|
if (ptr != NULL) {
|
|
raw_allocated_blocks++;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
|
|
static void *
|
|
_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
|
|
{
|
|
assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
|
|
size_t nbytes = nelem * elsize;
|
|
|
|
void* ptr = pymalloc_alloc(ctx, nbytes);
|
|
if (LIKELY(ptr != NULL)) {
|
|
memset(ptr, 0, nbytes);
|
|
return ptr;
|
|
}
|
|
|
|
ptr = PyMem_RawCalloc(nelem, elsize);
|
|
if (ptr != NULL) {
|
|
raw_allocated_blocks++;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
|
|
static void
|
|
insert_to_usedpool(poolp pool)
|
|
{
|
|
assert(pool->ref.count > 0); /* else the pool is empty */
|
|
|
|
uint size = pool->szidx;
|
|
poolp next = usedpools[size + size];
|
|
poolp prev = next->prevpool;
|
|
|
|
/* insert pool before next: prev <-> pool <-> next */
|
|
pool->nextpool = next;
|
|
pool->prevpool = prev;
|
|
next->prevpool = pool;
|
|
prev->nextpool = pool;
|
|
}
|
|
|
|
static void
|
|
insert_to_freepool(poolp pool)
|
|
{
|
|
poolp next = pool->nextpool;
|
|
poolp prev = pool->prevpool;
|
|
next->prevpool = prev;
|
|
prev->nextpool = next;
|
|
|
|
/* Link the pool to freepools. This is a singly-linked
|
|
* list, and pool->prevpool isn't used there.
|
|
*/
|
|
struct arena_object *ao = &arenas[pool->arenaindex];
|
|
pool->nextpool = ao->freepools;
|
|
ao->freepools = pool;
|
|
uint nf = ao->nfreepools;
|
|
/* If this is the rightmost arena with this number of free pools,
|
|
* nfp2lasta[nf] needs to change. Caution: if nf is 0, there
|
|
* are no arenas in usable_arenas with that value.
|
|
*/
|
|
struct arena_object* lastnf = nfp2lasta[nf];
|
|
assert((nf == 0 && lastnf == NULL) ||
|
|
(nf > 0 &&
|
|
lastnf != NULL &&
|
|
lastnf->nfreepools == nf &&
|
|
(lastnf->nextarena == NULL ||
|
|
nf < lastnf->nextarena->nfreepools)));
|
|
if (lastnf == ao) { /* it is the rightmost */
|
|
struct arena_object* p = ao->prevarena;
|
|
nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL;
|
|
}
|
|
ao->nfreepools = ++nf;
|
|
|
|
/* All the rest is arena management. We just freed
|
|
* a pool, and there are 4 cases for arena mgmt:
|
|
* 1. If all the pools are free, return the arena to
|
|
* the system free(). Except if this is the last
|
|
* arena in the list, keep it to avoid thrashing:
|
|
* keeping one wholly free arena in the list avoids
|
|
* pathological cases where a simple loop would
|
|
* otherwise provoke needing to allocate and free an
|
|
* arena on every iteration. See bpo-37257.
|
|
* 2. If this is the only free pool in the arena,
|
|
* add the arena back to the `usable_arenas` list.
|
|
* 3. If the "next" arena has a smaller count of free
|
|
* pools, we have to "slide this arena right" to
|
|
* restore that usable_arenas is sorted in order of
|
|
* nfreepools.
|
|
* 4. Else there's nothing more to do.
|
|
*/
|
|
if (nf == ao->ntotalpools && ao->nextarena != NULL) {
|
|
/* Case 1. First unlink ao from usable_arenas.
|
|
*/
|
|
assert(ao->prevarena == NULL ||
|
|
ao->prevarena->address != 0);
|
|
assert(ao ->nextarena == NULL ||
|
|
ao->nextarena->address != 0);
|
|
|
|
/* Fix the pointer in the prevarena, or the
|
|
* usable_arenas pointer.
|
|
*/
|
|
if (ao->prevarena == NULL) {
|
|
usable_arenas = ao->nextarena;
|
|
assert(usable_arenas == NULL ||
|
|
usable_arenas->address != 0);
|
|
}
|
|
else {
|
|
assert(ao->prevarena->nextarena == ao);
|
|
ao->prevarena->nextarena =
|
|
ao->nextarena;
|
|
}
|
|
/* Fix the pointer in the nextarena. */
|
|
if (ao->nextarena != NULL) {
|
|
assert(ao->nextarena->prevarena == ao);
|
|
ao->nextarena->prevarena =
|
|
ao->prevarena;
|
|
}
|
|
/* Record that this arena_object slot is
|
|
* available to be reused.
|
|
*/
|
|
ao->nextarena = unused_arena_objects;
|
|
unused_arena_objects = ao;
|
|
|
|
#if WITH_PYMALLOC_RADIX_TREE
|
|
/* mark arena region as not under control of obmalloc */
|
|
arena_map_mark_used(ao->address, 0);
|
|
#endif
|
|
|
|
/* Free the entire arena. */
|
|
_PyObject_Arena.free(_PyObject_Arena.ctx,
|
|
(void *)ao->address, ARENA_SIZE);
|
|
ao->address = 0; /* mark unassociated */
|
|
--narenas_currently_allocated;
|
|
|
|
return;
|
|
}
|
|
|
|
if (nf == 1) {
|
|
/* Case 2. Put ao at the head of
|
|
* usable_arenas. Note that because
|
|
* ao->nfreepools was 0 before, ao isn't
|
|
* currently on the usable_arenas list.
|
|
*/
|
|
ao->nextarena = usable_arenas;
|
|
ao->prevarena = NULL;
|
|
if (usable_arenas)
|
|
usable_arenas->prevarena = ao;
|
|
usable_arenas = ao;
|
|
assert(usable_arenas->address != 0);
|
|
if (nfp2lasta[1] == NULL) {
|
|
nfp2lasta[1] = ao;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* If this arena is now out of order, we need to keep
|
|
* the list sorted. The list is kept sorted so that
|
|
* the "most full" arenas are used first, which allows
|
|
* the nearly empty arenas to be completely freed. In
|
|
* a few un-scientific tests, it seems like this
|
|
* approach allowed a lot more memory to be freed.
|
|
*/
|
|
/* If this is the only arena with nf, record that. */
|
|
if (nfp2lasta[nf] == NULL) {
|
|
nfp2lasta[nf] = ao;
|
|
} /* else the rightmost with nf doesn't change */
|
|
/* If this was the rightmost of the old size, it remains in place. */
|
|
if (ao == lastnf) {
|
|
/* Case 4. Nothing to do. */
|
|
return;
|
|
}
|
|
/* If ao were the only arena in the list, the last block would have
|
|
* gotten us out.
|
|
*/
|
|
assert(ao->nextarena != NULL);
|
|
|
|
/* Case 3: We have to move the arena towards the end of the list,
|
|
* because it has more free pools than the arena to its right. It needs
|
|
* to move to follow lastnf.
|
|
* First unlink ao from usable_arenas.
|
|
*/
|
|
if (ao->prevarena != NULL) {
|
|
/* ao isn't at the head of the list */
|
|
assert(ao->prevarena->nextarena == ao);
|
|
ao->prevarena->nextarena = ao->nextarena;
|
|
}
|
|
else {
|
|
/* ao is at the head of the list */
|
|
assert(usable_arenas == ao);
|
|
usable_arenas = ao->nextarena;
|
|
}
|
|
ao->nextarena->prevarena = ao->prevarena;
|
|
/* And insert after lastnf. */
|
|
ao->prevarena = lastnf;
|
|
ao->nextarena = lastnf->nextarena;
|
|
if (ao->nextarena != NULL) {
|
|
ao->nextarena->prevarena = ao;
|
|
}
|
|
lastnf->nextarena = ao;
|
|
/* Verify that the swaps worked. */
|
|
assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);
|
|
assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);
|
|
assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);
|
|
assert((usable_arenas == ao && ao->prevarena == NULL)
|
|
|| ao->prevarena->nextarena == ao);
|
|
}
|
|
|
|
/* Free a memory block allocated by pymalloc_alloc().
|
|
Return 1 if it was freed.
|
|
Return 0 if the block was not allocated by pymalloc_alloc(). */
|
|
static inline int
|
|
pymalloc_free(void *ctx, void *p)
|
|
{
|
|
assert(p != NULL);
|
|
|
|
#ifdef WITH_VALGRIND
|
|
if (UNLIKELY(running_on_valgrind > 0)) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
poolp pool = POOL_ADDR(p);
|
|
if (UNLIKELY(!address_in_range(p, pool))) {
|
|
return 0;
|
|
}
|
|
/* We allocated this address. */
|
|
|
|
/* Link p to the start of the pool's freeblock list. Since
|
|
* the pool had at least the p block outstanding, the pool
|
|
* wasn't empty (so it's already in a usedpools[] list, or
|
|
* was full and is in no list -- it's not in the freeblocks
|
|
* list in any case).
|
|
*/
|
|
assert(pool->ref.count > 0); /* else it was empty */
|
|
block *lastfree = pool->freeblock;
|
|
*(block **)p = lastfree;
|
|
pool->freeblock = (block *)p;
|
|
pool->ref.count--;
|
|
|
|
if (UNLIKELY(lastfree == NULL)) {
|
|
/* Pool was full, so doesn't currently live in any list:
|
|
* link it to the front of the appropriate usedpools[] list.
|
|
* This mimics LRU pool usage for new allocations and
|
|
* targets optimal filling when several pools contain
|
|
* blocks of the same size class.
|
|
*/
|
|
insert_to_usedpool(pool);
|
|
return 1;
|
|
}
|
|
|
|
/* freeblock wasn't NULL, so the pool wasn't full,
|
|
* and the pool is in a usedpools[] list.
|
|
*/
|
|
if (LIKELY(pool->ref.count != 0)) {
|
|
/* pool isn't empty: leave it in usedpools */
|
|
return 1;
|
|
}
|
|
|
|
/* Pool is now empty: unlink from usedpools, and
|
|
* link to the front of freepools. This ensures that
|
|
* previously freed pools will be allocated later
|
|
* (being not referenced, they are perhaps paged out).
|
|
*/
|
|
insert_to_freepool(pool);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void
|
|
_PyObject_Free(void *ctx, void *p)
|
|
{
|
|
/* PyObject_Free(NULL) has no effect */
|
|
if (p == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (UNLIKELY(!pymalloc_free(ctx, p))) {
|
|
/* pymalloc didn't allocate this address */
|
|
PyMem_RawFree(p);
|
|
raw_allocated_blocks--;
|
|
}
|
|
}
|
|
|
|
|
|
/* pymalloc realloc.
|
|
|
|
If nbytes==0, then as the Python docs promise, we do not treat this like
|
|
free(p), and return a non-NULL result.
|
|
|
|
Return 1 if pymalloc reallocated memory and wrote the new pointer into
|
|
newptr_p.
|
|
|
|
Return 0 if pymalloc didn't allocated p. */
|
|
static int
|
|
pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes)
|
|
{
|
|
void *bp;
|
|
poolp pool;
|
|
size_t size;
|
|
|
|
assert(p != NULL);
|
|
|
|
#ifdef WITH_VALGRIND
|
|
/* Treat running_on_valgrind == -1 the same as 0 */
|
|
if (UNLIKELY(running_on_valgrind > 0)) {
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
pool = POOL_ADDR(p);
|
|
if (!address_in_range(p, pool)) {
|
|
/* pymalloc is not managing this block.
|
|
|
|
If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take
|
|
over this block. However, if we do, we need to copy the valid data
|
|
from the C-managed block to one of our blocks, and there's no
|
|
portable way to know how much of the memory space starting at p is
|
|
valid.
|
|
|
|
As bug 1185883 pointed out the hard way, it's possible that the
|
|
C-managed block is "at the end" of allocated VM space, so that a
|
|
memory fault can occur if we try to copy nbytes bytes starting at p.
|
|
Instead we punt: let C continue to manage this block. */
|
|
return 0;
|
|
}
|
|
|
|
/* pymalloc is in charge of this block */
|
|
size = INDEX2SIZE(pool->szidx);
|
|
if (nbytes <= size) {
|
|
/* The block is staying the same or shrinking.
|
|
|
|
If it's shrinking, there's a tradeoff: it costs cycles to copy the
|
|
block to a smaller size class, but it wastes memory not to copy it.
|
|
|
|
The compromise here is to copy on shrink only if at least 25% of
|
|
size can be shaved off. */
|
|
if (4 * nbytes > 3 * size) {
|
|
/* It's the same, or shrinking and new/old > 3/4. */
|
|
*newptr_p = p;
|
|
return 1;
|
|
}
|
|
size = nbytes;
|
|
}
|
|
|
|
bp = _PyObject_Malloc(ctx, nbytes);
|
|
if (bp != NULL) {
|
|
memcpy(bp, p, size);
|
|
_PyObject_Free(ctx, p);
|
|
}
|
|
*newptr_p = bp;
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void *
|
|
_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)
|
|
{
|
|
void *ptr2;
|
|
|
|
if (ptr == NULL) {
|
|
return _PyObject_Malloc(ctx, nbytes);
|
|
}
|
|
|
|
if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) {
|
|
return ptr2;
|
|
}
|
|
|
|
return PyMem_RawRealloc(ptr, nbytes);
|
|
}
|
|
|
|
#else /* ! WITH_PYMALLOC */
|
|
|
|
/*==========================================================================*/
|
|
/* pymalloc not enabled: Redirect the entry points to malloc. These will
|
|
* only be used by extensions that are compiled with pymalloc enabled. */
|
|
|
|
Py_ssize_t
|
|
_Py_GetAllocatedBlocks(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* WITH_PYMALLOC */
|
|
|
|
|
|
/*==========================================================================*/
|
|
/* A x-platform debugging allocator. This doesn't manage memory directly,
|
|
* it wraps a real allocator, adding extra debugging info to the memory blocks.
|
|
*/
|
|
|
|
/* Uncomment this define to add the "serialno" field */
|
|
/* #define PYMEM_DEBUG_SERIALNO */
|
|
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
|
|
|
|
/* serialno is always incremented via calling this routine. The point is
|
|
* to supply a single place to set a breakpoint.
|
|
*/
|
|
static void
|
|
bumpserialno(void)
|
|
{
|
|
++serialno;
|
|
}
|
|
#endif
|
|
|
|
#define SST SIZEOF_SIZE_T
|
|
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
# define PYMEM_DEBUG_EXTRA_BYTES 4 * SST
|
|
#else
|
|
# define PYMEM_DEBUG_EXTRA_BYTES 3 * SST
|
|
#endif
|
|
|
|
/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
|
|
static size_t
|
|
read_size_t(const void *p)
|
|
{
|
|
const uint8_t *q = (const uint8_t *)p;
|
|
size_t result = *q++;
|
|
int i;
|
|
|
|
for (i = SST; --i > 0; ++q)
|
|
result = (result << 8) | *q;
|
|
return result;
|
|
}
|
|
|
|
/* Write n as a big-endian size_t, MSB at address p, LSB at
|
|
* p + sizeof(size_t) - 1.
|
|
*/
|
|
static void
|
|
write_size_t(void *p, size_t n)
|
|
{
|
|
uint8_t *q = (uint8_t *)p + SST - 1;
|
|
int i;
|
|
|
|
for (i = SST; --i >= 0; --q) {
|
|
*q = (uint8_t)(n & 0xff);
|
|
n >>= 8;
|
|
}
|
|
}
|
|
|
|
/* Let S = sizeof(size_t). The debug malloc asks for 4 * S extra bytes and
|
|
fills them with useful stuff, here calling the underlying malloc's result p:
|
|
|
|
p[0: S]
|
|
Number of bytes originally asked for. This is a size_t, big-endian (easier
|
|
to read in a memory dump).
|
|
p[S]
|
|
API ID. See PEP 445. This is a character, but seems undocumented.
|
|
p[S+1: 2*S]
|
|
Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.
|
|
p[2*S: 2*S+n]
|
|
The requested memory, filled with copies of PYMEM_CLEANBYTE.
|
|
Used to catch reference to uninitialized memory.
|
|
&p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
|
|
handled the request itself.
|
|
p[2*S+n: 2*S+n+S]
|
|
Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.
|
|
p[2*S+n+S: 2*S+n+2*S]
|
|
A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
|
|
and _PyMem_DebugRealloc.
|
|
This is a big-endian size_t.
|
|
If "bad memory" is detected later, the serial number gives an
|
|
excellent way to set a breakpoint on the next run, to capture the
|
|
instant at which this block was passed out.
|
|
|
|
If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks
|
|
for 3 * S extra bytes, and omits the last serialno field.
|
|
*/
|
|
|
|
static void *
|
|
_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
|
|
{
|
|
debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
|
|
uint8_t *p; /* base address of malloc'ed pad block */
|
|
uint8_t *data; /* p + 2*SST == pointer to data bytes */
|
|
uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
|
|
size_t total; /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */
|
|
|
|
if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
|
|
/* integer overflow: can't represent total as a Py_ssize_t */
|
|
return NULL;
|
|
}
|
|
total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
|
|
|
|
/* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]
|
|
^--- p ^--- data ^--- tail
|
|
S: nbytes stored as size_t
|
|
I: API identifier (1 byte)
|
|
F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)
|
|
C: Clean bytes used later to store actual data
|
|
N: Serial number stored as size_t
|
|
|
|
If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field
|
|
is omitted. */
|
|
|
|
if (use_calloc) {
|
|
p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
|
|
}
|
|
else {
|
|
p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
|
|
}
|
|
if (p == NULL) {
|
|
return NULL;
|
|
}
|
|
data = p + 2*SST;
|
|
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
bumpserialno();
|
|
#endif
|
|
|
|
/* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
|
|
write_size_t(p, nbytes);
|
|
p[SST] = (uint8_t)api->api_id;
|
|
memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
|
|
|
|
if (nbytes > 0 && !use_calloc) {
|
|
memset(data, PYMEM_CLEANBYTE, nbytes);
|
|
}
|
|
|
|
/* at tail, write pad (SST bytes) and serialno (SST bytes) */
|
|
tail = data + nbytes;
|
|
memset(tail, PYMEM_FORBIDDENBYTE, SST);
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
write_size_t(tail + SST, serialno);
|
|
#endif
|
|
|
|
return data;
|
|
}
|
|
|
|
static void *
|
|
_PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
|
|
{
|
|
return _PyMem_DebugRawAlloc(0, ctx, nbytes);
|
|
}
|
|
|
|
static void *
|
|
_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
|
|
{
|
|
size_t nbytes;
|
|
assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
|
|
nbytes = nelem * elsize;
|
|
return _PyMem_DebugRawAlloc(1, ctx, nbytes);
|
|
}
|
|
|
|
|
|
/* The debug free first checks the 2*SST bytes on each end for sanity (in
|
|
particular, that the FORBIDDENBYTEs with the api ID are still intact).
|
|
Then fills the original bytes with PYMEM_DEADBYTE.
|
|
Then calls the underlying free.
|
|
*/
|
|
static void
|
|
_PyMem_DebugRawFree(void *ctx, void *p)
|
|
{
|
|
/* PyMem_Free(NULL) has no effect */
|
|
if (p == NULL) {
|
|
return;
|
|
}
|
|
|
|
debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
|
|
uint8_t *q = (uint8_t *)p - 2*SST; /* address returned from malloc */
|
|
size_t nbytes;
|
|
|
|
_PyMem_DebugCheckAddress(__func__, api->api_id, p);
|
|
nbytes = read_size_t(q);
|
|
nbytes += PYMEM_DEBUG_EXTRA_BYTES;
|
|
memset(q, PYMEM_DEADBYTE, nbytes);
|
|
api->alloc.free(api->alloc.ctx, q);
|
|
}
|
|
|
|
|
|
static void *
|
|
_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
|
|
{
|
|
if (p == NULL) {
|
|
return _PyMem_DebugRawAlloc(0, ctx, nbytes);
|
|
}
|
|
|
|
debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
|
|
uint8_t *head; /* base address of malloc'ed pad block */
|
|
uint8_t *data; /* pointer to data bytes */
|
|
uint8_t *r;
|
|
uint8_t *tail; /* data + nbytes == pointer to tail pad bytes */
|
|
size_t total; /* 2 * SST + nbytes + 2 * SST */
|
|
size_t original_nbytes;
|
|
#define ERASED_SIZE 64
|
|
uint8_t save[2*ERASED_SIZE]; /* A copy of erased bytes. */
|
|
|
|
_PyMem_DebugCheckAddress(__func__, api->api_id, p);
|
|
|
|
data = (uint8_t *)p;
|
|
head = data - 2*SST;
|
|
original_nbytes = read_size_t(head);
|
|
if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
|
|
/* integer overflow: can't represent total as a Py_ssize_t */
|
|
return NULL;
|
|
}
|
|
total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;
|
|
|
|
tail = data + original_nbytes;
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
size_t block_serialno = read_size_t(tail + SST);
|
|
#endif
|
|
/* Mark the header, the trailer, ERASED_SIZE bytes at the begin and
|
|
ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.
|
|
*/
|
|
if (original_nbytes <= sizeof(save)) {
|
|
memcpy(save, data, original_nbytes);
|
|
memset(data - 2 * SST, PYMEM_DEADBYTE,
|
|
original_nbytes + PYMEM_DEBUG_EXTRA_BYTES);
|
|
}
|
|
else {
|
|
memcpy(save, data, ERASED_SIZE);
|
|
memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST);
|
|
memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);
|
|
memset(tail - ERASED_SIZE, PYMEM_DEADBYTE,
|
|
ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST);
|
|
}
|
|
|
|
/* Resize and add decorations. */
|
|
r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);
|
|
if (r == NULL) {
|
|
/* if realloc() failed: rewrite header and footer which have
|
|
just been erased */
|
|
nbytes = original_nbytes;
|
|
}
|
|
else {
|
|
head = r;
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
bumpserialno();
|
|
block_serialno = serialno;
|
|
#endif
|
|
}
|
|
data = head + 2*SST;
|
|
|
|
write_size_t(head, nbytes);
|
|
head[SST] = (uint8_t)api->api_id;
|
|
memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);
|
|
|
|
tail = data + nbytes;
|
|
memset(tail, PYMEM_FORBIDDENBYTE, SST);
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
write_size_t(tail + SST, block_serialno);
|
|
#endif
|
|
|
|
/* Restore saved bytes. */
|
|
if (original_nbytes <= sizeof(save)) {
|
|
memcpy(data, save, Py_MIN(nbytes, original_nbytes));
|
|
}
|
|
else {
|
|
size_t i = original_nbytes - ERASED_SIZE;
|
|
memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));
|
|
if (nbytes > i) {
|
|
memcpy(data + i, &save[ERASED_SIZE],
|
|
Py_MIN(nbytes - i, ERASED_SIZE));
|
|
}
|
|
}
|
|
|
|
if (r == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (nbytes > original_nbytes) {
|
|
/* growing: mark new extra memory clean */
|
|
memset(data + original_nbytes, PYMEM_CLEANBYTE,
|
|
nbytes - original_nbytes);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
static inline void
|
|
_PyMem_DebugCheckGIL(const char *func)
|
|
{
|
|
if (!PyGILState_Check()) {
|
|
_Py_FatalErrorFunc(func,
|
|
"Python memory allocator called "
|
|
"without holding the GIL");
|
|
}
|
|
}
|
|
|
|
static void *
|
|
_PyMem_DebugMalloc(void *ctx, size_t nbytes)
|
|
{
|
|
_PyMem_DebugCheckGIL(__func__);
|
|
return _PyMem_DebugRawMalloc(ctx, nbytes);
|
|
}
|
|
|
|
static void *
|
|
_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
|
|
{
|
|
_PyMem_DebugCheckGIL(__func__);
|
|
return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
|
|
}
|
|
|
|
|
|
static void
|
|
_PyMem_DebugFree(void *ctx, void *ptr)
|
|
{
|
|
_PyMem_DebugCheckGIL(__func__);
|
|
_PyMem_DebugRawFree(ctx, ptr);
|
|
}
|
|
|
|
|
|
static void *
|
|
_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
|
|
{
|
|
_PyMem_DebugCheckGIL(__func__);
|
|
return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
|
|
}
|
|
|
|
/* Check the forbidden bytes on both ends of the memory allocated for p.
|
|
* If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
|
|
* and call Py_FatalError to kill the program.
|
|
* The API id, is also checked.
|
|
*/
|
|
static void
|
|
_PyMem_DebugCheckAddress(const char *func, char api, const void *p)
|
|
{
|
|
assert(p != NULL);
|
|
|
|
const uint8_t *q = (const uint8_t *)p;
|
|
size_t nbytes;
|
|
const uint8_t *tail;
|
|
int i;
|
|
char id;
|
|
|
|
/* Check the API id */
|
|
id = (char)q[-SST];
|
|
if (id != api) {
|
|
_PyObject_DebugDumpAddress(p);
|
|
_Py_FatalErrorFormat(func,
|
|
"bad ID: Allocated using API '%c', "
|
|
"verified using API '%c'",
|
|
id, api);
|
|
}
|
|
|
|
/* Check the stuff at the start of p first: if there's underwrite
|
|
* corruption, the number-of-bytes field may be nuts, and checking
|
|
* the tail could lead to a segfault then.
|
|
*/
|
|
for (i = SST-1; i >= 1; --i) {
|
|
if (*(q-i) != PYMEM_FORBIDDENBYTE) {
|
|
_PyObject_DebugDumpAddress(p);
|
|
_Py_FatalErrorFunc(func, "bad leading pad byte");
|
|
}
|
|
}
|
|
|
|
nbytes = read_size_t(q - 2*SST);
|
|
tail = q + nbytes;
|
|
for (i = 0; i < SST; ++i) {
|
|
if (tail[i] != PYMEM_FORBIDDENBYTE) {
|
|
_PyObject_DebugDumpAddress(p);
|
|
_Py_FatalErrorFunc(func, "bad trailing pad byte");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Display info to stderr about the memory block at p. */
|
|
static void
|
|
_PyObject_DebugDumpAddress(const void *p)
|
|
{
|
|
const uint8_t *q = (const uint8_t *)p;
|
|
const uint8_t *tail;
|
|
size_t nbytes;
|
|
int i;
|
|
int ok;
|
|
char id;
|
|
|
|
fprintf(stderr, "Debug memory block at address p=%p:", p);
|
|
if (p == NULL) {
|
|
fprintf(stderr, "\n");
|
|
return;
|
|
}
|
|
id = (char)q[-SST];
|
|
fprintf(stderr, " API '%c'\n", id);
|
|
|
|
nbytes = read_size_t(q - 2*SST);
|
|
fprintf(stderr, " %zu bytes originally requested\n", nbytes);
|
|
|
|
/* In case this is nuts, check the leading pad bytes first. */
|
|
fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
|
|
ok = 1;
|
|
for (i = 1; i <= SST-1; ++i) {
|
|
if (*(q-i) != PYMEM_FORBIDDENBYTE) {
|
|
ok = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (ok)
|
|
fputs("FORBIDDENBYTE, as expected.\n", stderr);
|
|
else {
|
|
fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
|
|
PYMEM_FORBIDDENBYTE);
|
|
for (i = SST-1; i >= 1; --i) {
|
|
const uint8_t byte = *(q-i);
|
|
fprintf(stderr, " at p-%d: 0x%02x", i, byte);
|
|
if (byte != PYMEM_FORBIDDENBYTE)
|
|
fputs(" *** OUCH", stderr);
|
|
fputc('\n', stderr);
|
|
}
|
|
|
|
fputs(" Because memory is corrupted at the start, the "
|
|
"count of bytes requested\n"
|
|
" may be bogus, and checking the trailing pad "
|
|
"bytes may segfault.\n", stderr);
|
|
}
|
|
|
|
tail = q + nbytes;
|
|
fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, (void *)tail);
|
|
ok = 1;
|
|
for (i = 0; i < SST; ++i) {
|
|
if (tail[i] != PYMEM_FORBIDDENBYTE) {
|
|
ok = 0;
|
|
break;
|
|
}
|
|
}
|
|
if (ok)
|
|
fputs("FORBIDDENBYTE, as expected.\n", stderr);
|
|
else {
|
|
fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
|
|
PYMEM_FORBIDDENBYTE);
|
|
for (i = 0; i < SST; ++i) {
|
|
const uint8_t byte = tail[i];
|
|
fprintf(stderr, " at tail+%d: 0x%02x",
|
|
i, byte);
|
|
if (byte != PYMEM_FORBIDDENBYTE)
|
|
fputs(" *** OUCH", stderr);
|
|
fputc('\n', stderr);
|
|
}
|
|
}
|
|
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
size_t serial = read_size_t(tail + SST);
|
|
fprintf(stderr,
|
|
" The block was made by call #%zu to debug malloc/realloc.\n",
|
|
serial);
|
|
#endif
|
|
|
|
if (nbytes > 0) {
|
|
i = 0;
|
|
fputs(" Data at p:", stderr);
|
|
/* print up to 8 bytes at the start */
|
|
while (q < tail && i < 8) {
|
|
fprintf(stderr, " %02x", *q);
|
|
++i;
|
|
++q;
|
|
}
|
|
/* and up to 8 at the end */
|
|
if (q < tail) {
|
|
if (tail - q > 8) {
|
|
fputs(" ...", stderr);
|
|
q = tail - 8;
|
|
}
|
|
while (q < tail) {
|
|
fprintf(stderr, " %02x", *q);
|
|
++q;
|
|
}
|
|
}
|
|
fputc('\n', stderr);
|
|
}
|
|
fputc('\n', stderr);
|
|
|
|
fflush(stderr);
|
|
_PyMem_DumpTraceback(fileno(stderr), p);
|
|
}
|
|
|
|
|
|
static size_t
|
|
printone(FILE *out, const char* msg, size_t value)
|
|
{
|
|
int i, k;
|
|
char buf[100];
|
|
size_t origvalue = value;
|
|
|
|
fputs(msg, out);
|
|
for (i = (int)strlen(msg); i < 35; ++i)
|
|
fputc(' ', out);
|
|
fputc('=', out);
|
|
|
|
/* Write the value with commas. */
|
|
i = 22;
|
|
buf[i--] = '\0';
|
|
buf[i--] = '\n';
|
|
k = 3;
|
|
do {
|
|
size_t nextvalue = value / 10;
|
|
unsigned int digit = (unsigned int)(value - nextvalue * 10);
|
|
value = nextvalue;
|
|
buf[i--] = (char)(digit + '0');
|
|
--k;
|
|
if (k == 0 && value && i >= 0) {
|
|
k = 3;
|
|
buf[i--] = ',';
|
|
}
|
|
} while (value && i >= 0);
|
|
|
|
while (i >= 0)
|
|
buf[i--] = ' ';
|
|
fputs(buf, out);
|
|
|
|
return origvalue;
|
|
}
|
|
|
|
void
|
|
_PyDebugAllocatorStats(FILE *out,
|
|
const char *block_name, int num_blocks, size_t sizeof_block)
|
|
{
|
|
char buf1[128];
|
|
char buf2[128];
|
|
PyOS_snprintf(buf1, sizeof(buf1),
|
|
"%d %ss * %zd bytes each",
|
|
num_blocks, block_name, sizeof_block);
|
|
PyOS_snprintf(buf2, sizeof(buf2),
|
|
"%48s ", buf1);
|
|
(void)printone(out, buf2, num_blocks * sizeof_block);
|
|
}
|
|
|
|
|
|
#ifdef WITH_PYMALLOC
|
|
|
|
#ifdef Py_DEBUG
|
|
/* Is target in the list? The list is traversed via the nextpool pointers.
|
|
* The list may be NULL-terminated, or circular. Return 1 if target is in
|
|
* list, else 0.
|
|
*/
|
|
static int
|
|
pool_is_in_list(const poolp target, poolp list)
|
|
{
|
|
poolp origlist = list;
|
|
assert(target != NULL);
|
|
if (list == NULL)
|
|
return 0;
|
|
do {
|
|
if (target == list)
|
|
return 1;
|
|
list = list->nextpool;
|
|
} while (list != NULL && list != origlist);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Print summary info to "out" about the state of pymalloc's structures.
|
|
* In Py_DEBUG mode, also perform some expensive internal consistency
|
|
* checks.
|
|
*
|
|
* Return 0 if the memory debug hooks are not installed or no statistics was
|
|
* written into out, return 1 otherwise.
|
|
*/
|
|
int
|
|
_PyObject_DebugMallocStats(FILE *out)
|
|
{
|
|
if (!_PyMem_PymallocEnabled()) {
|
|
return 0;
|
|
}
|
|
|
|
uint i;
|
|
const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
|
|
/* # of pools, allocated blocks, and free blocks per class index */
|
|
size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
|
size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
|
size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
|
|
/* total # of allocated bytes in used and full pools */
|
|
size_t allocated_bytes = 0;
|
|
/* total # of available bytes in used pools */
|
|
size_t available_bytes = 0;
|
|
/* # of free pools + pools not yet carved out of current arena */
|
|
uint numfreepools = 0;
|
|
/* # of bytes for arena alignment padding */
|
|
size_t arena_alignment = 0;
|
|
/* # of bytes in used and full pools used for pool_headers */
|
|
size_t pool_header_bytes = 0;
|
|
/* # of bytes in used and full pools wasted due to quantization,
|
|
* i.e. the necessarily leftover space at the ends of used and
|
|
* full pools.
|
|
*/
|
|
size_t quantization = 0;
|
|
/* # of arenas actually allocated. */
|
|
size_t narenas = 0;
|
|
/* running total -- should equal narenas * ARENA_SIZE */
|
|
size_t total;
|
|
char buf[128];
|
|
|
|
fprintf(out, "Small block threshold = %d, in %u size classes.\n",
|
|
SMALL_REQUEST_THRESHOLD, numclasses);
|
|
|
|
for (i = 0; i < numclasses; ++i)
|
|
numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
|
|
|
|
/* Because full pools aren't linked to from anything, it's easiest
|
|
* to march over all the arenas. If we're lucky, most of the memory
|
|
* will be living in full pools -- would be a shame to miss them.
|
|
*/
|
|
for (i = 0; i < maxarenas; ++i) {
|
|
uint j;
|
|
uintptr_t base = arenas[i].address;
|
|
|
|
/* Skip arenas which are not allocated. */
|
|
if (arenas[i].address == (uintptr_t)NULL)
|
|
continue;
|
|
narenas += 1;
|
|
|
|
numfreepools += arenas[i].nfreepools;
|
|
|
|
/* round up to pool alignment */
|
|
if (base & (uintptr_t)POOL_SIZE_MASK) {
|
|
arena_alignment += POOL_SIZE;
|
|
base &= ~(uintptr_t)POOL_SIZE_MASK;
|
|
base += POOL_SIZE;
|
|
}
|
|
|
|
/* visit every pool in the arena */
|
|
assert(base <= (uintptr_t) arenas[i].pool_address);
|
|
for (j = 0; base < (uintptr_t) arenas[i].pool_address;
|
|
++j, base += POOL_SIZE) {
|
|
poolp p = (poolp)base;
|
|
const uint sz = p->szidx;
|
|
uint freeblocks;
|
|
|
|
if (p->ref.count == 0) {
|
|
/* currently unused */
|
|
#ifdef Py_DEBUG
|
|
assert(pool_is_in_list(p, arenas[i].freepools));
|
|
#endif
|
|
continue;
|
|
}
|
|
++numpools[sz];
|
|
numblocks[sz] += p->ref.count;
|
|
freeblocks = NUMBLOCKS(sz) - p->ref.count;
|
|
numfreeblocks[sz] += freeblocks;
|
|
#ifdef Py_DEBUG
|
|
if (freeblocks > 0)
|
|
assert(pool_is_in_list(p, usedpools[sz + sz]));
|
|
#endif
|
|
}
|
|
}
|
|
assert(narenas == narenas_currently_allocated);
|
|
|
|
fputc('\n', out);
|
|
fputs("class size num pools blocks in use avail blocks\n"
|
|
"----- ---- --------- ------------- ------------\n",
|
|
out);
|
|
|
|
for (i = 0; i < numclasses; ++i) {
|
|
size_t p = numpools[i];
|
|
size_t b = numblocks[i];
|
|
size_t f = numfreeblocks[i];
|
|
uint size = INDEX2SIZE(i);
|
|
if (p == 0) {
|
|
assert(b == 0 && f == 0);
|
|
continue;
|
|
}
|
|
fprintf(out, "%5u %6u %11zu %15zu %13zu\n",
|
|
i, size, p, b, f);
|
|
allocated_bytes += b * size;
|
|
available_bytes += f * size;
|
|
pool_header_bytes += p * POOL_OVERHEAD;
|
|
quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
|
|
}
|
|
fputc('\n', out);
|
|
#ifdef PYMEM_DEBUG_SERIALNO
|
|
if (_PyMem_DebugEnabled()) {
|
|
(void)printone(out, "# times object malloc called", serialno);
|
|
}
|
|
#endif
|
|
(void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
|
|
(void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
|
|
(void)printone(out, "# arenas highwater mark", narenas_highwater);
|
|
(void)printone(out, "# arenas allocated current", narenas);
|
|
|
|
PyOS_snprintf(buf, sizeof(buf),
|
|
"%zu arenas * %d bytes/arena",
|
|
narenas, ARENA_SIZE);
|
|
(void)printone(out, buf, narenas * ARENA_SIZE);
|
|
|
|
fputc('\n', out);
|
|
|
|
/* Account for what all of those arena bytes are being used for. */
|
|
total = printone(out, "# bytes in allocated blocks", allocated_bytes);
|
|
total += printone(out, "# bytes in available blocks", available_bytes);
|
|
|
|
PyOS_snprintf(buf, sizeof(buf),
|
|
"%u unused pools * %d bytes", numfreepools, POOL_SIZE);
|
|
total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
|
|
|
|
total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
|
|
total += printone(out, "# bytes lost to quantization", quantization);
|
|
total += printone(out, "# bytes lost to arena alignment", arena_alignment);
|
|
(void)printone(out, "Total", total);
|
|
assert(narenas * ARENA_SIZE == total);
|
|
|
|
#if WITH_PYMALLOC_RADIX_TREE
|
|
fputs("\narena map counts\n", out);
|
|
#ifdef USE_INTERIOR_NODES
|
|
(void)printone(out, "# arena map mid nodes", arena_map_mid_count);
|
|
(void)printone(out, "# arena map bot nodes", arena_map_bot_count);
|
|
fputc('\n', out);
|
|
#endif
|
|
total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root));
|
|
#ifdef USE_INTERIOR_NODES
|
|
total += printone(out, "# bytes lost to arena map mid",
|
|
sizeof(arena_map_mid_t) * arena_map_mid_count);
|
|
total += printone(out, "# bytes lost to arena map bot",
|
|
sizeof(arena_map_bot_t) * arena_map_bot_count);
|
|
(void)printone(out, "Total", total);
|
|
#endif
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif /* #ifdef WITH_PYMALLOC */
|