mirror of https://github.com/python/cpython
9993 lines
308 KiB
C
9993 lines
308 KiB
C
/*
|
|
* This file compiles an abstract syntax tree (AST) into Python bytecode.
|
|
*
|
|
* The primary entry point is _PyAST_Compile(), which returns a
|
|
* PyCodeObject. The compiler makes several passes to build the code
|
|
* object:
|
|
* 1. Checks for future statements. See future.c
|
|
* 2. Builds a symbol table. See symtable.c.
|
|
* 3. Generate code for basic blocks. See compiler_mod() in this file.
|
|
* 4. Assemble the basic blocks into final code. See assemble() in
|
|
* this file.
|
|
* 5. Optimize the byte code (peephole optimizations).
|
|
*
|
|
* Note that compiler_mod() suggests module, but the module ast type
|
|
* (mod_ty) has cases for expressions and interactive statements.
|
|
*
|
|
* CAUTION: The VISIT_* macros abort the current function when they
|
|
* encounter a problem. So don't invoke them when there is memory
|
|
* which needs to be released. Code blocks are OK, as the compiler
|
|
* structure takes care of releasing those. Use the arena to manage
|
|
* objects.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
|
|
// Need _PyOpcode_RelativeJump of pycore_opcode.h
|
|
#define NEED_OPCODE_TABLES
|
|
|
|
#include "Python.h"
|
|
#include "pycore_ast.h" // _PyAST_GetDocString()
|
|
#include "pycore_code.h" // _PyCode_New()
|
|
#include "pycore_compile.h"
|
|
#include "pycore_intrinsics.h"
|
|
#include "pycore_long.h" // _PyLong_GetZero()
|
|
#include "pycore_opcode.h" // _PyOpcode_Caches
|
|
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
|
|
#include "pycore_symtable.h" // PySTEntryObject, _PyFuture_FromAST()
|
|
|
|
#include "opcode_metadata.h" // _PyOpcode_opcode_metadata, _PyOpcode_num_popped/pushed
|
|
|
|
|
|
#define DEFAULT_BLOCK_SIZE 16
|
|
#define DEFAULT_CODE_SIZE 128
|
|
#define DEFAULT_LNOTAB_SIZE 16
|
|
#define DEFAULT_CNOTAB_SIZE 32
|
|
|
|
#define COMP_GENEXP 0
|
|
#define COMP_LISTCOMP 1
|
|
#define COMP_SETCOMP 2
|
|
#define COMP_DICTCOMP 3
|
|
|
|
/* A soft limit for stack use, to avoid excessive
|
|
* memory use for large constants, etc.
|
|
*
|
|
* The value 30 is plucked out of thin air.
|
|
* Code that could use more stack than this is
|
|
* rare, so the exact value is unimportant.
|
|
*/
|
|
#define STACK_USE_GUIDELINE 30
|
|
|
|
#undef SUCCESS
|
|
#undef ERROR
|
|
#define SUCCESS 0
|
|
#define ERROR -1
|
|
|
|
#define RETURN_IF_ERROR(X) \
|
|
if ((X) == -1) { \
|
|
return ERROR; \
|
|
}
|
|
|
|
/* If we exceed this limit, it should
|
|
* be considered a compiler bug.
|
|
* Currently it should be impossible
|
|
* to exceed STACK_USE_GUIDELINE * 100,
|
|
* as 100 is the maximum parse depth.
|
|
* For performance reasons we will
|
|
* want to reduce this to a
|
|
* few hundred in the future.
|
|
*
|
|
* NOTE: Whatever MAX_ALLOWED_STACK_USE is
|
|
* set to, it should never restrict what Python
|
|
* we can write, just how we compile it.
|
|
*/
|
|
#define MAX_ALLOWED_STACK_USE (STACK_USE_GUIDELINE * 100)
|
|
|
|
|
|
#define MAX_REAL_OPCODE 254
|
|
|
|
#define IS_WITHIN_OPCODE_RANGE(opcode) \
|
|
(((opcode) >= 0 && (opcode) <= MAX_REAL_OPCODE) || \
|
|
IS_PSEUDO_OPCODE(opcode))
|
|
|
|
#define IS_JUMP_OPCODE(opcode) \
|
|
is_bit_set_in_table(_PyOpcode_Jump, opcode)
|
|
|
|
#define IS_BLOCK_PUSH_OPCODE(opcode) \
|
|
((opcode) == SETUP_FINALLY || \
|
|
(opcode) == SETUP_WITH || \
|
|
(opcode) == SETUP_CLEANUP)
|
|
|
|
#define HAS_TARGET(opcode) \
|
|
(IS_JUMP_OPCODE(opcode) || IS_BLOCK_PUSH_OPCODE(opcode))
|
|
|
|
/* opcodes that must be last in the basicblock */
|
|
#define IS_TERMINATOR_OPCODE(opcode) \
|
|
(IS_JUMP_OPCODE(opcode) || IS_SCOPE_EXIT_OPCODE(opcode))
|
|
|
|
/* opcodes which are not emitted in codegen stage, only by the assembler */
|
|
#define IS_ASSEMBLER_OPCODE(opcode) \
|
|
((opcode) == JUMP_FORWARD || \
|
|
(opcode) == JUMP_BACKWARD || \
|
|
(opcode) == JUMP_BACKWARD_NO_INTERRUPT)
|
|
|
|
#define IS_BACKWARDS_JUMP_OPCODE(opcode) \
|
|
((opcode) == JUMP_BACKWARD || \
|
|
(opcode) == JUMP_BACKWARD_NO_INTERRUPT)
|
|
|
|
#define IS_UNCONDITIONAL_JUMP_OPCODE(opcode) \
|
|
((opcode) == JUMP || \
|
|
(opcode) == JUMP_NO_INTERRUPT || \
|
|
(opcode) == JUMP_FORWARD || \
|
|
(opcode) == JUMP_BACKWARD || \
|
|
(opcode) == JUMP_BACKWARD_NO_INTERRUPT)
|
|
|
|
#define IS_SCOPE_EXIT_OPCODE(opcode) \
|
|
((opcode) == RETURN_VALUE || \
|
|
(opcode) == RETURN_CONST || \
|
|
(opcode) == RAISE_VARARGS || \
|
|
(opcode) == RERAISE)
|
|
|
|
#define IS_SUPERINSTRUCTION_OPCODE(opcode) \
|
|
((opcode) == LOAD_FAST__LOAD_FAST || \
|
|
(opcode) == LOAD_FAST__LOAD_CONST || \
|
|
(opcode) == LOAD_CONST__LOAD_FAST || \
|
|
(opcode) == STORE_FAST__LOAD_FAST || \
|
|
(opcode) == STORE_FAST__STORE_FAST)
|
|
|
|
#define IS_TOP_LEVEL_AWAIT(C) ( \
|
|
((C)->c_flags.cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \
|
|
&& ((C)->u->u_ste->ste_type == ModuleBlock))
|
|
|
|
typedef _PyCompilerSrcLocation location;
|
|
|
|
#define LOCATION(LNO, END_LNO, COL, END_COL) \
|
|
((const location){(LNO), (END_LNO), (COL), (END_COL)})
|
|
|
|
static location NO_LOCATION = {-1, -1, -1, -1};
|
|
|
|
/* Return true if loc1 starts after loc2 ends. */
|
|
static inline bool
|
|
location_is_after(location loc1, location loc2) {
|
|
return (loc1.lineno > loc2.end_lineno) ||
|
|
((loc1.lineno == loc2.end_lineno) &&
|
|
(loc1.col_offset > loc2.end_col_offset));
|
|
}
|
|
|
|
static inline bool
|
|
same_location(location a, location b)
|
|
{
|
|
return a.lineno == b.lineno &&
|
|
a.end_lineno == b.end_lineno &&
|
|
a.col_offset == b.col_offset &&
|
|
a.end_col_offset == b.end_col_offset;
|
|
}
|
|
|
|
#define LOC(x) SRC_LOCATION_FROM_AST(x)
|
|
|
|
typedef struct jump_target_label_ {
|
|
int id;
|
|
} jump_target_label;
|
|
|
|
static struct jump_target_label_ NO_LABEL = {-1};
|
|
|
|
#define SAME_LABEL(L1, L2) ((L1).id == (L2).id)
|
|
#define IS_LABEL(L) (!SAME_LABEL((L), (NO_LABEL)))
|
|
|
|
#define NEW_JUMP_TARGET_LABEL(C, NAME) \
|
|
jump_target_label NAME = instr_sequence_new_label(INSTR_SEQUENCE(C)); \
|
|
if (!IS_LABEL(NAME)) { \
|
|
return ERROR; \
|
|
}
|
|
|
|
#define USE_LABEL(C, LBL) \
|
|
RETURN_IF_ERROR(instr_sequence_use_label(INSTR_SEQUENCE(C), (LBL).id))
|
|
|
|
struct cfg_instr {
|
|
int i_opcode;
|
|
int i_oparg;
|
|
location i_loc;
|
|
struct basicblock_ *i_target; /* target block (if jump instruction) */
|
|
struct basicblock_ *i_except; /* target block when exception is raised */
|
|
};
|
|
|
|
/* One arg*/
|
|
#define INSTR_SET_OP1(I, OP, ARG) \
|
|
do { \
|
|
assert(HAS_ARG(OP)); \
|
|
struct cfg_instr *_instr__ptr_ = (I); \
|
|
_instr__ptr_->i_opcode = (OP); \
|
|
_instr__ptr_->i_oparg = (ARG); \
|
|
} while (0);
|
|
|
|
/* No args*/
|
|
#define INSTR_SET_OP0(I, OP) \
|
|
do { \
|
|
assert(!HAS_ARG(OP)); \
|
|
struct cfg_instr *_instr__ptr_ = (I); \
|
|
_instr__ptr_->i_opcode = (OP); \
|
|
_instr__ptr_->i_oparg = 0; \
|
|
} while (0);
|
|
|
|
typedef struct exceptstack {
|
|
struct basicblock_ *handlers[CO_MAXBLOCKS+1];
|
|
int depth;
|
|
} ExceptStack;
|
|
|
|
#define LOG_BITS_PER_INT 5
|
|
#define MASK_LOW_LOG_BITS 31
|
|
|
|
static inline int
|
|
is_bit_set_in_table(const uint32_t *table, int bitindex) {
|
|
/* Is the relevant bit set in the relevant word? */
|
|
/* 512 bits fit into 9 32-bits words.
|
|
* Word is indexed by (bitindex>>ln(size of int in bits)).
|
|
* Bit within word is the low bits of bitindex.
|
|
*/
|
|
if (bitindex >= 0 && bitindex < 512) {
|
|
uint32_t word = table[bitindex >> LOG_BITS_PER_INT];
|
|
return (word >> (bitindex & MASK_LOW_LOG_BITS)) & 1;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
is_relative_jump(struct cfg_instr *i)
|
|
{
|
|
return is_bit_set_in_table(_PyOpcode_RelativeJump, i->i_opcode);
|
|
}
|
|
|
|
static inline int
|
|
is_block_push(struct cfg_instr *i)
|
|
{
|
|
return IS_BLOCK_PUSH_OPCODE(i->i_opcode);
|
|
}
|
|
|
|
static inline int
|
|
is_jump(struct cfg_instr *i)
|
|
{
|
|
return IS_JUMP_OPCODE(i->i_opcode);
|
|
}
|
|
|
|
static int
|
|
instr_size(struct cfg_instr *instruction)
|
|
{
|
|
int opcode = instruction->i_opcode;
|
|
assert(!IS_PSEUDO_OPCODE(opcode));
|
|
int oparg = instruction->i_oparg;
|
|
assert(HAS_ARG(opcode) || oparg == 0);
|
|
int extended_args = (0xFFFFFF < oparg) + (0xFFFF < oparg) + (0xFF < oparg);
|
|
int caches = _PyOpcode_Caches[opcode];
|
|
return extended_args + 1 + caches;
|
|
}
|
|
|
|
static void
|
|
write_instr(_Py_CODEUNIT *codestr, struct cfg_instr *instruction, int ilen)
|
|
{
|
|
int opcode = instruction->i_opcode;
|
|
assert(!IS_PSEUDO_OPCODE(opcode));
|
|
int oparg = instruction->i_oparg;
|
|
assert(HAS_ARG(opcode) || oparg == 0);
|
|
int caches = _PyOpcode_Caches[opcode];
|
|
switch (ilen - caches) {
|
|
case 4:
|
|
codestr->op.code = EXTENDED_ARG;
|
|
codestr->op.arg = (oparg >> 24) & 0xFF;
|
|
codestr++;
|
|
/* fall through */
|
|
case 3:
|
|
codestr->op.code = EXTENDED_ARG;
|
|
codestr->op.arg = (oparg >> 16) & 0xFF;
|
|
codestr++;
|
|
/* fall through */
|
|
case 2:
|
|
codestr->op.code = EXTENDED_ARG;
|
|
codestr->op.arg = (oparg >> 8) & 0xFF;
|
|
codestr++;
|
|
/* fall through */
|
|
case 1:
|
|
codestr->op.code = opcode;
|
|
codestr->op.arg = oparg & 0xFF;
|
|
codestr++;
|
|
break;
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
while (caches--) {
|
|
codestr->op.code = CACHE;
|
|
codestr->op.arg = 0;
|
|
codestr++;
|
|
}
|
|
}
|
|
|
|
typedef struct basicblock_ {
|
|
/* Each basicblock in a compilation unit is linked via b_list in the
|
|
reverse order that the block are allocated. b_list points to the next
|
|
block, not to be confused with b_next, which is next by control flow. */
|
|
struct basicblock_ *b_list;
|
|
/* The label of this block if it is a jump target, -1 otherwise */
|
|
int b_label;
|
|
/* Exception stack at start of block, used by assembler to create the exception handling table */
|
|
ExceptStack *b_exceptstack;
|
|
/* pointer to an array of instructions, initially NULL */
|
|
struct cfg_instr *b_instr;
|
|
/* If b_next is non-NULL, it is a pointer to the next
|
|
block reached by normal control flow. */
|
|
struct basicblock_ *b_next;
|
|
/* number of instructions used */
|
|
int b_iused;
|
|
/* length of instruction array (b_instr) */
|
|
int b_ialloc;
|
|
/* Used by add_checks_for_loads_of_unknown_variables */
|
|
uint64_t b_unsafe_locals_mask;
|
|
/* Number of predecessors that a block has. */
|
|
int b_predecessors;
|
|
/* depth of stack upon entry of block, computed by stackdepth() */
|
|
int b_startdepth;
|
|
/* instruction offset for block, computed by assemble_jump_offsets() */
|
|
int b_offset;
|
|
/* Basic block is an exception handler that preserves lasti */
|
|
unsigned b_preserve_lasti : 1;
|
|
/* Used by compiler passes to mark whether they have visited a basic block. */
|
|
unsigned b_visited : 1;
|
|
/* b_except_handler is used by the cold-detection algorithm to mark exception targets */
|
|
unsigned b_except_handler : 1;
|
|
/* b_cold is true if this block is not perf critical (like an exception handler) */
|
|
unsigned b_cold : 1;
|
|
/* b_warm is used by the cold-detection algorithm to mark blocks which are definitely not cold */
|
|
unsigned b_warm : 1;
|
|
} basicblock;
|
|
|
|
|
|
static struct cfg_instr *
|
|
basicblock_last_instr(const basicblock *b) {
|
|
assert(b->b_iused >= 0);
|
|
if (b->b_iused > 0) {
|
|
assert(b->b_instr != NULL);
|
|
return &b->b_instr[b->b_iused - 1];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static inline int
|
|
basicblock_exits_scope(const basicblock *b) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
return last && IS_SCOPE_EXIT_OPCODE(last->i_opcode);
|
|
}
|
|
|
|
static inline int
|
|
basicblock_nofallthrough(const basicblock *b) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
return (last &&
|
|
(IS_SCOPE_EXIT_OPCODE(last->i_opcode) ||
|
|
IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)));
|
|
}
|
|
|
|
#define BB_NO_FALLTHROUGH(B) (basicblock_nofallthrough(B))
|
|
#define BB_HAS_FALLTHROUGH(B) (!basicblock_nofallthrough(B))
|
|
|
|
/* fblockinfo tracks the current frame block.
|
|
|
|
A frame block is used to handle loops, try/except, and try/finally.
|
|
It's called a frame block to distinguish it from a basic block in the
|
|
compiler IR.
|
|
*/
|
|
|
|
enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END,
|
|
WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER,
|
|
EXCEPTION_GROUP_HANDLER, ASYNC_COMPREHENSION_GENERATOR };
|
|
|
|
struct fblockinfo {
|
|
enum fblocktype fb_type;
|
|
jump_target_label fb_block;
|
|
/* (optional) type-specific exit or cleanup block */
|
|
jump_target_label fb_exit;
|
|
/* (optional) additional information required for unwinding */
|
|
void *fb_datum;
|
|
};
|
|
|
|
enum {
|
|
COMPILER_SCOPE_MODULE,
|
|
COMPILER_SCOPE_CLASS,
|
|
COMPILER_SCOPE_FUNCTION,
|
|
COMPILER_SCOPE_ASYNC_FUNCTION,
|
|
COMPILER_SCOPE_LAMBDA,
|
|
COMPILER_SCOPE_COMPREHENSION,
|
|
};
|
|
|
|
typedef struct cfg_builder_ {
|
|
/* The entryblock, at which control flow begins. All blocks of the
|
|
CFG are reachable through the b_next links */
|
|
basicblock *g_entryblock;
|
|
/* Pointer to the most recently allocated block. By following
|
|
b_list links, you can reach all allocated blocks. */
|
|
basicblock *g_block_list;
|
|
/* pointer to the block currently being constructed */
|
|
basicblock *g_curblock;
|
|
/* label for the next instruction to be placed */
|
|
jump_target_label g_current_label;
|
|
} cfg_builder;
|
|
|
|
typedef struct {
|
|
int i_opcode;
|
|
int i_oparg;
|
|
location i_loc;
|
|
} instruction;
|
|
|
|
|
|
typedef struct instr_sequence_ {
|
|
instruction *s_instrs;
|
|
int s_allocated;
|
|
int s_used;
|
|
|
|
int *s_labelmap; /* label id --> instr offset */
|
|
int s_labelmap_size;
|
|
int s_next_free_label; /* next free label id */
|
|
} instr_sequence;
|
|
|
|
#define INITIAL_INSTR_SEQUENCE_SIZE 100
|
|
#define INITIAL_INSTR_SEQUENCE_LABELS_MAP_SIZE 10
|
|
|
|
/*
|
|
* Resize the array if index is out of range.
|
|
*
|
|
* idx: the index we want to access
|
|
* arr: pointer to the array
|
|
* alloc: pointer to the capacity of the array
|
|
* default_alloc: initial number of items
|
|
* item_size: size of each item
|
|
*
|
|
*/
|
|
static int
|
|
ensure_array_large_enough(int idx, void **arr_, int *alloc, int default_alloc, size_t item_size)
|
|
{
|
|
void *arr = *arr_;
|
|
if (arr == NULL) {
|
|
int new_alloc = default_alloc;
|
|
if (idx >= new_alloc) {
|
|
new_alloc = idx + default_alloc;
|
|
}
|
|
arr = PyObject_Calloc(new_alloc, item_size);
|
|
if (arr == NULL) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
*alloc = new_alloc;
|
|
}
|
|
else if (idx >= *alloc) {
|
|
size_t oldsize = *alloc * item_size;
|
|
int new_alloc = *alloc << 1;
|
|
if (idx >= new_alloc) {
|
|
new_alloc = idx + default_alloc;
|
|
}
|
|
size_t newsize = new_alloc * item_size;
|
|
|
|
if (oldsize > (SIZE_MAX >> 1)) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
|
|
assert(newsize > 0);
|
|
void *tmp = PyObject_Realloc(arr, newsize);
|
|
if (tmp == NULL) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
*alloc = new_alloc;
|
|
arr = tmp;
|
|
memset((char *)arr + oldsize, 0, newsize - oldsize);
|
|
}
|
|
|
|
*arr_ = arr;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
instr_sequence_next_inst(instr_sequence *seq) {
|
|
assert(seq->s_instrs != NULL || seq->s_used == 0);
|
|
|
|
RETURN_IF_ERROR(
|
|
ensure_array_large_enough(seq->s_used + 1,
|
|
(void**)&seq->s_instrs,
|
|
&seq->s_allocated,
|
|
INITIAL_INSTR_SEQUENCE_SIZE,
|
|
sizeof(instruction)));
|
|
assert(seq->s_used < seq->s_allocated);
|
|
return seq->s_used++;
|
|
}
|
|
|
|
static jump_target_label
|
|
instr_sequence_new_label(instr_sequence *seq)
|
|
{
|
|
jump_target_label lbl = {seq->s_next_free_label++};
|
|
return lbl;
|
|
}
|
|
|
|
static int
|
|
instr_sequence_use_label(instr_sequence *seq, int lbl) {
|
|
int old_size = seq->s_labelmap_size;
|
|
RETURN_IF_ERROR(
|
|
ensure_array_large_enough(lbl,
|
|
(void**)&seq->s_labelmap,
|
|
&seq->s_labelmap_size,
|
|
INITIAL_INSTR_SEQUENCE_LABELS_MAP_SIZE,
|
|
sizeof(int)));
|
|
|
|
for(int i = old_size; i < seq->s_labelmap_size; i++) {
|
|
seq->s_labelmap[i] = -111; /* something weird, for debugging */
|
|
}
|
|
seq->s_labelmap[lbl] = seq->s_used; /* label refers to the next instruction */
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
instr_sequence_addop(instr_sequence *seq, int opcode, int oparg, location loc)
|
|
{
|
|
assert(IS_WITHIN_OPCODE_RANGE(opcode));
|
|
assert(!IS_ASSEMBLER_OPCODE(opcode));
|
|
assert(HAS_ARG(opcode) || HAS_TARGET(opcode) || oparg == 0);
|
|
assert(0 <= oparg && oparg < (1 << 30));
|
|
|
|
int idx = instr_sequence_next_inst(seq);
|
|
RETURN_IF_ERROR(idx);
|
|
instruction *ci = &seq->s_instrs[idx];
|
|
ci->i_opcode = opcode;
|
|
ci->i_oparg = oparg;
|
|
ci->i_loc = loc;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
instr_sequence_insert_instruction(instr_sequence *seq, int pos,
|
|
int opcode, int oparg, location loc)
|
|
{
|
|
assert(pos >= 0 && pos <= seq->s_used);
|
|
int last_idx = instr_sequence_next_inst(seq);
|
|
RETURN_IF_ERROR(last_idx);
|
|
for (int i=last_idx-1; i >= pos; i--) {
|
|
seq->s_instrs[i+1] = seq->s_instrs[i];
|
|
}
|
|
instruction *ci = &seq->s_instrs[pos];
|
|
ci->i_opcode = opcode;
|
|
ci->i_oparg = oparg;
|
|
ci->i_loc = loc;
|
|
|
|
/* fix the labels map */
|
|
for(int lbl=0; lbl < seq->s_labelmap_size; lbl++) {
|
|
if (seq->s_labelmap[lbl] >= pos) {
|
|
seq->s_labelmap[lbl]++;
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static void
|
|
instr_sequence_fini(instr_sequence *seq) {
|
|
PyObject_Free(seq->s_labelmap);
|
|
seq->s_labelmap = NULL;
|
|
|
|
PyObject_Free(seq->s_instrs);
|
|
seq->s_instrs = NULL;
|
|
}
|
|
|
|
static int basicblock_addop(basicblock *b, int opcode, int oparg, location loc);
|
|
static int cfg_builder_maybe_start_new_block(cfg_builder *g);
|
|
|
|
static int
|
|
cfg_builder_use_label(cfg_builder *g, jump_target_label lbl)
|
|
{
|
|
g->g_current_label = lbl;
|
|
return cfg_builder_maybe_start_new_block(g);
|
|
}
|
|
|
|
static int
|
|
cfg_builder_addop(cfg_builder *g, int opcode, int oparg, location loc)
|
|
{
|
|
RETURN_IF_ERROR(cfg_builder_maybe_start_new_block(g));
|
|
return basicblock_addop(g->g_curblock, opcode, oparg, loc);
|
|
}
|
|
|
|
static int cfg_builder_init(cfg_builder *g);
|
|
|
|
static int
|
|
instr_sequence_to_cfg(instr_sequence *seq, cfg_builder *g) {
|
|
memset(g, 0, sizeof(cfg_builder));
|
|
RETURN_IF_ERROR(cfg_builder_init(g));
|
|
/* Note: there can be more than one label for the same offset */
|
|
for (int i = 0; i < seq->s_used; i++) {
|
|
for (int j=0; j < seq->s_labelmap_size; j++) {
|
|
if (seq->s_labelmap[j] == i) {
|
|
jump_target_label lbl = {j};
|
|
RETURN_IF_ERROR(cfg_builder_use_label(g, lbl));
|
|
}
|
|
}
|
|
instruction *instr = &seq->s_instrs[i];
|
|
RETURN_IF_ERROR(cfg_builder_addop(g, instr->i_opcode, instr->i_oparg, instr->i_loc));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* The following items change on entry and exit of code blocks.
|
|
They must be saved and restored when returning to a block.
|
|
*/
|
|
struct compiler_unit {
|
|
PySTEntryObject *u_ste;
|
|
|
|
PyObject *u_name;
|
|
PyObject *u_qualname; /* dot-separated qualified name (lazy) */
|
|
int u_scope_type;
|
|
|
|
/* The following fields are dicts that map objects to
|
|
the index of them in co_XXX. The index is used as
|
|
the argument for opcodes that refer to those collections.
|
|
*/
|
|
PyObject *u_consts; /* all constants */
|
|
PyObject *u_names; /* all names */
|
|
PyObject *u_varnames; /* local variables */
|
|
PyObject *u_cellvars; /* cell variables */
|
|
PyObject *u_freevars; /* free variables */
|
|
|
|
PyObject *u_private; /* for private name mangling */
|
|
|
|
Py_ssize_t u_argcount; /* number of arguments for block */
|
|
Py_ssize_t u_posonlyargcount; /* number of positional only arguments for block */
|
|
Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */
|
|
|
|
instr_sequence u_instr_sequence; /* codegen output */
|
|
|
|
int u_nfblocks;
|
|
struct fblockinfo u_fblock[CO_MAXBLOCKS];
|
|
|
|
int u_firstlineno; /* the first lineno of the block */
|
|
};
|
|
|
|
/* This struct captures the global state of a compilation.
|
|
|
|
The u pointer points to the current compilation unit, while units
|
|
for enclosing blocks are stored in c_stack. The u and c_stack are
|
|
managed by compiler_enter_scope() and compiler_exit_scope().
|
|
|
|
Note that we don't track recursion levels during compilation - the
|
|
task of detecting and rejecting excessive levels of nesting is
|
|
handled by the symbol analysis pass.
|
|
|
|
*/
|
|
|
|
struct compiler {
|
|
PyObject *c_filename;
|
|
struct symtable *c_st;
|
|
PyFutureFeatures c_future; /* module's __future__ */
|
|
PyCompilerFlags c_flags;
|
|
|
|
int c_optimize; /* optimization level */
|
|
int c_interactive; /* true if in interactive mode */
|
|
int c_nestlevel;
|
|
PyObject *c_const_cache; /* Python dict holding all constants,
|
|
including names tuple */
|
|
struct compiler_unit *u; /* compiler state for current block */
|
|
PyObject *c_stack; /* Python list holding compiler_unit ptrs */
|
|
PyArena *c_arena; /* pointer to memory allocation arena */
|
|
};
|
|
|
|
#define INSTR_SEQUENCE(C) (&((C)->u->u_instr_sequence))
|
|
|
|
|
|
typedef struct {
|
|
// A list of strings corresponding to name captures. It is used to track:
|
|
// - Repeated name assignments in the same pattern.
|
|
// - Different name assignments in alternatives.
|
|
// - The order of name assignments in alternatives.
|
|
PyObject *stores;
|
|
// If 0, any name captures against our subject will raise.
|
|
int allow_irrefutable;
|
|
// An array of blocks to jump to on failure. Jumping to fail_pop[i] will pop
|
|
// i items off of the stack. The end result looks like this (with each block
|
|
// falling through to the next):
|
|
// fail_pop[4]: POP_TOP
|
|
// fail_pop[3]: POP_TOP
|
|
// fail_pop[2]: POP_TOP
|
|
// fail_pop[1]: POP_TOP
|
|
// fail_pop[0]: NOP
|
|
jump_target_label *fail_pop;
|
|
// The current length of fail_pop.
|
|
Py_ssize_t fail_pop_size;
|
|
// The number of items on top of the stack that need to *stay* on top of the
|
|
// stack. Variable captures go beneath these. All of them will be popped on
|
|
// failure.
|
|
Py_ssize_t on_top;
|
|
} pattern_context;
|
|
|
|
static int basicblock_next_instr(basicblock *);
|
|
|
|
static int codegen_addop_i(instr_sequence *seq, int opcode, Py_ssize_t oparg, location loc);
|
|
|
|
static void compiler_free(struct compiler *);
|
|
static int compiler_error(struct compiler *, location loc, const char *, ...);
|
|
static int compiler_warn(struct compiler *, location loc, const char *, ...);
|
|
static int compiler_nameop(struct compiler *, location, identifier, expr_context_ty);
|
|
|
|
static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
|
|
static int compiler_visit_stmt(struct compiler *, stmt_ty);
|
|
static int compiler_visit_keyword(struct compiler *, keyword_ty);
|
|
static int compiler_visit_expr(struct compiler *, expr_ty);
|
|
static int compiler_augassign(struct compiler *, stmt_ty);
|
|
static int compiler_annassign(struct compiler *, stmt_ty);
|
|
static int compiler_subscript(struct compiler *, expr_ty);
|
|
static int compiler_slice(struct compiler *, expr_ty);
|
|
|
|
static bool are_all_items_const(asdl_expr_seq *, Py_ssize_t, Py_ssize_t);
|
|
|
|
|
|
static int compiler_with(struct compiler *, stmt_ty, int);
|
|
static int compiler_async_with(struct compiler *, stmt_ty, int);
|
|
static int compiler_async_for(struct compiler *, stmt_ty);
|
|
static int compiler_call_simple_kw_helper(struct compiler *c,
|
|
location loc,
|
|
asdl_keyword_seq *keywords,
|
|
Py_ssize_t nkwelts);
|
|
static int compiler_call_helper(struct compiler *c, location loc,
|
|
int n, asdl_expr_seq *args,
|
|
asdl_keyword_seq *keywords);
|
|
static int compiler_try_except(struct compiler *, stmt_ty);
|
|
static int compiler_try_star_except(struct compiler *, stmt_ty);
|
|
static int compiler_set_qualname(struct compiler *);
|
|
|
|
static int compiler_sync_comprehension_generator(
|
|
struct compiler *c, location loc,
|
|
asdl_comprehension_seq *generators, int gen_index,
|
|
int depth,
|
|
expr_ty elt, expr_ty val, int type);
|
|
|
|
static int compiler_async_comprehension_generator(
|
|
struct compiler *c, location loc,
|
|
asdl_comprehension_seq *generators, int gen_index,
|
|
int depth,
|
|
expr_ty elt, expr_ty val, int type);
|
|
|
|
static int compiler_pattern(struct compiler *, pattern_ty, pattern_context *);
|
|
static int compiler_match(struct compiler *, stmt_ty);
|
|
static int compiler_pattern_subpattern(struct compiler *,
|
|
pattern_ty, pattern_context *);
|
|
|
|
static int remove_redundant_nops(basicblock *bb);
|
|
|
|
static PyCodeObject *assemble(struct compiler *, int addNone);
|
|
|
|
#define CAPSULE_NAME "compile.c compiler unit"
|
|
|
|
|
|
static int
|
|
compiler_setup(struct compiler *c, mod_ty mod, PyObject *filename,
|
|
PyCompilerFlags flags, int optimize, PyArena *arena)
|
|
{
|
|
c->c_const_cache = PyDict_New();
|
|
if (!c->c_const_cache) {
|
|
return ERROR;
|
|
}
|
|
|
|
c->c_stack = PyList_New(0);
|
|
if (!c->c_stack) {
|
|
return ERROR;
|
|
}
|
|
|
|
c->c_filename = Py_NewRef(filename);
|
|
c->c_arena = arena;
|
|
if (!_PyFuture_FromAST(mod, filename, &c->c_future)) {
|
|
return ERROR;
|
|
}
|
|
int merged = c->c_future.ff_features | flags.cf_flags;
|
|
c->c_future.ff_features = merged;
|
|
flags.cf_flags = merged;
|
|
c->c_flags = flags;
|
|
c->c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize;
|
|
c->c_nestlevel = 0;
|
|
|
|
_PyASTOptimizeState state;
|
|
state.optimize = c->c_optimize;
|
|
state.ff_features = merged;
|
|
|
|
if (!_PyAST_Optimize(mod, arena, &state)) {
|
|
return ERROR;
|
|
}
|
|
c->c_st = _PySymtable_Build(mod, filename, &c->c_future);
|
|
if (c->c_st == NULL) {
|
|
if (!PyErr_Occurred()) {
|
|
PyErr_SetString(PyExc_SystemError, "no symtable");
|
|
}
|
|
return ERROR;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static struct compiler*
|
|
new_compiler(mod_ty mod, PyObject *filename, PyCompilerFlags *pflags,
|
|
int optimize, PyArena *arena)
|
|
{
|
|
PyCompilerFlags flags = pflags ? *pflags : _PyCompilerFlags_INIT;
|
|
struct compiler *c = PyMem_Calloc(1, sizeof(struct compiler));
|
|
if (c == NULL) {
|
|
return NULL;
|
|
}
|
|
if (compiler_setup(c, mod, filename, flags, optimize, arena) < 0) {
|
|
compiler_free(c);
|
|
return NULL;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
PyCodeObject *
|
|
_PyAST_Compile(mod_ty mod, PyObject *filename, PyCompilerFlags *pflags,
|
|
int optimize, PyArena *arena)
|
|
{
|
|
struct compiler *c = new_compiler(mod, filename, pflags, optimize, arena);
|
|
if (c == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PyCodeObject *co = compiler_mod(c, mod);
|
|
compiler_free(c);
|
|
assert(co || PyErr_Occurred());
|
|
return co;
|
|
}
|
|
|
|
static void
|
|
compiler_free(struct compiler *c)
|
|
{
|
|
if (c->c_st)
|
|
_PySymtable_Free(c->c_st);
|
|
Py_XDECREF(c->c_filename);
|
|
Py_XDECREF(c->c_const_cache);
|
|
Py_XDECREF(c->c_stack);
|
|
PyMem_Free(c);
|
|
}
|
|
|
|
static PyObject *
|
|
list2dict(PyObject *list)
|
|
{
|
|
Py_ssize_t i, n;
|
|
PyObject *v, *k;
|
|
PyObject *dict = PyDict_New();
|
|
if (!dict) return NULL;
|
|
|
|
n = PyList_Size(list);
|
|
for (i = 0; i < n; i++) {
|
|
v = PyLong_FromSsize_t(i);
|
|
if (!v) {
|
|
Py_DECREF(dict);
|
|
return NULL;
|
|
}
|
|
k = PyList_GET_ITEM(list, i);
|
|
if (PyDict_SetItem(dict, k, v) < 0) {
|
|
Py_DECREF(v);
|
|
Py_DECREF(dict);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(v);
|
|
}
|
|
return dict;
|
|
}
|
|
|
|
/* Return new dict containing names from src that match scope(s).
|
|
|
|
src is a symbol table dictionary. If the scope of a name matches
|
|
either scope_type or flag is set, insert it into the new dict. The
|
|
values are integers, starting at offset and increasing by one for
|
|
each key.
|
|
*/
|
|
|
|
static PyObject *
|
|
dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
|
|
{
|
|
Py_ssize_t i = offset, scope, num_keys, key_i;
|
|
PyObject *k, *v, *dest = PyDict_New();
|
|
PyObject *sorted_keys;
|
|
|
|
assert(offset >= 0);
|
|
if (dest == NULL)
|
|
return NULL;
|
|
|
|
/* Sort the keys so that we have a deterministic order on the indexes
|
|
saved in the returned dictionary. These indexes are used as indexes
|
|
into the free and cell var storage. Therefore if they aren't
|
|
deterministic, then the generated bytecode is not deterministic.
|
|
*/
|
|
sorted_keys = PyDict_Keys(src);
|
|
if (sorted_keys == NULL)
|
|
return NULL;
|
|
if (PyList_Sort(sorted_keys) != 0) {
|
|
Py_DECREF(sorted_keys);
|
|
return NULL;
|
|
}
|
|
num_keys = PyList_GET_SIZE(sorted_keys);
|
|
|
|
for (key_i = 0; key_i < num_keys; key_i++) {
|
|
/* XXX this should probably be a macro in symtable.h */
|
|
long vi;
|
|
k = PyList_GET_ITEM(sorted_keys, key_i);
|
|
v = PyDict_GetItemWithError(src, k);
|
|
assert(v && PyLong_Check(v));
|
|
vi = PyLong_AS_LONG(v);
|
|
scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;
|
|
|
|
if (scope == scope_type || vi & flag) {
|
|
PyObject *item = PyLong_FromSsize_t(i);
|
|
if (item == NULL) {
|
|
Py_DECREF(sorted_keys);
|
|
Py_DECREF(dest);
|
|
return NULL;
|
|
}
|
|
i++;
|
|
if (PyDict_SetItem(dest, k, item) < 0) {
|
|
Py_DECREF(sorted_keys);
|
|
Py_DECREF(item);
|
|
Py_DECREF(dest);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(item);
|
|
}
|
|
}
|
|
Py_DECREF(sorted_keys);
|
|
return dest;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool
|
|
cfg_builder_check(cfg_builder *g)
|
|
{
|
|
for (basicblock *block = g->g_block_list; block != NULL; block = block->b_list) {
|
|
assert(!_PyMem_IsPtrFreed(block));
|
|
if (block->b_instr != NULL) {
|
|
assert(block->b_ialloc > 0);
|
|
assert(block->b_iused >= 0);
|
|
assert(block->b_ialloc >= block->b_iused);
|
|
}
|
|
else {
|
|
assert (block->b_iused == 0);
|
|
assert (block->b_ialloc == 0);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
static basicblock *cfg_builder_new_block(cfg_builder *g);
|
|
|
|
static int
|
|
cfg_builder_init(cfg_builder *g)
|
|
{
|
|
g->g_block_list = NULL;
|
|
basicblock *block = cfg_builder_new_block(g);
|
|
if (block == NULL) {
|
|
return ERROR;
|
|
}
|
|
g->g_curblock = g->g_entryblock = block;
|
|
g->g_current_label = NO_LABEL;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static void
|
|
cfg_builder_fini(cfg_builder* g)
|
|
{
|
|
assert(cfg_builder_check(g));
|
|
basicblock *b = g->g_block_list;
|
|
while (b != NULL) {
|
|
if (b->b_instr) {
|
|
PyObject_Free((void *)b->b_instr);
|
|
}
|
|
basicblock *next = b->b_list;
|
|
PyObject_Free((void *)b);
|
|
b = next;
|
|
}
|
|
}
|
|
|
|
static void
|
|
compiler_unit_free(struct compiler_unit *u)
|
|
{
|
|
instr_sequence_fini(&u->u_instr_sequence);
|
|
Py_CLEAR(u->u_ste);
|
|
Py_CLEAR(u->u_name);
|
|
Py_CLEAR(u->u_qualname);
|
|
Py_CLEAR(u->u_consts);
|
|
Py_CLEAR(u->u_names);
|
|
Py_CLEAR(u->u_varnames);
|
|
Py_CLEAR(u->u_freevars);
|
|
Py_CLEAR(u->u_cellvars);
|
|
Py_CLEAR(u->u_private);
|
|
PyObject_Free(u);
|
|
}
|
|
|
|
static int
|
|
compiler_set_qualname(struct compiler *c)
|
|
{
|
|
Py_ssize_t stack_size;
|
|
struct compiler_unit *u = c->u;
|
|
PyObject *name, *base;
|
|
|
|
base = NULL;
|
|
stack_size = PyList_GET_SIZE(c->c_stack);
|
|
assert(stack_size >= 1);
|
|
if (stack_size > 1) {
|
|
int scope, force_global = 0;
|
|
struct compiler_unit *parent;
|
|
PyObject *mangled, *capsule;
|
|
|
|
capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
|
|
parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
|
|
assert(parent);
|
|
|
|
if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
|
|
|| u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
|
|
|| u->u_scope_type == COMPILER_SCOPE_CLASS) {
|
|
assert(u->u_name);
|
|
mangled = _Py_Mangle(parent->u_private, u->u_name);
|
|
if (!mangled) {
|
|
return ERROR;
|
|
}
|
|
|
|
scope = _PyST_GetScope(parent->u_ste, mangled);
|
|
Py_DECREF(mangled);
|
|
assert(scope != GLOBAL_IMPLICIT);
|
|
if (scope == GLOBAL_EXPLICIT)
|
|
force_global = 1;
|
|
}
|
|
|
|
if (!force_global) {
|
|
if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
|
|
|| parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
|
|
|| parent->u_scope_type == COMPILER_SCOPE_LAMBDA)
|
|
{
|
|
_Py_DECLARE_STR(dot_locals, ".<locals>");
|
|
base = PyUnicode_Concat(parent->u_qualname,
|
|
&_Py_STR(dot_locals));
|
|
if (base == NULL) {
|
|
return ERROR;
|
|
}
|
|
}
|
|
else {
|
|
base = Py_NewRef(parent->u_qualname);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (base != NULL) {
|
|
_Py_DECLARE_STR(dot, ".");
|
|
name = PyUnicode_Concat(base, &_Py_STR(dot));
|
|
Py_DECREF(base);
|
|
if (name == NULL) {
|
|
return ERROR;
|
|
}
|
|
PyUnicode_Append(&name, u->u_name);
|
|
if (name == NULL) {
|
|
return ERROR;
|
|
}
|
|
}
|
|
else {
|
|
name = Py_NewRef(u->u_name);
|
|
}
|
|
u->u_qualname = name;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Allocate a new block and return a pointer to it.
|
|
Returns NULL on error.
|
|
*/
|
|
static basicblock *
|
|
cfg_builder_new_block(cfg_builder *g)
|
|
{
|
|
basicblock *b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock));
|
|
if (b == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
/* Extend the singly linked list of blocks with new block. */
|
|
b->b_list = g->g_block_list;
|
|
g->g_block_list = b;
|
|
b->b_label = -1;
|
|
return b;
|
|
}
|
|
|
|
static basicblock *
|
|
cfg_builder_use_next_block(cfg_builder *g, basicblock *block)
|
|
{
|
|
assert(block != NULL);
|
|
g->g_curblock->b_next = block;
|
|
g->g_curblock = block;
|
|
return block;
|
|
}
|
|
|
|
static inline int
|
|
basicblock_append_instructions(basicblock *target, basicblock *source)
|
|
{
|
|
for (int i = 0; i < source->b_iused; i++) {
|
|
int n = basicblock_next_instr(target);
|
|
if (n < 0) {
|
|
return ERROR;
|
|
}
|
|
target->b_instr[n] = source->b_instr[i];
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static basicblock *
|
|
copy_basicblock(cfg_builder *g, basicblock *block)
|
|
{
|
|
/* Cannot copy a block if it has a fallthrough, since
|
|
* a block can only have one fallthrough predecessor.
|
|
*/
|
|
assert(BB_NO_FALLTHROUGH(block));
|
|
basicblock *result = cfg_builder_new_block(g);
|
|
if (result == NULL) {
|
|
return NULL;
|
|
}
|
|
if (basicblock_append_instructions(result, block) < 0) {
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Returns the offset of the next instruction in the current block's
|
|
b_instr array. Resizes the b_instr as necessary.
|
|
Returns -1 on failure.
|
|
*/
|
|
|
|
static int
|
|
basicblock_next_instr(basicblock *b)
|
|
{
|
|
assert(b != NULL);
|
|
|
|
RETURN_IF_ERROR(
|
|
ensure_array_large_enough(
|
|
b->b_iused + 1,
|
|
(void**)&b->b_instr,
|
|
&b->b_ialloc,
|
|
DEFAULT_BLOCK_SIZE,
|
|
sizeof(struct cfg_instr)));
|
|
|
|
return b->b_iused++;
|
|
}
|
|
|
|
|
|
/* Return the stack effect of opcode with argument oparg.
|
|
|
|
Some opcodes have different stack effect when jump to the target and
|
|
when not jump. The 'jump' parameter specifies the case:
|
|
|
|
* 0 -- when not jump
|
|
* 1 -- when jump
|
|
* -1 -- maximal
|
|
*/
|
|
static int
|
|
stack_effect(int opcode, int oparg, int jump)
|
|
{
|
|
if (0 <= opcode && opcode <= MAX_REAL_OPCODE) {
|
|
if (_PyOpcode_Deopt[opcode] != opcode) {
|
|
// Specialized instructions are not supported.
|
|
return PY_INVALID_STACK_EFFECT;
|
|
}
|
|
int popped, pushed;
|
|
if (jump > 0) {
|
|
popped = _PyOpcode_num_popped(opcode, oparg, true);
|
|
pushed = _PyOpcode_num_pushed(opcode, oparg, true);
|
|
}
|
|
else {
|
|
popped = _PyOpcode_num_popped(opcode, oparg, false);
|
|
pushed = _PyOpcode_num_pushed(opcode, oparg, false);
|
|
}
|
|
if (popped < 0 || pushed < 0) {
|
|
return PY_INVALID_STACK_EFFECT;
|
|
}
|
|
if (jump >= 0) {
|
|
return pushed - popped;
|
|
}
|
|
if (jump < 0) {
|
|
// Compute max(pushed - popped, alt_pushed - alt_popped)
|
|
int alt_popped = _PyOpcode_num_popped(opcode, oparg, true);
|
|
int alt_pushed = _PyOpcode_num_pushed(opcode, oparg, true);
|
|
if (alt_popped < 0 || alt_pushed < 0) {
|
|
return PY_INVALID_STACK_EFFECT;
|
|
}
|
|
int diff = pushed - popped;
|
|
int alt_diff = alt_pushed - alt_popped;
|
|
if (alt_diff > diff) {
|
|
return alt_diff;
|
|
}
|
|
return diff;
|
|
}
|
|
}
|
|
|
|
// Pseudo ops
|
|
switch (opcode) {
|
|
case POP_BLOCK:
|
|
case JUMP:
|
|
case JUMP_NO_INTERRUPT:
|
|
return 0;
|
|
|
|
/* Exception handling pseudo-instructions */
|
|
case SETUP_FINALLY:
|
|
/* 0 in the normal flow.
|
|
* Restore the stack position and push 1 value before jumping to
|
|
* the handler if an exception be raised. */
|
|
return jump ? 1 : 0;
|
|
case SETUP_CLEANUP:
|
|
/* As SETUP_FINALLY, but pushes lasti as well */
|
|
return jump ? 2 : 0;
|
|
case SETUP_WITH:
|
|
/* 0 in the normal flow.
|
|
* Restore the stack position to the position before the result
|
|
* of __(a)enter__ and push 2 values before jumping to the handler
|
|
* if an exception be raised. */
|
|
return jump ? 1 : 0;
|
|
|
|
case LOAD_METHOD:
|
|
return 1;
|
|
default:
|
|
return PY_INVALID_STACK_EFFECT;
|
|
}
|
|
|
|
return PY_INVALID_STACK_EFFECT; /* not reachable */
|
|
}
|
|
|
|
int
|
|
PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump)
|
|
{
|
|
return stack_effect(opcode, oparg, jump);
|
|
}
|
|
|
|
int
|
|
PyCompile_OpcodeStackEffect(int opcode, int oparg)
|
|
{
|
|
return stack_effect(opcode, oparg, -1);
|
|
}
|
|
|
|
static int
|
|
basicblock_addop(basicblock *b, int opcode, int oparg, location loc)
|
|
{
|
|
assert(IS_WITHIN_OPCODE_RANGE(opcode));
|
|
assert(!IS_ASSEMBLER_OPCODE(opcode));
|
|
assert(HAS_ARG(opcode) || HAS_TARGET(opcode) || oparg == 0);
|
|
assert(0 <= oparg && oparg < (1 << 30));
|
|
|
|
int off = basicblock_next_instr(b);
|
|
if (off < 0) {
|
|
return ERROR;
|
|
}
|
|
struct cfg_instr *i = &b->b_instr[off];
|
|
i->i_opcode = opcode;
|
|
i->i_oparg = oparg;
|
|
i->i_target = NULL;
|
|
i->i_loc = loc;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static bool
|
|
cfg_builder_current_block_is_terminated(cfg_builder *g)
|
|
{
|
|
if (IS_LABEL(g->g_current_label)) {
|
|
return true;
|
|
}
|
|
struct cfg_instr *last = basicblock_last_instr(g->g_curblock);
|
|
return last && IS_TERMINATOR_OPCODE(last->i_opcode);
|
|
}
|
|
|
|
static int
|
|
cfg_builder_maybe_start_new_block(cfg_builder *g)
|
|
{
|
|
if (cfg_builder_current_block_is_terminated(g)) {
|
|
basicblock *b = cfg_builder_new_block(g);
|
|
if (b == NULL) {
|
|
return ERROR;
|
|
}
|
|
b->b_label = g->g_current_label.id;
|
|
g->g_current_label = NO_LABEL;
|
|
cfg_builder_use_next_block(g, b);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
codegen_addop_noarg(instr_sequence *seq, int opcode, location loc)
|
|
{
|
|
assert(!HAS_ARG(opcode));
|
|
return instr_sequence_addop(seq, opcode, 0, loc);
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dict_add_o(PyObject *dict, PyObject *o)
|
|
{
|
|
PyObject *v;
|
|
Py_ssize_t arg;
|
|
|
|
v = PyDict_GetItemWithError(dict, o);
|
|
if (!v) {
|
|
if (PyErr_Occurred()) {
|
|
return ERROR;
|
|
}
|
|
arg = PyDict_GET_SIZE(dict);
|
|
v = PyLong_FromSsize_t(arg);
|
|
if (!v) {
|
|
return ERROR;
|
|
}
|
|
if (PyDict_SetItem(dict, o, v) < 0) {
|
|
Py_DECREF(v);
|
|
return ERROR;
|
|
}
|
|
Py_DECREF(v);
|
|
}
|
|
else
|
|
arg = PyLong_AsLong(v);
|
|
return arg;
|
|
}
|
|
|
|
// Merge const *o* recursively and return constant key object.
|
|
static PyObject*
|
|
merge_consts_recursive(PyObject *const_cache, PyObject *o)
|
|
{
|
|
assert(PyDict_CheckExact(const_cache));
|
|
// None and Ellipsis are singleton, and key is the singleton.
|
|
// No need to merge object and key.
|
|
if (o == Py_None || o == Py_Ellipsis) {
|
|
return Py_NewRef(o);
|
|
}
|
|
|
|
PyObject *key = _PyCode_ConstantKey(o);
|
|
if (key == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// t is borrowed reference
|
|
PyObject *t = PyDict_SetDefault(const_cache, key, key);
|
|
if (t != key) {
|
|
// o is registered in const_cache. Just use it.
|
|
Py_XINCREF(t);
|
|
Py_DECREF(key);
|
|
return t;
|
|
}
|
|
|
|
// We registered o in const_cache.
|
|
// When o is a tuple or frozenset, we want to merge its
|
|
// items too.
|
|
if (PyTuple_CheckExact(o)) {
|
|
Py_ssize_t len = PyTuple_GET_SIZE(o);
|
|
for (Py_ssize_t i = 0; i < len; i++) {
|
|
PyObject *item = PyTuple_GET_ITEM(o, i);
|
|
PyObject *u = merge_consts_recursive(const_cache, item);
|
|
if (u == NULL) {
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
|
|
// See _PyCode_ConstantKey()
|
|
PyObject *v; // borrowed
|
|
if (PyTuple_CheckExact(u)) {
|
|
v = PyTuple_GET_ITEM(u, 1);
|
|
}
|
|
else {
|
|
v = u;
|
|
}
|
|
if (v != item) {
|
|
PyTuple_SET_ITEM(o, i, Py_NewRef(v));
|
|
Py_DECREF(item);
|
|
}
|
|
|
|
Py_DECREF(u);
|
|
}
|
|
}
|
|
else if (PyFrozenSet_CheckExact(o)) {
|
|
// *key* is tuple. And its first item is frozenset of
|
|
// constant keys.
|
|
// See _PyCode_ConstantKey() for detail.
|
|
assert(PyTuple_CheckExact(key));
|
|
assert(PyTuple_GET_SIZE(key) == 2);
|
|
|
|
Py_ssize_t len = PySet_GET_SIZE(o);
|
|
if (len == 0) { // empty frozenset should not be re-created.
|
|
return key;
|
|
}
|
|
PyObject *tuple = PyTuple_New(len);
|
|
if (tuple == NULL) {
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
Py_ssize_t i = 0, pos = 0;
|
|
PyObject *item;
|
|
Py_hash_t hash;
|
|
while (_PySet_NextEntry(o, &pos, &item, &hash)) {
|
|
PyObject *k = merge_consts_recursive(const_cache, item);
|
|
if (k == NULL) {
|
|
Py_DECREF(tuple);
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
PyObject *u;
|
|
if (PyTuple_CheckExact(k)) {
|
|
u = Py_NewRef(PyTuple_GET_ITEM(k, 1));
|
|
Py_DECREF(k);
|
|
}
|
|
else {
|
|
u = k;
|
|
}
|
|
PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u.
|
|
i++;
|
|
}
|
|
|
|
// Instead of rewriting o, we create new frozenset and embed in the
|
|
// key tuple. Caller should get merged frozenset from the key tuple.
|
|
PyObject *new = PyFrozenSet_New(tuple);
|
|
Py_DECREF(tuple);
|
|
if (new == NULL) {
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
assert(PyTuple_GET_ITEM(key, 1) == o);
|
|
Py_DECREF(o);
|
|
PyTuple_SET_ITEM(key, 1, new);
|
|
}
|
|
|
|
return key;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
compiler_add_const(struct compiler *c, PyObject *o)
|
|
{
|
|
PyObject *key = merge_consts_recursive(c->c_const_cache, o);
|
|
if (key == NULL) {
|
|
return ERROR;
|
|
}
|
|
|
|
Py_ssize_t arg = dict_add_o(c->u->u_consts, key);
|
|
Py_DECREF(key);
|
|
return arg;
|
|
}
|
|
|
|
static int
|
|
compiler_addop_load_const(struct compiler *c, location loc, PyObject *o)
|
|
{
|
|
Py_ssize_t arg = compiler_add_const(c, o);
|
|
if (arg < 0) {
|
|
return ERROR;
|
|
}
|
|
return codegen_addop_i(INSTR_SEQUENCE(c), LOAD_CONST, arg, loc);
|
|
}
|
|
|
|
static int
|
|
compiler_addop_o(struct compiler *c, location loc,
|
|
int opcode, PyObject *dict, PyObject *o)
|
|
{
|
|
Py_ssize_t arg = dict_add_o(dict, o);
|
|
if (arg < 0) {
|
|
return ERROR;
|
|
}
|
|
return codegen_addop_i(INSTR_SEQUENCE(c), opcode, arg, loc);
|
|
}
|
|
|
|
static int
|
|
compiler_addop_name(struct compiler *c, location loc,
|
|
int opcode, PyObject *dict, PyObject *o)
|
|
{
|
|
Py_ssize_t arg;
|
|
|
|
PyObject *mangled = _Py_Mangle(c->u->u_private, o);
|
|
if (!mangled) {
|
|
return ERROR;
|
|
}
|
|
arg = dict_add_o(dict, mangled);
|
|
Py_DECREF(mangled);
|
|
if (arg < 0) {
|
|
return ERROR;
|
|
}
|
|
if (opcode == LOAD_ATTR) {
|
|
arg <<= 1;
|
|
}
|
|
if (opcode == LOAD_METHOD) {
|
|
opcode = LOAD_ATTR;
|
|
arg <<= 1;
|
|
arg |= 1;
|
|
}
|
|
return codegen_addop_i(INSTR_SEQUENCE(c), opcode, arg, loc);
|
|
}
|
|
|
|
/* Add an opcode with an integer argument */
|
|
static int
|
|
codegen_addop_i(instr_sequence *seq, int opcode, Py_ssize_t oparg, location loc)
|
|
{
|
|
/* oparg value is unsigned, but a signed C int is usually used to store
|
|
it in the C code (like Python/ceval.c).
|
|
|
|
Limit to 32-bit signed C int (rather than INT_MAX) for portability.
|
|
|
|
The argument of a concrete bytecode instruction is limited to 8-bit.
|
|
EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */
|
|
|
|
int oparg_ = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
|
|
return instr_sequence_addop(seq, opcode, oparg_, loc);
|
|
}
|
|
|
|
static int
|
|
codegen_addop_j(instr_sequence *seq, location loc,
|
|
int opcode, jump_target_label target)
|
|
{
|
|
assert(IS_LABEL(target));
|
|
assert(IS_JUMP_OPCODE(opcode) || IS_BLOCK_PUSH_OPCODE(opcode));
|
|
return instr_sequence_addop(seq, opcode, target.id, loc);
|
|
}
|
|
|
|
#define ADDOP(C, LOC, OP) \
|
|
RETURN_IF_ERROR(codegen_addop_noarg(INSTR_SEQUENCE(C), (OP), (LOC)))
|
|
|
|
#define ADDOP_IN_SCOPE(C, LOC, OP) { \
|
|
if (codegen_addop_noarg(INSTR_SEQUENCE(C), (OP), (LOC)) < 0) { \
|
|
compiler_exit_scope(C); \
|
|
return ERROR; \
|
|
} \
|
|
}
|
|
|
|
#define ADDOP_LOAD_CONST(C, LOC, O) \
|
|
RETURN_IF_ERROR(compiler_addop_load_const((C), (LOC), (O)))
|
|
|
|
/* Same as ADDOP_LOAD_CONST, but steals a reference. */
|
|
#define ADDOP_LOAD_CONST_NEW(C, LOC, O) { \
|
|
PyObject *__new_const = (O); \
|
|
if (__new_const == NULL) { \
|
|
return ERROR; \
|
|
} \
|
|
if (compiler_addop_load_const((C), (LOC), __new_const) < 0) { \
|
|
Py_DECREF(__new_const); \
|
|
return ERROR; \
|
|
} \
|
|
Py_DECREF(__new_const); \
|
|
}
|
|
|
|
#define ADDOP_N(C, LOC, OP, O, TYPE) { \
|
|
assert(!HAS_CONST(OP)); /* use ADDOP_LOAD_CONST_NEW */ \
|
|
if (compiler_addop_o((C), (LOC), (OP), (C)->u->u_ ## TYPE, (O)) < 0) { \
|
|
Py_DECREF((O)); \
|
|
return ERROR; \
|
|
} \
|
|
Py_DECREF((O)); \
|
|
}
|
|
|
|
#define ADDOP_NAME(C, LOC, OP, O, TYPE) \
|
|
RETURN_IF_ERROR(compiler_addop_name((C), (LOC), (OP), (C)->u->u_ ## TYPE, (O)))
|
|
|
|
#define ADDOP_I(C, LOC, OP, O) \
|
|
RETURN_IF_ERROR(codegen_addop_i(INSTR_SEQUENCE(C), (OP), (O), (LOC)))
|
|
|
|
#define ADDOP_JUMP(C, LOC, OP, O) \
|
|
RETURN_IF_ERROR(codegen_addop_j(INSTR_SEQUENCE(C), (LOC), (OP), (O)))
|
|
|
|
#define ADDOP_COMPARE(C, LOC, CMP) \
|
|
RETURN_IF_ERROR(compiler_addcompare((C), (LOC), (cmpop_ty)(CMP)))
|
|
|
|
#define ADDOP_BINARY(C, LOC, BINOP) \
|
|
RETURN_IF_ERROR(addop_binary((C), (LOC), (BINOP), false))
|
|
|
|
#define ADDOP_INPLACE(C, LOC, BINOP) \
|
|
RETURN_IF_ERROR(addop_binary((C), (LOC), (BINOP), true))
|
|
|
|
#define ADD_YIELD_FROM(C, LOC, await) \
|
|
RETURN_IF_ERROR(compiler_add_yield_from((C), (LOC), (await)))
|
|
|
|
#define POP_EXCEPT_AND_RERAISE(C, LOC) \
|
|
RETURN_IF_ERROR(compiler_pop_except_and_reraise((C), (LOC)))
|
|
|
|
#define ADDOP_YIELD(C, LOC) \
|
|
RETURN_IF_ERROR(addop_yield((C), (LOC)))
|
|
|
|
/* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use
|
|
the ASDL name to synthesize the name of the C type and the visit function.
|
|
*/
|
|
|
|
#define VISIT(C, TYPE, V) \
|
|
RETURN_IF_ERROR(compiler_visit_ ## TYPE((C), (V)));
|
|
|
|
#define VISIT_IN_SCOPE(C, TYPE, V) {\
|
|
if (compiler_visit_ ## TYPE((C), (V)) < 0) { \
|
|
compiler_exit_scope(C); \
|
|
return ERROR; \
|
|
} \
|
|
}
|
|
|
|
#define VISIT_SEQ(C, TYPE, SEQ) { \
|
|
int _i; \
|
|
asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
|
|
for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
|
|
TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
|
|
RETURN_IF_ERROR(compiler_visit_ ## TYPE((C), elt)); \
|
|
} \
|
|
}
|
|
|
|
#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
|
|
int _i; \
|
|
asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
|
|
for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
|
|
TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
|
|
if (compiler_visit_ ## TYPE((C), elt) < 0) { \
|
|
compiler_exit_scope(C); \
|
|
return ERROR; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_enter_scope(struct compiler *c, identifier name,
|
|
int scope_type, void *key, int lineno)
|
|
{
|
|
location loc = LOCATION(lineno, lineno, 0, 0);
|
|
|
|
struct compiler_unit *u;
|
|
|
|
u = (struct compiler_unit *)PyObject_Calloc(1, sizeof(
|
|
struct compiler_unit));
|
|
if (!u) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
u->u_scope_type = scope_type;
|
|
u->u_argcount = 0;
|
|
u->u_posonlyargcount = 0;
|
|
u->u_kwonlyargcount = 0;
|
|
u->u_ste = PySymtable_Lookup(c->c_st, key);
|
|
if (!u->u_ste) {
|
|
compiler_unit_free(u);
|
|
return ERROR;
|
|
}
|
|
u->u_name = Py_NewRef(name);
|
|
u->u_varnames = list2dict(u->u_ste->ste_varnames);
|
|
u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0);
|
|
if (!u->u_varnames || !u->u_cellvars) {
|
|
compiler_unit_free(u);
|
|
return ERROR;
|
|
}
|
|
if (u->u_ste->ste_needs_class_closure) {
|
|
/* Cook up an implicit __class__ cell. */
|
|
int res;
|
|
assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
|
|
assert(PyDict_GET_SIZE(u->u_cellvars) == 0);
|
|
res = PyDict_SetItem(u->u_cellvars, &_Py_ID(__class__),
|
|
_PyLong_GetZero());
|
|
if (res < 0) {
|
|
compiler_unit_free(u);
|
|
return ERROR;
|
|
}
|
|
}
|
|
|
|
u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
|
|
PyDict_GET_SIZE(u->u_cellvars));
|
|
if (!u->u_freevars) {
|
|
compiler_unit_free(u);
|
|
return ERROR;
|
|
}
|
|
|
|
u->u_nfblocks = 0;
|
|
u->u_firstlineno = lineno;
|
|
u->u_consts = PyDict_New();
|
|
if (!u->u_consts) {
|
|
compiler_unit_free(u);
|
|
return ERROR;
|
|
}
|
|
u->u_names = PyDict_New();
|
|
if (!u->u_names) {
|
|
compiler_unit_free(u);
|
|
return ERROR;
|
|
}
|
|
|
|
u->u_private = NULL;
|
|
|
|
/* Push the old compiler_unit on the stack. */
|
|
if (c->u) {
|
|
PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
|
|
if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
|
|
Py_XDECREF(capsule);
|
|
compiler_unit_free(u);
|
|
return ERROR;
|
|
}
|
|
Py_DECREF(capsule);
|
|
u->u_private = Py_XNewRef(c->u->u_private);
|
|
}
|
|
c->u = u;
|
|
|
|
c->c_nestlevel++;
|
|
|
|
if (u->u_scope_type == COMPILER_SCOPE_MODULE) {
|
|
loc.lineno = 0;
|
|
}
|
|
else {
|
|
RETURN_IF_ERROR(compiler_set_qualname(c));
|
|
}
|
|
ADDOP_I(c, loc, RESUME, 0);
|
|
|
|
if (u->u_scope_type == COMPILER_SCOPE_MODULE) {
|
|
loc.lineno = -1;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static void
|
|
compiler_exit_scope(struct compiler *c)
|
|
{
|
|
// Don't call PySequence_DelItem() with an exception raised
|
|
PyObject *exc = PyErr_GetRaisedException();
|
|
|
|
c->c_nestlevel--;
|
|
compiler_unit_free(c->u);
|
|
/* Restore c->u to the parent unit. */
|
|
Py_ssize_t n = PyList_GET_SIZE(c->c_stack) - 1;
|
|
if (n >= 0) {
|
|
PyObject *capsule = PyList_GET_ITEM(c->c_stack, n);
|
|
c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
|
|
assert(c->u);
|
|
/* we are deleting from a list so this really shouldn't fail */
|
|
if (PySequence_DelItem(c->c_stack, n) < 0) {
|
|
_PyErr_WriteUnraisableMsg("on removing the last compiler "
|
|
"stack item", NULL);
|
|
}
|
|
}
|
|
else {
|
|
c->u = NULL;
|
|
}
|
|
|
|
PyErr_SetRaisedException(exc);
|
|
}
|
|
|
|
/* Search if variable annotations are present statically in a block. */
|
|
|
|
static bool
|
|
find_ann(asdl_stmt_seq *stmts)
|
|
{
|
|
int i, j, res = 0;
|
|
stmt_ty st;
|
|
|
|
for (i = 0; i < asdl_seq_LEN(stmts); i++) {
|
|
st = (stmt_ty)asdl_seq_GET(stmts, i);
|
|
switch (st->kind) {
|
|
case AnnAssign_kind:
|
|
return true;
|
|
case For_kind:
|
|
res = find_ann(st->v.For.body) ||
|
|
find_ann(st->v.For.orelse);
|
|
break;
|
|
case AsyncFor_kind:
|
|
res = find_ann(st->v.AsyncFor.body) ||
|
|
find_ann(st->v.AsyncFor.orelse);
|
|
break;
|
|
case While_kind:
|
|
res = find_ann(st->v.While.body) ||
|
|
find_ann(st->v.While.orelse);
|
|
break;
|
|
case If_kind:
|
|
res = find_ann(st->v.If.body) ||
|
|
find_ann(st->v.If.orelse);
|
|
break;
|
|
case With_kind:
|
|
res = find_ann(st->v.With.body);
|
|
break;
|
|
case AsyncWith_kind:
|
|
res = find_ann(st->v.AsyncWith.body);
|
|
break;
|
|
case Try_kind:
|
|
for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) {
|
|
excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
|
|
st->v.Try.handlers, j);
|
|
if (find_ann(handler->v.ExceptHandler.body)) {
|
|
return true;
|
|
}
|
|
}
|
|
res = find_ann(st->v.Try.body) ||
|
|
find_ann(st->v.Try.finalbody) ||
|
|
find_ann(st->v.Try.orelse);
|
|
break;
|
|
case TryStar_kind:
|
|
for (j = 0; j < asdl_seq_LEN(st->v.TryStar.handlers); j++) {
|
|
excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
|
|
st->v.TryStar.handlers, j);
|
|
if (find_ann(handler->v.ExceptHandler.body)) {
|
|
return true;
|
|
}
|
|
}
|
|
res = find_ann(st->v.TryStar.body) ||
|
|
find_ann(st->v.TryStar.finalbody) ||
|
|
find_ann(st->v.TryStar.orelse);
|
|
break;
|
|
default:
|
|
res = false;
|
|
}
|
|
if (res) {
|
|
break;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Frame block handling functions
|
|
*/
|
|
|
|
static int
|
|
compiler_push_fblock(struct compiler *c, location loc,
|
|
enum fblocktype t, jump_target_label block_label,
|
|
jump_target_label exit, void *datum)
|
|
{
|
|
struct fblockinfo *f;
|
|
if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
|
|
return compiler_error(c, loc, "too many statically nested blocks");
|
|
}
|
|
f = &c->u->u_fblock[c->u->u_nfblocks++];
|
|
f->fb_type = t;
|
|
f->fb_block = block_label;
|
|
f->fb_exit = exit;
|
|
f->fb_datum = datum;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static void
|
|
compiler_pop_fblock(struct compiler *c, enum fblocktype t, jump_target_label block_label)
|
|
{
|
|
struct compiler_unit *u = c->u;
|
|
assert(u->u_nfblocks > 0);
|
|
u->u_nfblocks--;
|
|
assert(u->u_fblock[u->u_nfblocks].fb_type == t);
|
|
assert(SAME_LABEL(u->u_fblock[u->u_nfblocks].fb_block, block_label));
|
|
}
|
|
|
|
static int
|
|
compiler_call_exit_with_nones(struct compiler *c, location loc)
|
|
{
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADDOP_I(c, loc, CALL, 2);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_add_yield_from(struct compiler *c, location loc, int await)
|
|
{
|
|
NEW_JUMP_TARGET_LABEL(c, send);
|
|
NEW_JUMP_TARGET_LABEL(c, fail);
|
|
NEW_JUMP_TARGET_LABEL(c, exit);
|
|
|
|
USE_LABEL(c, send);
|
|
ADDOP_JUMP(c, loc, SEND, exit);
|
|
// Set up a virtual try/except to handle when StopIteration is raised during
|
|
// a close or throw call. The only way YIELD_VALUE raises if they do!
|
|
ADDOP_JUMP(c, loc, SETUP_FINALLY, fail);
|
|
ADDOP_I(c, loc, YIELD_VALUE, 0);
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
ADDOP_I(c, loc, RESUME, await ? 3 : 2);
|
|
ADDOP_JUMP(c, loc, JUMP_NO_INTERRUPT, send);
|
|
|
|
USE_LABEL(c, fail);
|
|
ADDOP(c, loc, CLEANUP_THROW);
|
|
|
|
USE_LABEL(c, exit);
|
|
ADDOP_I(c, loc, SWAP, 2);
|
|
ADDOP(c, loc, POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_pop_except_and_reraise(struct compiler *c, location loc)
|
|
{
|
|
/* Stack contents
|
|
* [exc_info, lasti, exc] COPY 3
|
|
* [exc_info, lasti, exc, exc_info] POP_EXCEPT
|
|
* [exc_info, lasti, exc] RERAISE 1
|
|
* (exception_unwind clears the stack)
|
|
*/
|
|
|
|
ADDOP_I(c, loc, COPY, 3);
|
|
ADDOP(c, loc, POP_EXCEPT);
|
|
ADDOP_I(c, loc, RERAISE, 1);
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Unwind a frame block. If preserve_tos is true, the TOS before
|
|
* popping the blocks will be restored afterwards, unless another
|
|
* return, break or continue is found. In which case, the TOS will
|
|
* be popped.
|
|
*/
|
|
static int
|
|
compiler_unwind_fblock(struct compiler *c, location *ploc,
|
|
struct fblockinfo *info, int preserve_tos)
|
|
{
|
|
switch (info->fb_type) {
|
|
case WHILE_LOOP:
|
|
case EXCEPTION_HANDLER:
|
|
case EXCEPTION_GROUP_HANDLER:
|
|
case ASYNC_COMPREHENSION_GENERATOR:
|
|
return SUCCESS;
|
|
|
|
case FOR_LOOP:
|
|
/* Pop the iterator */
|
|
if (preserve_tos) {
|
|
ADDOP_I(c, *ploc, SWAP, 2);
|
|
}
|
|
ADDOP(c, *ploc, POP_TOP);
|
|
return SUCCESS;
|
|
|
|
case TRY_EXCEPT:
|
|
ADDOP(c, *ploc, POP_BLOCK);
|
|
return SUCCESS;
|
|
|
|
case FINALLY_TRY:
|
|
/* This POP_BLOCK gets the line number of the unwinding statement */
|
|
ADDOP(c, *ploc, POP_BLOCK);
|
|
if (preserve_tos) {
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, *ploc, POP_VALUE, NO_LABEL, NO_LABEL, NULL));
|
|
}
|
|
/* Emit the finally block */
|
|
VISIT_SEQ(c, stmt, info->fb_datum);
|
|
if (preserve_tos) {
|
|
compiler_pop_fblock(c, POP_VALUE, NO_LABEL);
|
|
}
|
|
/* The finally block should appear to execute after the
|
|
* statement causing the unwinding, so make the unwinding
|
|
* instruction artificial */
|
|
*ploc = NO_LOCATION;
|
|
return SUCCESS;
|
|
|
|
case FINALLY_END:
|
|
if (preserve_tos) {
|
|
ADDOP_I(c, *ploc, SWAP, 2);
|
|
}
|
|
ADDOP(c, *ploc, POP_TOP); /* exc_value */
|
|
if (preserve_tos) {
|
|
ADDOP_I(c, *ploc, SWAP, 2);
|
|
}
|
|
ADDOP(c, *ploc, POP_BLOCK);
|
|
ADDOP(c, *ploc, POP_EXCEPT);
|
|
return SUCCESS;
|
|
|
|
case WITH:
|
|
case ASYNC_WITH:
|
|
*ploc = LOC((stmt_ty)info->fb_datum);
|
|
ADDOP(c, *ploc, POP_BLOCK);
|
|
if (preserve_tos) {
|
|
ADDOP_I(c, *ploc, SWAP, 2);
|
|
}
|
|
RETURN_IF_ERROR(compiler_call_exit_with_nones(c, *ploc));
|
|
if (info->fb_type == ASYNC_WITH) {
|
|
ADDOP_I(c, *ploc, GET_AWAITABLE, 2);
|
|
ADDOP_LOAD_CONST(c, *ploc, Py_None);
|
|
ADD_YIELD_FROM(c, *ploc, 1);
|
|
}
|
|
ADDOP(c, *ploc, POP_TOP);
|
|
/* The exit block should appear to execute after the
|
|
* statement causing the unwinding, so make the unwinding
|
|
* instruction artificial */
|
|
*ploc = NO_LOCATION;
|
|
return SUCCESS;
|
|
|
|
case HANDLER_CLEANUP: {
|
|
if (info->fb_datum) {
|
|
ADDOP(c, *ploc, POP_BLOCK);
|
|
}
|
|
if (preserve_tos) {
|
|
ADDOP_I(c, *ploc, SWAP, 2);
|
|
}
|
|
ADDOP(c, *ploc, POP_BLOCK);
|
|
ADDOP(c, *ploc, POP_EXCEPT);
|
|
if (info->fb_datum) {
|
|
ADDOP_LOAD_CONST(c, *ploc, Py_None);
|
|
RETURN_IF_ERROR(compiler_nameop(c, *ploc, info->fb_datum, Store));
|
|
RETURN_IF_ERROR(compiler_nameop(c, *ploc, info->fb_datum, Del));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
case POP_VALUE: {
|
|
if (preserve_tos) {
|
|
ADDOP_I(c, *ploc, SWAP, 2);
|
|
}
|
|
ADDOP(c, *ploc, POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
}
|
|
Py_UNREACHABLE();
|
|
}
|
|
|
|
/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */
|
|
static int
|
|
compiler_unwind_fblock_stack(struct compiler *c, location *ploc,
|
|
int preserve_tos, struct fblockinfo **loop)
|
|
{
|
|
if (c->u->u_nfblocks == 0) {
|
|
return SUCCESS;
|
|
}
|
|
struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1];
|
|
if (top->fb_type == EXCEPTION_GROUP_HANDLER) {
|
|
return compiler_error(
|
|
c, *ploc, "'break', 'continue' and 'return' cannot appear in an except* block");
|
|
}
|
|
if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) {
|
|
*loop = top;
|
|
return SUCCESS;
|
|
}
|
|
struct fblockinfo copy = *top;
|
|
c->u->u_nfblocks--;
|
|
RETURN_IF_ERROR(compiler_unwind_fblock(c, ploc, ©, preserve_tos));
|
|
RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, ploc, preserve_tos, loop));
|
|
c->u->u_fblock[c->u->u_nfblocks] = copy;
|
|
c->u->u_nfblocks++;
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Compile a sequence of statements, checking for a docstring
|
|
and for annotations. */
|
|
|
|
static int
|
|
compiler_body(struct compiler *c, location loc, asdl_stmt_seq *stmts)
|
|
{
|
|
int i = 0;
|
|
stmt_ty st;
|
|
PyObject *docstring;
|
|
|
|
/* Set current line number to the line number of first statement.
|
|
This way line number for SETUP_ANNOTATIONS will always
|
|
coincide with the line number of first "real" statement in module.
|
|
If body is empty, then lineno will be set later in assemble. */
|
|
if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) {
|
|
st = (stmt_ty)asdl_seq_GET(stmts, 0);
|
|
loc = LOC(st);
|
|
}
|
|
/* Every annotated class and module should have __annotations__. */
|
|
if (find_ann(stmts)) {
|
|
ADDOP(c, loc, SETUP_ANNOTATIONS);
|
|
}
|
|
if (!asdl_seq_LEN(stmts)) {
|
|
return SUCCESS;
|
|
}
|
|
/* if not -OO mode, set docstring */
|
|
if (c->c_optimize < 2) {
|
|
docstring = _PyAST_GetDocString(stmts);
|
|
if (docstring) {
|
|
i = 1;
|
|
st = (stmt_ty)asdl_seq_GET(stmts, 0);
|
|
assert(st->kind == Expr_kind);
|
|
VISIT(c, expr, st->v.Expr.value);
|
|
RETURN_IF_ERROR(compiler_nameop(c, NO_LOCATION, &_Py_ID(__doc__), Store));
|
|
}
|
|
}
|
|
for (; i < asdl_seq_LEN(stmts); i++) {
|
|
VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_codegen(struct compiler *c, mod_ty mod)
|
|
{
|
|
_Py_DECLARE_STR(anon_module, "<module>");
|
|
RETURN_IF_ERROR(
|
|
compiler_enter_scope(c, &_Py_STR(anon_module), COMPILER_SCOPE_MODULE,
|
|
mod, 1));
|
|
|
|
location loc = LOCATION(1, 1, 0, 0);
|
|
switch (mod->kind) {
|
|
case Module_kind:
|
|
if (compiler_body(c, loc, mod->v.Module.body) < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
break;
|
|
case Interactive_kind:
|
|
if (find_ann(mod->v.Interactive.body)) {
|
|
ADDOP(c, loc, SETUP_ANNOTATIONS);
|
|
}
|
|
c->c_interactive = 1;
|
|
VISIT_SEQ_IN_SCOPE(c, stmt, mod->v.Interactive.body);
|
|
break;
|
|
case Expression_kind:
|
|
VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"module kind %d should not be possible",
|
|
mod->kind);
|
|
return ERROR;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static PyCodeObject *
|
|
compiler_mod(struct compiler *c, mod_ty mod)
|
|
{
|
|
int addNone = mod->kind != Expression_kind;
|
|
if (compiler_codegen(c, mod) < 0) {
|
|
return NULL;
|
|
}
|
|
PyCodeObject *co = assemble(c, addNone);
|
|
compiler_exit_scope(c);
|
|
return co;
|
|
}
|
|
|
|
/* The test for LOCAL must come before the test for FREE in order to
|
|
handle classes where name is both local and free. The local var is
|
|
a method and the free var is a free var referenced within a method.
|
|
*/
|
|
|
|
static int
|
|
get_ref_type(struct compiler *c, PyObject *name)
|
|
{
|
|
int scope;
|
|
if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
|
|
_PyUnicode_EqualToASCIIString(name, "__class__"))
|
|
return CELL;
|
|
scope = _PyST_GetScope(c->u->u_ste, name);
|
|
if (scope == 0) {
|
|
PyErr_Format(PyExc_SystemError,
|
|
"_PyST_GetScope(name=%R) failed: "
|
|
"unknown scope in unit %S (%R); "
|
|
"symbols: %R; locals: %R; globals: %R",
|
|
name,
|
|
c->u->u_name, c->u->u_ste->ste_id,
|
|
c->u->u_ste->ste_symbols, c->u->u_varnames, c->u->u_names);
|
|
return ERROR;
|
|
}
|
|
return scope;
|
|
}
|
|
|
|
static int
|
|
compiler_lookup_arg(PyObject *dict, PyObject *name)
|
|
{
|
|
PyObject *v = PyDict_GetItemWithError(dict, name);
|
|
if (v == NULL) {
|
|
return ERROR;
|
|
}
|
|
return PyLong_AS_LONG(v);
|
|
}
|
|
|
|
static int
|
|
compiler_make_closure(struct compiler *c, location loc,
|
|
PyCodeObject *co, Py_ssize_t flags)
|
|
{
|
|
if (co->co_nfreevars) {
|
|
int i = PyCode_GetFirstFree(co);
|
|
for (; i < co->co_nlocalsplus; ++i) {
|
|
/* Bypass com_addop_varname because it will generate
|
|
LOAD_DEREF but LOAD_CLOSURE is needed.
|
|
*/
|
|
PyObject *name = PyTuple_GET_ITEM(co->co_localsplusnames, i);
|
|
|
|
/* Special case: If a class contains a method with a
|
|
free variable that has the same name as a method,
|
|
the name will be considered free *and* local in the
|
|
class. It should be handled by the closure, as
|
|
well as by the normal name lookup logic.
|
|
*/
|
|
int reftype = get_ref_type(c, name);
|
|
if (reftype == -1) {
|
|
return ERROR;
|
|
}
|
|
int arg;
|
|
if (reftype == CELL) {
|
|
arg = compiler_lookup_arg(c->u->u_cellvars, name);
|
|
}
|
|
else {
|
|
arg = compiler_lookup_arg(c->u->u_freevars, name);
|
|
}
|
|
if (arg == -1) {
|
|
PyObject *freevars = _PyCode_GetFreevars(co);
|
|
if (freevars == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
PyErr_Format(PyExc_SystemError,
|
|
"compiler_lookup_arg(name=%R) with reftype=%d failed in %S; "
|
|
"freevars of code %S: %R",
|
|
name,
|
|
reftype,
|
|
c->u->u_name,
|
|
co->co_name,
|
|
freevars);
|
|
Py_DECREF(freevars);
|
|
return ERROR;
|
|
}
|
|
ADDOP_I(c, loc, LOAD_CLOSURE, arg);
|
|
}
|
|
flags |= 0x08;
|
|
ADDOP_I(c, loc, BUILD_TUPLE, co->co_nfreevars);
|
|
}
|
|
ADDOP_LOAD_CONST(c, loc, (PyObject*)co);
|
|
ADDOP_I(c, loc, MAKE_FUNCTION, flags);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_decorators(struct compiler *c, asdl_expr_seq* decos)
|
|
{
|
|
if (!decos) {
|
|
return SUCCESS;
|
|
}
|
|
|
|
for (Py_ssize_t i = 0; i < asdl_seq_LEN(decos); i++) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_apply_decorators(struct compiler *c, asdl_expr_seq* decos)
|
|
{
|
|
if (!decos) {
|
|
return SUCCESS;
|
|
}
|
|
|
|
for (Py_ssize_t i = asdl_seq_LEN(decos) - 1; i > -1; i--) {
|
|
location loc = LOC((expr_ty)asdl_seq_GET(decos, i));
|
|
ADDOP_I(c, loc, CALL, 0);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_kwonlydefaults(struct compiler *c, location loc,
|
|
asdl_arg_seq *kwonlyargs, asdl_expr_seq *kw_defaults)
|
|
{
|
|
/* Push a dict of keyword-only default values.
|
|
|
|
Return -1 on error, 0 if no dict pushed, 1 if a dict is pushed.
|
|
*/
|
|
int i;
|
|
PyObject *keys = NULL;
|
|
|
|
for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
|
|
arg_ty arg = asdl_seq_GET(kwonlyargs, i);
|
|
expr_ty default_ = asdl_seq_GET(kw_defaults, i);
|
|
if (default_) {
|
|
PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
|
|
if (!mangled) {
|
|
goto error;
|
|
}
|
|
if (keys == NULL) {
|
|
keys = PyList_New(1);
|
|
if (keys == NULL) {
|
|
Py_DECREF(mangled);
|
|
return ERROR;
|
|
}
|
|
PyList_SET_ITEM(keys, 0, mangled);
|
|
}
|
|
else {
|
|
int res = PyList_Append(keys, mangled);
|
|
Py_DECREF(mangled);
|
|
if (res == -1) {
|
|
goto error;
|
|
}
|
|
}
|
|
if (compiler_visit_expr(c, default_) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
if (keys != NULL) {
|
|
Py_ssize_t default_count = PyList_GET_SIZE(keys);
|
|
PyObject *keys_tuple = PyList_AsTuple(keys);
|
|
Py_DECREF(keys);
|
|
ADDOP_LOAD_CONST_NEW(c, loc, keys_tuple);
|
|
ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, default_count);
|
|
assert(default_count > 0);
|
|
return 1;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
|
|
error:
|
|
Py_XDECREF(keys);
|
|
return ERROR;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_annexpr(struct compiler *c, expr_ty annotation)
|
|
{
|
|
location loc = LOC(annotation);
|
|
ADDOP_LOAD_CONST_NEW(c, loc, _PyAST_ExprAsUnicode(annotation));
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_argannotation(struct compiler *c, identifier id,
|
|
expr_ty annotation, Py_ssize_t *annotations_len, location loc)
|
|
{
|
|
if (!annotation) {
|
|
return SUCCESS;
|
|
}
|
|
PyObject *mangled = _Py_Mangle(c->u->u_private, id);
|
|
if (!mangled) {
|
|
return ERROR;
|
|
}
|
|
ADDOP_LOAD_CONST(c, loc, mangled);
|
|
Py_DECREF(mangled);
|
|
|
|
if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
|
|
VISIT(c, annexpr, annotation);
|
|
}
|
|
else {
|
|
if (annotation->kind == Starred_kind) {
|
|
// *args: *Ts (where Ts is a TypeVarTuple).
|
|
// Do [annotation_value] = [*Ts].
|
|
// (Note that in theory we could end up here even for an argument
|
|
// other than *args, but in practice the grammar doesn't allow it.)
|
|
VISIT(c, expr, annotation->v.Starred.value);
|
|
ADDOP_I(c, loc, UNPACK_SEQUENCE, (Py_ssize_t) 1);
|
|
}
|
|
else {
|
|
VISIT(c, expr, annotation);
|
|
}
|
|
}
|
|
*annotations_len += 2;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_argannotations(struct compiler *c, asdl_arg_seq* args,
|
|
Py_ssize_t *annotations_len, location loc)
|
|
{
|
|
int i;
|
|
for (i = 0; i < asdl_seq_LEN(args); i++) {
|
|
arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
|
|
RETURN_IF_ERROR(
|
|
compiler_visit_argannotation(
|
|
c,
|
|
arg->arg,
|
|
arg->annotation,
|
|
annotations_len,
|
|
loc));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_annotations(struct compiler *c, location loc,
|
|
arguments_ty args, expr_ty returns)
|
|
{
|
|
/* Push arg annotation names and values.
|
|
The expressions are evaluated out-of-order wrt the source code.
|
|
|
|
Return -1 on error, 0 if no annotations pushed, 1 if a annotations is pushed.
|
|
*/
|
|
Py_ssize_t annotations_len = 0;
|
|
|
|
RETURN_IF_ERROR(
|
|
compiler_visit_argannotations(c, args->args, &annotations_len, loc));
|
|
|
|
RETURN_IF_ERROR(
|
|
compiler_visit_argannotations(c, args->posonlyargs, &annotations_len, loc));
|
|
|
|
if (args->vararg && args->vararg->annotation) {
|
|
RETURN_IF_ERROR(
|
|
compiler_visit_argannotation(c, args->vararg->arg,
|
|
args->vararg->annotation, &annotations_len, loc));
|
|
}
|
|
|
|
RETURN_IF_ERROR(
|
|
compiler_visit_argannotations(c, args->kwonlyargs, &annotations_len, loc));
|
|
|
|
if (args->kwarg && args->kwarg->annotation) {
|
|
RETURN_IF_ERROR(
|
|
compiler_visit_argannotation(c, args->kwarg->arg,
|
|
args->kwarg->annotation, &annotations_len, loc));
|
|
}
|
|
|
|
RETURN_IF_ERROR(
|
|
compiler_visit_argannotation(c, &_Py_ID(return), returns, &annotations_len, loc));
|
|
|
|
if (annotations_len) {
|
|
ADDOP_I(c, loc, BUILD_TUPLE, annotations_len);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_defaults(struct compiler *c, arguments_ty args,
|
|
location loc)
|
|
{
|
|
VISIT_SEQ(c, expr, args->defaults);
|
|
ADDOP_I(c, loc, BUILD_TUPLE, asdl_seq_LEN(args->defaults));
|
|
return SUCCESS;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
compiler_default_arguments(struct compiler *c, location loc,
|
|
arguments_ty args)
|
|
{
|
|
Py_ssize_t funcflags = 0;
|
|
if (args->defaults && asdl_seq_LEN(args->defaults) > 0) {
|
|
RETURN_IF_ERROR(compiler_visit_defaults(c, args, loc));
|
|
funcflags |= 0x01;
|
|
}
|
|
if (args->kwonlyargs) {
|
|
int res = compiler_visit_kwonlydefaults(c, loc,
|
|
args->kwonlyargs,
|
|
args->kw_defaults);
|
|
RETURN_IF_ERROR(res);
|
|
if (res > 0) {
|
|
funcflags |= 0x02;
|
|
}
|
|
}
|
|
return funcflags;
|
|
}
|
|
|
|
static bool
|
|
forbidden_name(struct compiler *c, location loc, identifier name,
|
|
expr_context_ty ctx)
|
|
{
|
|
if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
|
|
compiler_error(c, loc, "cannot assign to __debug__");
|
|
return true;
|
|
}
|
|
if (ctx == Del && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
|
|
compiler_error(c, loc, "cannot delete __debug__");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int
|
|
compiler_check_debug_one_arg(struct compiler *c, arg_ty arg)
|
|
{
|
|
if (arg != NULL) {
|
|
if (forbidden_name(c, LOC(arg), arg->arg, Store)) {
|
|
return ERROR;
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_check_debug_args_seq(struct compiler *c, asdl_arg_seq *args)
|
|
{
|
|
if (args != NULL) {
|
|
for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) {
|
|
RETURN_IF_ERROR(
|
|
compiler_check_debug_one_arg(c, asdl_seq_GET(args, i)));
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_check_debug_args(struct compiler *c, arguments_ty args)
|
|
{
|
|
RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->posonlyargs));
|
|
RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->args));
|
|
RETURN_IF_ERROR(compiler_check_debug_one_arg(c, args->vararg));
|
|
RETURN_IF_ERROR(compiler_check_debug_args_seq(c, args->kwonlyargs));
|
|
RETURN_IF_ERROR(compiler_check_debug_one_arg(c, args->kwarg));
|
|
return SUCCESS;
|
|
}
|
|
|
|
static inline int
|
|
insert_instruction(basicblock *block, int pos, struct cfg_instr *instr) {
|
|
RETURN_IF_ERROR(basicblock_next_instr(block));
|
|
for (int i = block->b_iused - 1; i > pos; i--) {
|
|
block->b_instr[i] = block->b_instr[i-1];
|
|
}
|
|
block->b_instr[pos] = *instr;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
wrap_in_stopiteration_handler(struct compiler *c)
|
|
{
|
|
NEW_JUMP_TARGET_LABEL(c, handler);
|
|
|
|
/* Insert SETUP_CLEANUP at start */
|
|
RETURN_IF_ERROR(
|
|
instr_sequence_insert_instruction(
|
|
INSTR_SEQUENCE(c), 0,
|
|
SETUP_CLEANUP, handler.id, NO_LOCATION));
|
|
|
|
ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
|
|
ADDOP(c, NO_LOCATION, RETURN_VALUE);
|
|
USE_LABEL(c, handler);
|
|
ADDOP_I(c, NO_LOCATION, CALL_INTRINSIC_1, INTRINSIC_STOPITERATION_ERROR);
|
|
ADDOP_I(c, NO_LOCATION, RERAISE, 1);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_function(struct compiler *c, stmt_ty s, int is_async)
|
|
{
|
|
PyCodeObject *co;
|
|
PyObject *docstring = NULL;
|
|
arguments_ty args;
|
|
expr_ty returns;
|
|
identifier name;
|
|
asdl_expr_seq* decos;
|
|
asdl_stmt_seq *body;
|
|
Py_ssize_t i, funcflags;
|
|
int annotations;
|
|
int scope_type;
|
|
int firstlineno;
|
|
|
|
if (is_async) {
|
|
assert(s->kind == AsyncFunctionDef_kind);
|
|
|
|
args = s->v.AsyncFunctionDef.args;
|
|
returns = s->v.AsyncFunctionDef.returns;
|
|
decos = s->v.AsyncFunctionDef.decorator_list;
|
|
name = s->v.AsyncFunctionDef.name;
|
|
body = s->v.AsyncFunctionDef.body;
|
|
|
|
scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
|
|
} else {
|
|
assert(s->kind == FunctionDef_kind);
|
|
|
|
args = s->v.FunctionDef.args;
|
|
returns = s->v.FunctionDef.returns;
|
|
decos = s->v.FunctionDef.decorator_list;
|
|
name = s->v.FunctionDef.name;
|
|
body = s->v.FunctionDef.body;
|
|
|
|
scope_type = COMPILER_SCOPE_FUNCTION;
|
|
}
|
|
|
|
RETURN_IF_ERROR(compiler_check_debug_args(c, args));
|
|
RETURN_IF_ERROR(compiler_decorators(c, decos));
|
|
|
|
firstlineno = s->lineno;
|
|
if (asdl_seq_LEN(decos)) {
|
|
firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
|
|
}
|
|
|
|
location loc = LOC(s);
|
|
funcflags = compiler_default_arguments(c, loc, args);
|
|
if (funcflags == -1) {
|
|
return ERROR;
|
|
}
|
|
annotations = compiler_visit_annotations(c, loc, args, returns);
|
|
RETURN_IF_ERROR(annotations);
|
|
if (annotations > 0) {
|
|
funcflags |= 0x04;
|
|
}
|
|
|
|
RETURN_IF_ERROR(
|
|
compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno));
|
|
|
|
/* if not -OO mode, add docstring */
|
|
if (c->c_optimize < 2) {
|
|
docstring = _PyAST_GetDocString(body);
|
|
}
|
|
if (compiler_add_const(c, docstring ? docstring : Py_None) < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
|
|
c->u->u_argcount = asdl_seq_LEN(args->args);
|
|
c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
|
|
c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
|
|
for (i = docstring ? 1 : 0; i < asdl_seq_LEN(body); i++) {
|
|
VISIT_IN_SCOPE(c, stmt, (stmt_ty)asdl_seq_GET(body, i));
|
|
}
|
|
if (c->u->u_ste->ste_coroutine || c->u->u_ste->ste_generator) {
|
|
if (wrap_in_stopiteration_handler(c) < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
}
|
|
co = assemble(c, 1);
|
|
compiler_exit_scope(c);
|
|
if (co == NULL) {
|
|
Py_XDECREF(co);
|
|
return ERROR;
|
|
}
|
|
if (compiler_make_closure(c, loc, co, funcflags) < 0) {
|
|
Py_DECREF(co);
|
|
return ERROR;
|
|
}
|
|
Py_DECREF(co);
|
|
|
|
RETURN_IF_ERROR(compiler_apply_decorators(c, decos));
|
|
return compiler_nameop(c, loc, name, Store);
|
|
}
|
|
|
|
static int
|
|
compiler_class(struct compiler *c, stmt_ty s)
|
|
{
|
|
PyCodeObject *co;
|
|
int i, firstlineno;
|
|
asdl_expr_seq *decos = s->v.ClassDef.decorator_list;
|
|
|
|
RETURN_IF_ERROR(compiler_decorators(c, decos));
|
|
|
|
firstlineno = s->lineno;
|
|
if (asdl_seq_LEN(decos)) {
|
|
firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
|
|
}
|
|
|
|
/* ultimately generate code for:
|
|
<name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
|
|
where:
|
|
<func> is a zero arg function/closure created from the class body.
|
|
It mutates its locals to build the class namespace.
|
|
<name> is the class name
|
|
<bases> is the positional arguments and *varargs argument
|
|
<keywords> is the keyword arguments and **kwds argument
|
|
This borrows from compiler_call.
|
|
*/
|
|
/* 1. compile the class body into a code object */
|
|
RETURN_IF_ERROR(
|
|
compiler_enter_scope(c, s->v.ClassDef.name,
|
|
COMPILER_SCOPE_CLASS, (void *)s, firstlineno));
|
|
|
|
/* this block represents what we do in the new scope */
|
|
{
|
|
location loc = LOCATION(firstlineno, firstlineno, 0, 0);
|
|
/* use the class name for name mangling */
|
|
Py_XSETREF(c->u->u_private, Py_NewRef(s->v.ClassDef.name));
|
|
/* load (global) __name__ ... */
|
|
if (compiler_nameop(c, loc, &_Py_ID(__name__), Load) < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
/* ... and store it as __module__ */
|
|
if (compiler_nameop(c, loc, &_Py_ID(__module__), Store) < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
assert(c->u->u_qualname);
|
|
ADDOP_LOAD_CONST(c, loc, c->u->u_qualname);
|
|
if (compiler_nameop(c, loc, &_Py_ID(__qualname__), Store) < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
/* compile the body proper */
|
|
if (compiler_body(c, loc, s->v.ClassDef.body) < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
/* The following code is artificial */
|
|
/* Return __classcell__ if it is referenced, otherwise return None */
|
|
if (c->u->u_ste->ste_needs_class_closure) {
|
|
/* Store __classcell__ into class namespace & return it */
|
|
i = compiler_lookup_arg(c->u->u_cellvars, &_Py_ID(__class__));
|
|
if (i < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
assert(i == 0);
|
|
ADDOP_I(c, NO_LOCATION, LOAD_CLOSURE, i);
|
|
ADDOP_I(c, NO_LOCATION, COPY, 1);
|
|
if (compiler_nameop(c, NO_LOCATION, &_Py_ID(__classcell__), Store) < 0) {
|
|
compiler_exit_scope(c);
|
|
return ERROR;
|
|
}
|
|
}
|
|
else {
|
|
/* No methods referenced __class__, so just return None */
|
|
assert(PyDict_GET_SIZE(c->u->u_cellvars) == 0);
|
|
ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
|
|
}
|
|
ADDOP_IN_SCOPE(c, NO_LOCATION, RETURN_VALUE);
|
|
/* create the code object */
|
|
co = assemble(c, 1);
|
|
}
|
|
/* leave the new scope */
|
|
compiler_exit_scope(c);
|
|
if (co == NULL) {
|
|
return ERROR;
|
|
}
|
|
|
|
location loc = LOC(s);
|
|
/* 2. load the 'build_class' function */
|
|
ADDOP(c, loc, PUSH_NULL);
|
|
ADDOP(c, loc, LOAD_BUILD_CLASS);
|
|
|
|
/* 3. load a function (or closure) made from the code object */
|
|
if (compiler_make_closure(c, loc, co, 0) < 0) {
|
|
Py_DECREF(co);
|
|
return ERROR;
|
|
}
|
|
Py_DECREF(co);
|
|
|
|
/* 4. load class name */
|
|
ADDOP_LOAD_CONST(c, loc, s->v.ClassDef.name);
|
|
|
|
/* 5. generate the rest of the code for the call */
|
|
RETURN_IF_ERROR(compiler_call_helper(c, loc, 2,
|
|
s->v.ClassDef.bases,
|
|
s->v.ClassDef.keywords));
|
|
|
|
/* 6. apply decorators */
|
|
RETURN_IF_ERROR(compiler_apply_decorators(c, decos));
|
|
|
|
/* 7. store into <name> */
|
|
RETURN_IF_ERROR(compiler_nameop(c, loc, s->v.ClassDef.name, Store));
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Return false if the expression is a constant value except named singletons.
|
|
Return true otherwise. */
|
|
static bool
|
|
check_is_arg(expr_ty e)
|
|
{
|
|
if (e->kind != Constant_kind) {
|
|
return true;
|
|
}
|
|
PyObject *value = e->v.Constant.value;
|
|
return (value == Py_None
|
|
|| value == Py_False
|
|
|| value == Py_True
|
|
|| value == Py_Ellipsis);
|
|
}
|
|
|
|
/* Check operands of identity checks ("is" and "is not").
|
|
Emit a warning if any operand is a constant except named singletons.
|
|
*/
|
|
static int
|
|
check_compare(struct compiler *c, expr_ty e)
|
|
{
|
|
Py_ssize_t i, n;
|
|
bool left = check_is_arg(e->v.Compare.left);
|
|
n = asdl_seq_LEN(e->v.Compare.ops);
|
|
for (i = 0; i < n; i++) {
|
|
cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i);
|
|
bool right = check_is_arg((expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
|
|
if (op == Is || op == IsNot) {
|
|
if (!right || !left) {
|
|
const char *msg = (op == Is)
|
|
? "\"is\" with a literal. Did you mean \"==\"?"
|
|
: "\"is not\" with a literal. Did you mean \"!=\"?";
|
|
return compiler_warn(c, LOC(e), msg);
|
|
}
|
|
}
|
|
left = right;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int compiler_addcompare(struct compiler *c, location loc,
|
|
cmpop_ty op)
|
|
{
|
|
int cmp;
|
|
switch (op) {
|
|
case Eq:
|
|
cmp = Py_EQ;
|
|
break;
|
|
case NotEq:
|
|
cmp = Py_NE;
|
|
break;
|
|
case Lt:
|
|
cmp = Py_LT;
|
|
break;
|
|
case LtE:
|
|
cmp = Py_LE;
|
|
break;
|
|
case Gt:
|
|
cmp = Py_GT;
|
|
break;
|
|
case GtE:
|
|
cmp = Py_GE;
|
|
break;
|
|
case Is:
|
|
ADDOP_I(c, loc, IS_OP, 0);
|
|
return SUCCESS;
|
|
case IsNot:
|
|
ADDOP_I(c, loc, IS_OP, 1);
|
|
return SUCCESS;
|
|
case In:
|
|
ADDOP_I(c, loc, CONTAINS_OP, 0);
|
|
return SUCCESS;
|
|
case NotIn:
|
|
ADDOP_I(c, loc, CONTAINS_OP, 1);
|
|
return SUCCESS;
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
/* cmp goes in top bits of the oparg, while the low bits are used by quickened
|
|
* versions of this opcode to store the comparison mask. */
|
|
ADDOP_I(c, loc, COMPARE_OP, cmp << 4);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
compiler_jump_if(struct compiler *c, location loc,
|
|
expr_ty e, jump_target_label next, int cond)
|
|
{
|
|
switch (e->kind) {
|
|
case UnaryOp_kind:
|
|
if (e->v.UnaryOp.op == Not) {
|
|
return compiler_jump_if(c, loc, e->v.UnaryOp.operand, next, !cond);
|
|
}
|
|
/* fallback to general implementation */
|
|
break;
|
|
case BoolOp_kind: {
|
|
asdl_expr_seq *s = e->v.BoolOp.values;
|
|
Py_ssize_t i, n = asdl_seq_LEN(s) - 1;
|
|
assert(n >= 0);
|
|
int cond2 = e->v.BoolOp.op == Or;
|
|
jump_target_label next2 = next;
|
|
if (!cond2 != !cond) {
|
|
NEW_JUMP_TARGET_LABEL(c, new_next2);
|
|
next2 = new_next2;
|
|
}
|
|
for (i = 0; i < n; ++i) {
|
|
RETURN_IF_ERROR(
|
|
compiler_jump_if(c, loc, (expr_ty)asdl_seq_GET(s, i), next2, cond2));
|
|
}
|
|
RETURN_IF_ERROR(
|
|
compiler_jump_if(c, loc, (expr_ty)asdl_seq_GET(s, n), next, cond));
|
|
if (!SAME_LABEL(next2, next)) {
|
|
USE_LABEL(c, next2);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
case IfExp_kind: {
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
NEW_JUMP_TARGET_LABEL(c, next2);
|
|
RETURN_IF_ERROR(
|
|
compiler_jump_if(c, loc, e->v.IfExp.test, next2, 0));
|
|
RETURN_IF_ERROR(
|
|
compiler_jump_if(c, loc, e->v.IfExp.body, next, cond));
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
|
|
USE_LABEL(c, next2);
|
|
RETURN_IF_ERROR(
|
|
compiler_jump_if(c, loc, e->v.IfExp.orelse, next, cond));
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
case Compare_kind: {
|
|
Py_ssize_t n = asdl_seq_LEN(e->v.Compare.ops) - 1;
|
|
if (n > 0) {
|
|
RETURN_IF_ERROR(check_compare(c, e));
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
VISIT(c, expr, e->v.Compare.left);
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
VISIT(c, expr,
|
|
(expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
|
|
ADDOP_I(c, LOC(e), SWAP, 2);
|
|
ADDOP_I(c, LOC(e), COPY, 2);
|
|
ADDOP_COMPARE(c, LOC(e), asdl_seq_GET(e->v.Compare.ops, i));
|
|
ADDOP_JUMP(c, LOC(e), POP_JUMP_IF_FALSE, cleanup);
|
|
}
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
|
|
ADDOP_COMPARE(c, LOC(e), asdl_seq_GET(e->v.Compare.ops, n));
|
|
ADDOP_JUMP(c, LOC(e), cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
|
|
USE_LABEL(c, cleanup);
|
|
ADDOP(c, LOC(e), POP_TOP);
|
|
if (!cond) {
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, next);
|
|
}
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
/* fallback to general implementation */
|
|
break;
|
|
}
|
|
default:
|
|
/* fallback to general implementation */
|
|
break;
|
|
}
|
|
|
|
/* general implementation */
|
|
VISIT(c, expr, e);
|
|
ADDOP_JUMP(c, LOC(e), cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_ifexp(struct compiler *c, expr_ty e)
|
|
{
|
|
assert(e->kind == IfExp_kind);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
NEW_JUMP_TARGET_LABEL(c, next);
|
|
|
|
RETURN_IF_ERROR(
|
|
compiler_jump_if(c, LOC(e), e->v.IfExp.test, next, 0));
|
|
|
|
VISIT(c, expr, e->v.IfExp.body);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
|
|
USE_LABEL(c, next);
|
|
VISIT(c, expr, e->v.IfExp.orelse);
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_lambda(struct compiler *c, expr_ty e)
|
|
{
|
|
PyCodeObject *co;
|
|
Py_ssize_t funcflags;
|
|
arguments_ty args = e->v.Lambda.args;
|
|
assert(e->kind == Lambda_kind);
|
|
|
|
RETURN_IF_ERROR(compiler_check_debug_args(c, args));
|
|
|
|
location loc = LOC(e);
|
|
funcflags = compiler_default_arguments(c, loc, args);
|
|
if (funcflags == -1) {
|
|
return ERROR;
|
|
}
|
|
|
|
_Py_DECLARE_STR(anon_lambda, "<lambda>");
|
|
RETURN_IF_ERROR(
|
|
compiler_enter_scope(c, &_Py_STR(anon_lambda), COMPILER_SCOPE_LAMBDA,
|
|
(void *)e, e->lineno));
|
|
|
|
/* Make None the first constant, so the lambda can't have a
|
|
docstring. */
|
|
RETURN_IF_ERROR(compiler_add_const(c, Py_None));
|
|
|
|
c->u->u_argcount = asdl_seq_LEN(args->args);
|
|
c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
|
|
c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
|
|
VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
|
|
if (c->u->u_ste->ste_generator) {
|
|
co = assemble(c, 0);
|
|
}
|
|
else {
|
|
location loc = LOCATION(e->lineno, e->lineno, 0, 0);
|
|
ADDOP_IN_SCOPE(c, loc, RETURN_VALUE);
|
|
co = assemble(c, 1);
|
|
}
|
|
compiler_exit_scope(c);
|
|
if (co == NULL) {
|
|
return ERROR;
|
|
}
|
|
|
|
if (compiler_make_closure(c, loc, co, funcflags) < 0) {
|
|
Py_DECREF(co);
|
|
return ERROR;
|
|
}
|
|
Py_DECREF(co);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_if(struct compiler *c, stmt_ty s)
|
|
{
|
|
jump_target_label next;
|
|
assert(s->kind == If_kind);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
if (asdl_seq_LEN(s->v.If.orelse)) {
|
|
NEW_JUMP_TARGET_LABEL(c, orelse);
|
|
next = orelse;
|
|
}
|
|
else {
|
|
next = end;
|
|
}
|
|
RETURN_IF_ERROR(
|
|
compiler_jump_if(c, LOC(s), s->v.If.test, next, 0));
|
|
|
|
VISIT_SEQ(c, stmt, s->v.If.body);
|
|
if (asdl_seq_LEN(s->v.If.orelse)) {
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
|
|
USE_LABEL(c, next);
|
|
VISIT_SEQ(c, stmt, s->v.If.orelse);
|
|
}
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_for(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
NEW_JUMP_TARGET_LABEL(c, start);
|
|
NEW_JUMP_TARGET_LABEL(c, body);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
|
|
RETURN_IF_ERROR(compiler_push_fblock(c, loc, FOR_LOOP, start, end, NULL));
|
|
|
|
VISIT(c, expr, s->v.For.iter);
|
|
ADDOP(c, loc, GET_ITER);
|
|
|
|
USE_LABEL(c, start);
|
|
ADDOP_JUMP(c, loc, FOR_ITER, cleanup);
|
|
|
|
USE_LABEL(c, body);
|
|
VISIT(c, expr, s->v.For.target);
|
|
VISIT_SEQ(c, stmt, s->v.For.body);
|
|
/* Mark jump as artificial */
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, start);
|
|
|
|
USE_LABEL(c, cleanup);
|
|
ADDOP(c, NO_LOCATION, END_FOR);
|
|
|
|
compiler_pop_fblock(c, FOR_LOOP, start);
|
|
|
|
VISIT_SEQ(c, stmt, s->v.For.orelse);
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_async_for(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
if (IS_TOP_LEVEL_AWAIT(c)){
|
|
c->u->u_ste->ste_coroutine = 1;
|
|
} else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) {
|
|
return compiler_error(c, loc, "'async for' outside async function");
|
|
}
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, start);
|
|
NEW_JUMP_TARGET_LABEL(c, except);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
|
|
VISIT(c, expr, s->v.AsyncFor.iter);
|
|
ADDOP(c, loc, GET_AITER);
|
|
|
|
USE_LABEL(c, start);
|
|
RETURN_IF_ERROR(compiler_push_fblock(c, loc, FOR_LOOP, start, end, NULL));
|
|
|
|
/* SETUP_FINALLY to guard the __anext__ call */
|
|
ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
|
|
ADDOP(c, loc, GET_ANEXT);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADD_YIELD_FROM(c, loc, 1);
|
|
ADDOP(c, loc, POP_BLOCK); /* for SETUP_FINALLY */
|
|
|
|
/* Success block for __anext__ */
|
|
VISIT(c, expr, s->v.AsyncFor.target);
|
|
VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
|
|
/* Mark jump as artificial */
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, start);
|
|
|
|
compiler_pop_fblock(c, FOR_LOOP, start);
|
|
|
|
/* Except block for __anext__ */
|
|
USE_LABEL(c, except);
|
|
|
|
/* Use same line number as the iterator,
|
|
* as the END_ASYNC_FOR succeeds the `for`, not the body. */
|
|
loc = LOC(s->v.AsyncFor.iter);
|
|
ADDOP(c, loc, END_ASYNC_FOR);
|
|
|
|
/* `else` block */
|
|
VISIT_SEQ(c, stmt, s->v.For.orelse);
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_while(struct compiler *c, stmt_ty s)
|
|
{
|
|
NEW_JUMP_TARGET_LABEL(c, loop);
|
|
NEW_JUMP_TARGET_LABEL(c, body);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
NEW_JUMP_TARGET_LABEL(c, anchor);
|
|
|
|
USE_LABEL(c, loop);
|
|
|
|
RETURN_IF_ERROR(compiler_push_fblock(c, LOC(s), WHILE_LOOP, loop, end, NULL));
|
|
RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.While.test, anchor, 0));
|
|
|
|
USE_LABEL(c, body);
|
|
VISIT_SEQ(c, stmt, s->v.While.body);
|
|
RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.While.test, body, 1));
|
|
|
|
compiler_pop_fblock(c, WHILE_LOOP, loop);
|
|
|
|
USE_LABEL(c, anchor);
|
|
if (s->v.While.orelse) {
|
|
VISIT_SEQ(c, stmt, s->v.While.orelse);
|
|
}
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_return(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
int preserve_tos = ((s->v.Return.value != NULL) &&
|
|
(s->v.Return.value->kind != Constant_kind));
|
|
if (c->u->u_ste->ste_type != FunctionBlock) {
|
|
return compiler_error(c, loc, "'return' outside function");
|
|
}
|
|
if (s->v.Return.value != NULL &&
|
|
c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator)
|
|
{
|
|
return compiler_error(c, loc, "'return' with value in async generator");
|
|
}
|
|
|
|
if (preserve_tos) {
|
|
VISIT(c, expr, s->v.Return.value);
|
|
} else {
|
|
/* Emit instruction with line number for return value */
|
|
if (s->v.Return.value != NULL) {
|
|
loc = LOC(s->v.Return.value);
|
|
ADDOP(c, loc, NOP);
|
|
}
|
|
}
|
|
if (s->v.Return.value == NULL || s->v.Return.value->lineno != s->lineno) {
|
|
loc = LOC(s);
|
|
ADDOP(c, loc, NOP);
|
|
}
|
|
|
|
RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, preserve_tos, NULL));
|
|
if (s->v.Return.value == NULL) {
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
}
|
|
else if (!preserve_tos) {
|
|
ADDOP_LOAD_CONST(c, loc, s->v.Return.value->v.Constant.value);
|
|
}
|
|
ADDOP(c, loc, RETURN_VALUE);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_break(struct compiler *c, location loc)
|
|
{
|
|
struct fblockinfo *loop = NULL;
|
|
location origin_loc = loc;
|
|
/* Emit instruction with line number */
|
|
ADDOP(c, loc, NOP);
|
|
RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, 0, &loop));
|
|
if (loop == NULL) {
|
|
return compiler_error(c, origin_loc, "'break' outside loop");
|
|
}
|
|
RETURN_IF_ERROR(compiler_unwind_fblock(c, &loc, loop, 0));
|
|
ADDOP_JUMP(c, loc, JUMP, loop->fb_exit);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_continue(struct compiler *c, location loc)
|
|
{
|
|
struct fblockinfo *loop = NULL;
|
|
location origin_loc = loc;
|
|
/* Emit instruction with line number */
|
|
ADDOP(c, loc, NOP);
|
|
RETURN_IF_ERROR(compiler_unwind_fblock_stack(c, &loc, 0, &loop));
|
|
if (loop == NULL) {
|
|
return compiler_error(c, origin_loc, "'continue' not properly in loop");
|
|
}
|
|
ADDOP_JUMP(c, loc, JUMP, loop->fb_block);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
static location
|
|
location_of_last_executing_statement(asdl_stmt_seq *stmts)
|
|
{
|
|
for (Py_ssize_t i = asdl_seq_LEN(stmts) - 1; i >= 0; i++) {
|
|
location loc = LOC((stmt_ty)asdl_seq_GET(stmts, i));
|
|
if (loc.lineno > 0) {
|
|
return loc;
|
|
}
|
|
}
|
|
return NO_LOCATION;
|
|
}
|
|
|
|
/* Code generated for "try: <body> finally: <finalbody>" is as follows:
|
|
|
|
SETUP_FINALLY L
|
|
<code for body>
|
|
POP_BLOCK
|
|
<code for finalbody>
|
|
JUMP E
|
|
L:
|
|
<code for finalbody>
|
|
E:
|
|
|
|
The special instructions use the block stack. Each block
|
|
stack entry contains the instruction that created it (here
|
|
SETUP_FINALLY), the level of the value stack at the time the
|
|
block stack entry was created, and a label (here L).
|
|
|
|
SETUP_FINALLY:
|
|
Pushes the current value stack level and the label
|
|
onto the block stack.
|
|
POP_BLOCK:
|
|
Pops en entry from the block stack.
|
|
|
|
The block stack is unwound when an exception is raised:
|
|
when a SETUP_FINALLY entry is found, the raised and the caught
|
|
exceptions are pushed onto the value stack (and the exception
|
|
condition is cleared), and the interpreter jumps to the label
|
|
gotten from the block stack.
|
|
*/
|
|
|
|
static int
|
|
compiler_try_finally(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, body);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
NEW_JUMP_TARGET_LABEL(c, exit);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
|
|
/* `try` block */
|
|
ADDOP_JUMP(c, loc, SETUP_FINALLY, end);
|
|
|
|
USE_LABEL(c, body);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, FINALLY_TRY, body, end,
|
|
s->v.Try.finalbody));
|
|
|
|
if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
|
|
RETURN_IF_ERROR(compiler_try_except(c, s));
|
|
}
|
|
else {
|
|
VISIT_SEQ(c, stmt, s->v.Try.body);
|
|
}
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
compiler_pop_fblock(c, FINALLY_TRY, body);
|
|
VISIT_SEQ(c, stmt, s->v.Try.finalbody);
|
|
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);
|
|
/* `finally` block */
|
|
|
|
USE_LABEL(c, end);
|
|
|
|
loc = NO_LOCATION;
|
|
ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
|
|
ADDOP(c, loc, PUSH_EXC_INFO);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, FINALLY_END, end, NO_LABEL, NULL));
|
|
VISIT_SEQ(c, stmt, s->v.Try.finalbody);
|
|
loc = location_of_last_executing_statement(s->v.Try.finalbody);
|
|
compiler_pop_fblock(c, FINALLY_END, end);
|
|
|
|
ADDOP_I(c, loc, RERAISE, 0);
|
|
|
|
USE_LABEL(c, cleanup);
|
|
POP_EXCEPT_AND_RERAISE(c, loc);
|
|
|
|
USE_LABEL(c, exit);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_try_star_finally(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, body);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
NEW_JUMP_TARGET_LABEL(c, exit);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
/* `try` block */
|
|
ADDOP_JUMP(c, loc, SETUP_FINALLY, end);
|
|
|
|
USE_LABEL(c, body);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, FINALLY_TRY, body, end,
|
|
s->v.TryStar.finalbody));
|
|
|
|
if (s->v.TryStar.handlers && asdl_seq_LEN(s->v.TryStar.handlers)) {
|
|
RETURN_IF_ERROR(compiler_try_star_except(c, s));
|
|
}
|
|
else {
|
|
VISIT_SEQ(c, stmt, s->v.TryStar.body);
|
|
}
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
compiler_pop_fblock(c, FINALLY_TRY, body);
|
|
VISIT_SEQ(c, stmt, s->v.TryStar.finalbody);
|
|
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);
|
|
|
|
/* `finally` block */
|
|
USE_LABEL(c, end);
|
|
|
|
loc = NO_LOCATION;
|
|
ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
|
|
ADDOP(c, loc, PUSH_EXC_INFO);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, FINALLY_END, end, NO_LABEL, NULL));
|
|
|
|
VISIT_SEQ(c, stmt, s->v.TryStar.finalbody);
|
|
loc = location_of_last_executing_statement(s->v.Try.finalbody);
|
|
|
|
compiler_pop_fblock(c, FINALLY_END, end);
|
|
ADDOP_I(c, loc, RERAISE, 0);
|
|
|
|
USE_LABEL(c, cleanup);
|
|
POP_EXCEPT_AND_RERAISE(c, loc);
|
|
|
|
USE_LABEL(c, exit);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
|
|
(The contents of the value stack is shown in [], with the top
|
|
at the right; 'tb' is trace-back info, 'val' the exception's
|
|
associated value, and 'exc' the exception.)
|
|
|
|
Value stack Label Instruction Argument
|
|
[] SETUP_FINALLY L1
|
|
[] <code for S>
|
|
[] POP_BLOCK
|
|
[] JUMP L0
|
|
|
|
[exc] L1: <evaluate E1> )
|
|
[exc, E1] CHECK_EXC_MATCH )
|
|
[exc, bool] POP_JUMP_IF_FALSE L2 ) only if E1
|
|
[exc] <assign to V1> (or POP if no V1)
|
|
[] <code for S1>
|
|
JUMP L0
|
|
|
|
[exc] L2: <evaluate E2>
|
|
.............................etc.......................
|
|
|
|
[exc] Ln+1: RERAISE # re-raise exception
|
|
|
|
[] L0: <next statement>
|
|
|
|
Of course, parts are not generated if Vi or Ei is not present.
|
|
*/
|
|
static int
|
|
compiler_try_except(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
Py_ssize_t i, n;
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, body);
|
|
NEW_JUMP_TARGET_LABEL(c, except);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
|
|
ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
|
|
|
|
USE_LABEL(c, body);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, TRY_EXCEPT, body, NO_LABEL, NULL));
|
|
VISIT_SEQ(c, stmt, s->v.Try.body);
|
|
compiler_pop_fblock(c, TRY_EXCEPT, body);
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
if (s->v.Try.orelse && asdl_seq_LEN(s->v.Try.orelse)) {
|
|
VISIT_SEQ(c, stmt, s->v.Try.orelse);
|
|
}
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
n = asdl_seq_LEN(s->v.Try.handlers);
|
|
|
|
USE_LABEL(c, except);
|
|
|
|
ADDOP_JUMP(c, NO_LOCATION, SETUP_CLEANUP, cleanup);
|
|
ADDOP(c, NO_LOCATION, PUSH_EXC_INFO);
|
|
|
|
/* Runtime will push a block here, so we need to account for that */
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, EXCEPTION_HANDLER, NO_LABEL, NO_LABEL, NULL));
|
|
|
|
for (i = 0; i < n; i++) {
|
|
excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
|
|
s->v.Try.handlers, i);
|
|
location loc = LOC(handler);
|
|
if (!handler->v.ExceptHandler.type && i < n-1) {
|
|
return compiler_error(c, loc, "default 'except:' must be last");
|
|
}
|
|
NEW_JUMP_TARGET_LABEL(c, next_except);
|
|
except = next_except;
|
|
if (handler->v.ExceptHandler.type) {
|
|
VISIT(c, expr, handler->v.ExceptHandler.type);
|
|
ADDOP(c, loc, CHECK_EXC_MATCH);
|
|
ADDOP_JUMP(c, loc, POP_JUMP_IF_FALSE, except);
|
|
}
|
|
if (handler->v.ExceptHandler.name) {
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup_end);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup_body);
|
|
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, loc, handler->v.ExceptHandler.name, Store));
|
|
|
|
/*
|
|
try:
|
|
# body
|
|
except type as name:
|
|
try:
|
|
# body
|
|
finally:
|
|
name = None # in case body contains "del name"
|
|
del name
|
|
*/
|
|
|
|
/* second try: */
|
|
ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup_end);
|
|
|
|
USE_LABEL(c, cleanup_body);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
|
|
NO_LABEL, handler->v.ExceptHandler.name));
|
|
|
|
/* second # body */
|
|
VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
|
|
compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
|
|
/* name = None; del name; # Mark as artificial */
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
ADDOP(c, NO_LOCATION, POP_EXCEPT);
|
|
ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
|
|
/* except: */
|
|
USE_LABEL(c, cleanup_end);
|
|
|
|
/* name = None; del name; # artificial */
|
|
ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
|
|
|
|
ADDOP_I(c, NO_LOCATION, RERAISE, 1);
|
|
}
|
|
else {
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup_body);
|
|
|
|
ADDOP(c, loc, POP_TOP); /* exc_value */
|
|
|
|
USE_LABEL(c, cleanup_body);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
|
|
NO_LABEL, NULL));
|
|
|
|
VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
|
|
compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
ADDOP(c, NO_LOCATION, POP_EXCEPT);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
}
|
|
|
|
USE_LABEL(c, except);
|
|
}
|
|
/* artificial */
|
|
compiler_pop_fblock(c, EXCEPTION_HANDLER, NO_LABEL);
|
|
ADDOP_I(c, NO_LOCATION, RERAISE, 0);
|
|
|
|
USE_LABEL(c, cleanup);
|
|
POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Code generated for "try: S except* E1 as V1: S1 except* E2 as V2: S2 ...":
|
|
(The contents of the value stack is shown in [], with the top
|
|
at the right; 'tb' is trace-back info, 'val' the exception instance,
|
|
and 'typ' the exception's type.)
|
|
|
|
Value stack Label Instruction Argument
|
|
[] SETUP_FINALLY L1
|
|
[] <code for S>
|
|
[] POP_BLOCK
|
|
[] JUMP L0
|
|
|
|
[exc] L1: BUILD_LIST ) list for raised/reraised excs ("result")
|
|
[orig, res] COPY 2 ) make a copy of the original EG
|
|
|
|
[orig, res, exc] <evaluate E1>
|
|
[orig, res, exc, E1] CHECK_EG_MATCH
|
|
[orig, res, rest/exc, match?] COPY 1
|
|
[orig, res, rest/exc, match?, match?] POP_JUMP_IF_NOT_NONE H1
|
|
[orig, res, exc, None] POP_TOP
|
|
[orig, res, exc] JUMP L2
|
|
|
|
[orig, res, rest, match] H1: <assign to V1> (or POP if no V1)
|
|
|
|
[orig, res, rest] SETUP_FINALLY R1
|
|
[orig, res, rest] <code for S1>
|
|
[orig, res, rest] JUMP L2
|
|
|
|
[orig, res, rest, i, v] R1: LIST_APPEND 3 ) exc raised in except* body - add to res
|
|
[orig, res, rest, i] POP
|
|
|
|
[orig, res, rest] L2: <evaluate E2>
|
|
.............................etc.......................
|
|
|
|
[orig, res, rest] Ln+1: LIST_APPEND 1 ) add unhandled exc to res (could be None)
|
|
|
|
[orig, res] CALL_INTRINSIC_2 PREP_RERAISE_STAR
|
|
[exc] COPY 1
|
|
[exc, exc] POP_JUMP_IF_NOT_NONE RER
|
|
[exc] POP_TOP
|
|
[] JUMP L0
|
|
|
|
[exc] RER: SWAP 2
|
|
[exc, prev_exc_info] POP_EXCEPT
|
|
[exc] RERAISE 0
|
|
|
|
[] L0: <next statement>
|
|
*/
|
|
static int
|
|
compiler_try_star_except(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, body);
|
|
NEW_JUMP_TARGET_LABEL(c, except);
|
|
NEW_JUMP_TARGET_LABEL(c, orelse);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
NEW_JUMP_TARGET_LABEL(c, reraise_star);
|
|
|
|
ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
|
|
|
|
USE_LABEL(c, body);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, TRY_EXCEPT, body, NO_LABEL, NULL));
|
|
VISIT_SEQ(c, stmt, s->v.TryStar.body);
|
|
compiler_pop_fblock(c, TRY_EXCEPT, body);
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, orelse);
|
|
Py_ssize_t n = asdl_seq_LEN(s->v.TryStar.handlers);
|
|
|
|
USE_LABEL(c, except);
|
|
|
|
ADDOP_JUMP(c, NO_LOCATION, SETUP_CLEANUP, cleanup);
|
|
ADDOP(c, NO_LOCATION, PUSH_EXC_INFO);
|
|
|
|
/* Runtime will push a block here, so we need to account for that */
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, EXCEPTION_GROUP_HANDLER,
|
|
NO_LABEL, NO_LABEL, "except handler"));
|
|
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
|
|
s->v.TryStar.handlers, i);
|
|
location loc = LOC(handler);
|
|
NEW_JUMP_TARGET_LABEL(c, next_except);
|
|
except = next_except;
|
|
NEW_JUMP_TARGET_LABEL(c, handle_match);
|
|
if (i == 0) {
|
|
/* create empty list for exceptions raised/reraise in the except* blocks */
|
|
/*
|
|
[orig] BUILD_LIST
|
|
*/
|
|
/* Create a copy of the original EG */
|
|
/*
|
|
[orig, []] COPY 2
|
|
[orig, [], exc]
|
|
*/
|
|
ADDOP_I(c, loc, BUILD_LIST, 0);
|
|
ADDOP_I(c, loc, COPY, 2);
|
|
}
|
|
if (handler->v.ExceptHandler.type) {
|
|
VISIT(c, expr, handler->v.ExceptHandler.type);
|
|
ADDOP(c, loc, CHECK_EG_MATCH);
|
|
ADDOP_I(c, loc, COPY, 1);
|
|
ADDOP_JUMP(c, loc, POP_JUMP_IF_NOT_NONE, handle_match);
|
|
ADDOP(c, loc, POP_TOP); // match
|
|
ADDOP_JUMP(c, loc, JUMP, except);
|
|
}
|
|
|
|
USE_LABEL(c, handle_match);
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup_end);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup_body);
|
|
|
|
if (handler->v.ExceptHandler.name) {
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, loc, handler->v.ExceptHandler.name, Store));
|
|
}
|
|
else {
|
|
ADDOP(c, loc, POP_TOP); // match
|
|
}
|
|
|
|
/*
|
|
try:
|
|
# body
|
|
except type as name:
|
|
try:
|
|
# body
|
|
finally:
|
|
name = None # in case body contains "del name"
|
|
del name
|
|
*/
|
|
/* second try: */
|
|
ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup_end);
|
|
|
|
USE_LABEL(c, cleanup_body);
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, HANDLER_CLEANUP, cleanup_body,
|
|
NO_LABEL, handler->v.ExceptHandler.name));
|
|
|
|
/* second # body */
|
|
VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
|
|
compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
|
|
/* name = None; del name; # artificial */
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
if (handler->v.ExceptHandler.name) {
|
|
ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
|
|
}
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, except);
|
|
|
|
/* except: */
|
|
USE_LABEL(c, cleanup_end);
|
|
|
|
/* name = None; del name; # artificial */
|
|
if (handler->v.ExceptHandler.name) {
|
|
ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Store));
|
|
RETURN_IF_ERROR(
|
|
compiler_nameop(c, NO_LOCATION, handler->v.ExceptHandler.name, Del));
|
|
}
|
|
|
|
/* add exception raised to the res list */
|
|
ADDOP_I(c, NO_LOCATION, LIST_APPEND, 3); // exc
|
|
ADDOP(c, NO_LOCATION, POP_TOP); // lasti
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, except);
|
|
|
|
USE_LABEL(c, except);
|
|
|
|
if (i == n - 1) {
|
|
/* Add exc to the list (if not None it's the unhandled part of the EG) */
|
|
ADDOP_I(c, NO_LOCATION, LIST_APPEND, 1);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, reraise_star);
|
|
}
|
|
}
|
|
/* artificial */
|
|
compiler_pop_fblock(c, EXCEPTION_GROUP_HANDLER, NO_LABEL);
|
|
NEW_JUMP_TARGET_LABEL(c, reraise);
|
|
|
|
USE_LABEL(c, reraise_star);
|
|
ADDOP_I(c, NO_LOCATION, CALL_INTRINSIC_2, INTRINSIC_PREP_RERAISE_STAR);
|
|
ADDOP_I(c, NO_LOCATION, COPY, 1);
|
|
ADDOP_JUMP(c, NO_LOCATION, POP_JUMP_IF_NOT_NONE, reraise);
|
|
|
|
/* Nothing to reraise */
|
|
ADDOP(c, NO_LOCATION, POP_TOP);
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
ADDOP(c, NO_LOCATION, POP_EXCEPT);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
|
|
USE_LABEL(c, reraise);
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
ADDOP_I(c, NO_LOCATION, SWAP, 2);
|
|
ADDOP(c, NO_LOCATION, POP_EXCEPT);
|
|
ADDOP_I(c, NO_LOCATION, RERAISE, 0);
|
|
|
|
USE_LABEL(c, cleanup);
|
|
POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);
|
|
|
|
USE_LABEL(c, orelse);
|
|
VISIT_SEQ(c, stmt, s->v.TryStar.orelse);
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_try(struct compiler *c, stmt_ty s) {
|
|
if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
|
|
return compiler_try_finally(c, s);
|
|
else
|
|
return compiler_try_except(c, s);
|
|
}
|
|
|
|
static int
|
|
compiler_try_star(struct compiler *c, stmt_ty s)
|
|
{
|
|
if (s->v.TryStar.finalbody && asdl_seq_LEN(s->v.TryStar.finalbody)) {
|
|
return compiler_try_star_finally(c, s);
|
|
}
|
|
else {
|
|
return compiler_try_star_except(c, s);
|
|
}
|
|
}
|
|
|
|
static int
|
|
compiler_import_as(struct compiler *c, location loc,
|
|
identifier name, identifier asname)
|
|
{
|
|
/* The IMPORT_NAME opcode was already generated. This function
|
|
merely needs to bind the result to a name.
|
|
|
|
If there is a dot in name, we need to split it and emit a
|
|
IMPORT_FROM for each name.
|
|
*/
|
|
Py_ssize_t len = PyUnicode_GET_LENGTH(name);
|
|
Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1);
|
|
if (dot == -2) {
|
|
return ERROR;
|
|
}
|
|
if (dot != -1) {
|
|
/* Consume the base module name to get the first attribute */
|
|
while (1) {
|
|
Py_ssize_t pos = dot + 1;
|
|
PyObject *attr;
|
|
dot = PyUnicode_FindChar(name, '.', pos, len, 1);
|
|
if (dot == -2) {
|
|
return ERROR;
|
|
}
|
|
attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len);
|
|
if (!attr) {
|
|
return ERROR;
|
|
}
|
|
ADDOP_N(c, loc, IMPORT_FROM, attr, names);
|
|
if (dot == -1) {
|
|
break;
|
|
}
|
|
ADDOP_I(c, loc, SWAP, 2);
|
|
ADDOP(c, loc, POP_TOP);
|
|
}
|
|
RETURN_IF_ERROR(compiler_nameop(c, loc, asname, Store));
|
|
ADDOP(c, loc, POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
return compiler_nameop(c, loc, asname, Store);
|
|
}
|
|
|
|
static int
|
|
compiler_import(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
/* The Import node stores a module name like a.b.c as a single
|
|
string. This is convenient for all cases except
|
|
import a.b.c as d
|
|
where we need to parse that string to extract the individual
|
|
module names.
|
|
XXX Perhaps change the representation to make this case simpler?
|
|
*/
|
|
Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);
|
|
|
|
PyObject *zero = _PyLong_GetZero(); // borrowed reference
|
|
for (i = 0; i < n; i++) {
|
|
alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
|
|
int r;
|
|
|
|
ADDOP_LOAD_CONST(c, loc, zero);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADDOP_NAME(c, loc, IMPORT_NAME, alias->name, names);
|
|
|
|
if (alias->asname) {
|
|
r = compiler_import_as(c, loc, alias->name, alias->asname);
|
|
RETURN_IF_ERROR(r);
|
|
}
|
|
else {
|
|
identifier tmp = alias->name;
|
|
Py_ssize_t dot = PyUnicode_FindChar(
|
|
alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
|
|
if (dot != -1) {
|
|
tmp = PyUnicode_Substring(alias->name, 0, dot);
|
|
if (tmp == NULL) {
|
|
return ERROR;
|
|
}
|
|
}
|
|
r = compiler_nameop(c, loc, tmp, Store);
|
|
if (dot != -1) {
|
|
Py_DECREF(tmp);
|
|
}
|
|
RETURN_IF_ERROR(r);
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_from_import(struct compiler *c, stmt_ty s)
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(s->v.ImportFrom.names);
|
|
|
|
ADDOP_LOAD_CONST_NEW(c, LOC(s), PyLong_FromLong(s->v.ImportFrom.level));
|
|
|
|
PyObject *names = PyTuple_New(n);
|
|
if (!names) {
|
|
return ERROR;
|
|
}
|
|
|
|
/* build up the names */
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
|
|
PyTuple_SET_ITEM(names, i, Py_NewRef(alias->name));
|
|
}
|
|
|
|
if (location_is_after(LOC(s), c->c_future.ff_location) &&
|
|
s->v.ImportFrom.module &&
|
|
_PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__"))
|
|
{
|
|
Py_DECREF(names);
|
|
return compiler_error(c, LOC(s), "from __future__ imports must occur "
|
|
"at the beginning of the file");
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, LOC(s), names);
|
|
|
|
if (s->v.ImportFrom.module) {
|
|
ADDOP_NAME(c, LOC(s), IMPORT_NAME, s->v.ImportFrom.module, names);
|
|
}
|
|
else {
|
|
_Py_DECLARE_STR(empty, "");
|
|
ADDOP_NAME(c, LOC(s), IMPORT_NAME, &_Py_STR(empty), names);
|
|
}
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
|
|
identifier store_name;
|
|
|
|
if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
|
|
assert(n == 1);
|
|
ADDOP_I(c, LOC(s), CALL_INTRINSIC_1, INTRINSIC_IMPORT_STAR);
|
|
ADDOP(c, NO_LOCATION, POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
|
|
ADDOP_NAME(c, LOC(s), IMPORT_FROM, alias->name, names);
|
|
store_name = alias->name;
|
|
if (alias->asname) {
|
|
store_name = alias->asname;
|
|
}
|
|
|
|
RETURN_IF_ERROR(compiler_nameop(c, LOC(s), store_name, Store));
|
|
}
|
|
/* remove imported module */
|
|
ADDOP(c, LOC(s), POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_assert(struct compiler *c, stmt_ty s)
|
|
{
|
|
/* Always emit a warning if the test is a non-zero length tuple */
|
|
if ((s->v.Assert.test->kind == Tuple_kind &&
|
|
asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) ||
|
|
(s->v.Assert.test->kind == Constant_kind &&
|
|
PyTuple_Check(s->v.Assert.test->v.Constant.value) &&
|
|
PyTuple_Size(s->v.Assert.test->v.Constant.value) > 0))
|
|
{
|
|
RETURN_IF_ERROR(
|
|
compiler_warn(c, LOC(s), "assertion is always true, "
|
|
"perhaps remove parentheses?"));
|
|
}
|
|
if (c->c_optimize) {
|
|
return SUCCESS;
|
|
}
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
RETURN_IF_ERROR(compiler_jump_if(c, LOC(s), s->v.Assert.test, end, 1));
|
|
ADDOP(c, LOC(s), LOAD_ASSERTION_ERROR);
|
|
if (s->v.Assert.msg) {
|
|
VISIT(c, expr, s->v.Assert.msg);
|
|
ADDOP_I(c, LOC(s), CALL, 0);
|
|
}
|
|
ADDOP_I(c, LOC(s), RAISE_VARARGS, 1);
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_stmt_expr(struct compiler *c, location loc, expr_ty value)
|
|
{
|
|
if (c->c_interactive && c->c_nestlevel <= 1) {
|
|
VISIT(c, expr, value);
|
|
ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_PRINT);
|
|
ADDOP(c, NO_LOCATION, POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
|
|
if (value->kind == Constant_kind) {
|
|
/* ignore constant statement */
|
|
ADDOP(c, loc, NOP);
|
|
return SUCCESS;
|
|
}
|
|
|
|
VISIT(c, expr, value);
|
|
ADDOP(c, NO_LOCATION, POP_TOP); /* artificial */
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_stmt(struct compiler *c, stmt_ty s)
|
|
{
|
|
|
|
switch (s->kind) {
|
|
case FunctionDef_kind:
|
|
return compiler_function(c, s, 0);
|
|
case ClassDef_kind:
|
|
return compiler_class(c, s);
|
|
case Return_kind:
|
|
return compiler_return(c, s);
|
|
case Delete_kind:
|
|
VISIT_SEQ(c, expr, s->v.Delete.targets)
|
|
break;
|
|
case Assign_kind:
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(s->v.Assign.targets);
|
|
VISIT(c, expr, s->v.Assign.value);
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
if (i < n - 1) {
|
|
ADDOP_I(c, LOC(s), COPY, 1);
|
|
}
|
|
VISIT(c, expr,
|
|
(expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
|
|
}
|
|
break;
|
|
}
|
|
case AugAssign_kind:
|
|
return compiler_augassign(c, s);
|
|
case AnnAssign_kind:
|
|
return compiler_annassign(c, s);
|
|
case For_kind:
|
|
return compiler_for(c, s);
|
|
case While_kind:
|
|
return compiler_while(c, s);
|
|
case If_kind:
|
|
return compiler_if(c, s);
|
|
case Match_kind:
|
|
return compiler_match(c, s);
|
|
case Raise_kind:
|
|
{
|
|
Py_ssize_t n = 0;
|
|
if (s->v.Raise.exc) {
|
|
VISIT(c, expr, s->v.Raise.exc);
|
|
n++;
|
|
if (s->v.Raise.cause) {
|
|
VISIT(c, expr, s->v.Raise.cause);
|
|
n++;
|
|
}
|
|
}
|
|
ADDOP_I(c, LOC(s), RAISE_VARARGS, (int)n);
|
|
break;
|
|
}
|
|
case Try_kind:
|
|
return compiler_try(c, s);
|
|
case TryStar_kind:
|
|
return compiler_try_star(c, s);
|
|
case Assert_kind:
|
|
return compiler_assert(c, s);
|
|
case Import_kind:
|
|
return compiler_import(c, s);
|
|
case ImportFrom_kind:
|
|
return compiler_from_import(c, s);
|
|
case Global_kind:
|
|
case Nonlocal_kind:
|
|
break;
|
|
case Expr_kind:
|
|
{
|
|
return compiler_stmt_expr(c, LOC(s), s->v.Expr.value);
|
|
}
|
|
case Pass_kind:
|
|
{
|
|
ADDOP(c, LOC(s), NOP);
|
|
break;
|
|
}
|
|
case Break_kind:
|
|
{
|
|
return compiler_break(c, LOC(s));
|
|
}
|
|
case Continue_kind:
|
|
{
|
|
return compiler_continue(c, LOC(s));
|
|
}
|
|
case With_kind:
|
|
return compiler_with(c, s, 0);
|
|
case AsyncFunctionDef_kind:
|
|
return compiler_function(c, s, 1);
|
|
case AsyncWith_kind:
|
|
return compiler_async_with(c, s, 0);
|
|
case AsyncFor_kind:
|
|
return compiler_async_for(c, s);
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
unaryop(unaryop_ty op)
|
|
{
|
|
switch (op) {
|
|
case Invert:
|
|
return UNARY_INVERT;
|
|
case Not:
|
|
return UNARY_NOT;
|
|
case USub:
|
|
return UNARY_NEGATIVE;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unary op %d should not be possible", op);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
addop_binary(struct compiler *c, location loc, operator_ty binop,
|
|
bool inplace)
|
|
{
|
|
int oparg;
|
|
switch (binop) {
|
|
case Add:
|
|
oparg = inplace ? NB_INPLACE_ADD : NB_ADD;
|
|
break;
|
|
case Sub:
|
|
oparg = inplace ? NB_INPLACE_SUBTRACT : NB_SUBTRACT;
|
|
break;
|
|
case Mult:
|
|
oparg = inplace ? NB_INPLACE_MULTIPLY : NB_MULTIPLY;
|
|
break;
|
|
case MatMult:
|
|
oparg = inplace ? NB_INPLACE_MATRIX_MULTIPLY : NB_MATRIX_MULTIPLY;
|
|
break;
|
|
case Div:
|
|
oparg = inplace ? NB_INPLACE_TRUE_DIVIDE : NB_TRUE_DIVIDE;
|
|
break;
|
|
case Mod:
|
|
oparg = inplace ? NB_INPLACE_REMAINDER : NB_REMAINDER;
|
|
break;
|
|
case Pow:
|
|
oparg = inplace ? NB_INPLACE_POWER : NB_POWER;
|
|
break;
|
|
case LShift:
|
|
oparg = inplace ? NB_INPLACE_LSHIFT : NB_LSHIFT;
|
|
break;
|
|
case RShift:
|
|
oparg = inplace ? NB_INPLACE_RSHIFT : NB_RSHIFT;
|
|
break;
|
|
case BitOr:
|
|
oparg = inplace ? NB_INPLACE_OR : NB_OR;
|
|
break;
|
|
case BitXor:
|
|
oparg = inplace ? NB_INPLACE_XOR : NB_XOR;
|
|
break;
|
|
case BitAnd:
|
|
oparg = inplace ? NB_INPLACE_AND : NB_AND;
|
|
break;
|
|
case FloorDiv:
|
|
oparg = inplace ? NB_INPLACE_FLOOR_DIVIDE : NB_FLOOR_DIVIDE;
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError, "%s op %d should not be possible",
|
|
inplace ? "inplace" : "binary", binop);
|
|
return ERROR;
|
|
}
|
|
ADDOP_I(c, loc, BINARY_OP, oparg);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
static int
|
|
addop_yield(struct compiler *c, location loc) {
|
|
if (c->u->u_ste->ste_generator && c->u->u_ste->ste_coroutine) {
|
|
ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_ASYNC_GEN_WRAP);
|
|
}
|
|
ADDOP_I(c, loc, YIELD_VALUE, 0);
|
|
ADDOP_I(c, loc, RESUME, 1);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_nameop(struct compiler *c, location loc,
|
|
identifier name, expr_context_ty ctx)
|
|
{
|
|
int op, scope;
|
|
Py_ssize_t arg;
|
|
enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;
|
|
|
|
PyObject *dict = c->u->u_names;
|
|
PyObject *mangled;
|
|
|
|
assert(!_PyUnicode_EqualToASCIIString(name, "None") &&
|
|
!_PyUnicode_EqualToASCIIString(name, "True") &&
|
|
!_PyUnicode_EqualToASCIIString(name, "False"));
|
|
|
|
if (forbidden_name(c, loc, name, ctx)) {
|
|
return ERROR;
|
|
}
|
|
|
|
mangled = _Py_Mangle(c->u->u_private, name);
|
|
if (!mangled) {
|
|
return ERROR;
|
|
}
|
|
|
|
op = 0;
|
|
optype = OP_NAME;
|
|
scope = _PyST_GetScope(c->u->u_ste, mangled);
|
|
switch (scope) {
|
|
case FREE:
|
|
dict = c->u->u_freevars;
|
|
optype = OP_DEREF;
|
|
break;
|
|
case CELL:
|
|
dict = c->u->u_cellvars;
|
|
optype = OP_DEREF;
|
|
break;
|
|
case LOCAL:
|
|
if (c->u->u_ste->ste_type == FunctionBlock)
|
|
optype = OP_FAST;
|
|
break;
|
|
case GLOBAL_IMPLICIT:
|
|
if (c->u->u_ste->ste_type == FunctionBlock)
|
|
optype = OP_GLOBAL;
|
|
break;
|
|
case GLOBAL_EXPLICIT:
|
|
optype = OP_GLOBAL;
|
|
break;
|
|
default:
|
|
/* scope can be 0 */
|
|
break;
|
|
}
|
|
|
|
/* XXX Leave assert here, but handle __doc__ and the like better */
|
|
assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');
|
|
|
|
switch (optype) {
|
|
case OP_DEREF:
|
|
switch (ctx) {
|
|
case Load:
|
|
op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF;
|
|
break;
|
|
case Store: op = STORE_DEREF; break;
|
|
case Del: op = DELETE_DEREF; break;
|
|
}
|
|
break;
|
|
case OP_FAST:
|
|
switch (ctx) {
|
|
case Load: op = LOAD_FAST; break;
|
|
case Store: op = STORE_FAST; break;
|
|
case Del: op = DELETE_FAST; break;
|
|
}
|
|
ADDOP_N(c, loc, op, mangled, varnames);
|
|
return SUCCESS;
|
|
case OP_GLOBAL:
|
|
switch (ctx) {
|
|
case Load: op = LOAD_GLOBAL; break;
|
|
case Store: op = STORE_GLOBAL; break;
|
|
case Del: op = DELETE_GLOBAL; break;
|
|
}
|
|
break;
|
|
case OP_NAME:
|
|
switch (ctx) {
|
|
case Load: op = LOAD_NAME; break;
|
|
case Store: op = STORE_NAME; break;
|
|
case Del: op = DELETE_NAME; break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
assert(op);
|
|
arg = dict_add_o(dict, mangled);
|
|
Py_DECREF(mangled);
|
|
if (arg < 0) {
|
|
return ERROR;
|
|
}
|
|
if (op == LOAD_GLOBAL) {
|
|
arg <<= 1;
|
|
}
|
|
return codegen_addop_i(INSTR_SEQUENCE(c), op, arg, loc);
|
|
}
|
|
|
|
static int
|
|
compiler_boolop(struct compiler *c, expr_ty e)
|
|
{
|
|
int jumpi;
|
|
Py_ssize_t i, n;
|
|
asdl_expr_seq *s;
|
|
|
|
location loc = LOC(e);
|
|
assert(e->kind == BoolOp_kind);
|
|
if (e->v.BoolOp.op == And)
|
|
jumpi = JUMP_IF_FALSE_OR_POP;
|
|
else
|
|
jumpi = JUMP_IF_TRUE_OR_POP;
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
s = e->v.BoolOp.values;
|
|
n = asdl_seq_LEN(s) - 1;
|
|
assert(n >= 0);
|
|
for (i = 0; i < n; ++i) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
|
|
ADDOP_JUMP(c, loc, jumpi, end);
|
|
NEW_JUMP_TARGET_LABEL(c, next);
|
|
|
|
USE_LABEL(c, next);
|
|
}
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
|
|
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
starunpack_helper(struct compiler *c, location loc,
|
|
asdl_expr_seq *elts, int pushed,
|
|
int build, int add, int extend, int tuple)
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(elts);
|
|
if (n > 2 && are_all_items_const(elts, 0, n)) {
|
|
PyObject *folded = PyTuple_New(n);
|
|
if (folded == NULL) {
|
|
return ERROR;
|
|
}
|
|
PyObject *val;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value;
|
|
PyTuple_SET_ITEM(folded, i, Py_NewRef(val));
|
|
}
|
|
if (tuple && !pushed) {
|
|
ADDOP_LOAD_CONST_NEW(c, loc, folded);
|
|
} else {
|
|
if (add == SET_ADD) {
|
|
Py_SETREF(folded, PyFrozenSet_New(folded));
|
|
if (folded == NULL) {
|
|
return ERROR;
|
|
}
|
|
}
|
|
ADDOP_I(c, loc, build, pushed);
|
|
ADDOP_LOAD_CONST_NEW(c, loc, folded);
|
|
ADDOP_I(c, loc, extend, 1);
|
|
if (tuple) {
|
|
ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_LIST_TO_TUPLE);
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
int big = n+pushed > STACK_USE_GUIDELINE;
|
|
int seen_star = 0;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
if (elt->kind == Starred_kind) {
|
|
seen_star = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!seen_star && !big) {
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
VISIT(c, expr, elt);
|
|
}
|
|
if (tuple) {
|
|
ADDOP_I(c, loc, BUILD_TUPLE, n+pushed);
|
|
} else {
|
|
ADDOP_I(c, loc, build, n+pushed);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
int sequence_built = 0;
|
|
if (big) {
|
|
ADDOP_I(c, loc, build, pushed);
|
|
sequence_built = 1;
|
|
}
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
if (elt->kind == Starred_kind) {
|
|
if (sequence_built == 0) {
|
|
ADDOP_I(c, loc, build, i+pushed);
|
|
sequence_built = 1;
|
|
}
|
|
VISIT(c, expr, elt->v.Starred.value);
|
|
ADDOP_I(c, loc, extend, 1);
|
|
}
|
|
else {
|
|
VISIT(c, expr, elt);
|
|
if (sequence_built) {
|
|
ADDOP_I(c, loc, add, 1);
|
|
}
|
|
}
|
|
}
|
|
assert(sequence_built);
|
|
if (tuple) {
|
|
ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_LIST_TO_TUPLE);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
unpack_helper(struct compiler *c, location loc, asdl_expr_seq *elts)
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(elts);
|
|
int seen_star = 0;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
if (elt->kind == Starred_kind && !seen_star) {
|
|
if ((i >= (1 << 8)) ||
|
|
(n-i-1 >= (INT_MAX >> 8))) {
|
|
return compiler_error(c, loc,
|
|
"too many expressions in "
|
|
"star-unpacking assignment");
|
|
}
|
|
ADDOP_I(c, loc, UNPACK_EX, (i + ((n-i-1) << 8)));
|
|
seen_star = 1;
|
|
}
|
|
else if (elt->kind == Starred_kind) {
|
|
return compiler_error(c, loc,
|
|
"multiple starred expressions in assignment");
|
|
}
|
|
}
|
|
if (!seen_star) {
|
|
ADDOP_I(c, loc, UNPACK_SEQUENCE, n);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
assignment_helper(struct compiler *c, location loc, asdl_expr_seq *elts)
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(elts);
|
|
RETURN_IF_ERROR(unpack_helper(c, loc, elts));
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_list(struct compiler *c, expr_ty e)
|
|
{
|
|
location loc = LOC(e);
|
|
asdl_expr_seq *elts = e->v.List.elts;
|
|
if (e->v.List.ctx == Store) {
|
|
return assignment_helper(c, loc, elts);
|
|
}
|
|
else if (e->v.List.ctx == Load) {
|
|
return starunpack_helper(c, loc, elts, 0,
|
|
BUILD_LIST, LIST_APPEND, LIST_EXTEND, 0);
|
|
}
|
|
else {
|
|
VISIT_SEQ(c, expr, elts);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_tuple(struct compiler *c, expr_ty e)
|
|
{
|
|
location loc = LOC(e);
|
|
asdl_expr_seq *elts = e->v.Tuple.elts;
|
|
if (e->v.Tuple.ctx == Store) {
|
|
return assignment_helper(c, loc, elts);
|
|
}
|
|
else if (e->v.Tuple.ctx == Load) {
|
|
return starunpack_helper(c, loc, elts, 0,
|
|
BUILD_LIST, LIST_APPEND, LIST_EXTEND, 1);
|
|
}
|
|
else {
|
|
VISIT_SEQ(c, expr, elts);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_set(struct compiler *c, expr_ty e)
|
|
{
|
|
location loc = LOC(e);
|
|
return starunpack_helper(c, loc, e->v.Set.elts, 0,
|
|
BUILD_SET, SET_ADD, SET_UPDATE, 0);
|
|
}
|
|
|
|
static bool
|
|
are_all_items_const(asdl_expr_seq *seq, Py_ssize_t begin, Py_ssize_t end)
|
|
{
|
|
for (Py_ssize_t i = begin; i < end; i++) {
|
|
expr_ty key = (expr_ty)asdl_seq_GET(seq, i);
|
|
if (key == NULL || key->kind != Constant_kind) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end)
|
|
{
|
|
Py_ssize_t i, n = end - begin;
|
|
PyObject *keys, *key;
|
|
int big = n*2 > STACK_USE_GUIDELINE;
|
|
location loc = LOC(e);
|
|
if (n > 1 && !big && are_all_items_const(e->v.Dict.keys, begin, end)) {
|
|
for (i = begin; i < end; i++) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
|
|
}
|
|
keys = PyTuple_New(n);
|
|
if (keys == NULL) {
|
|
return SUCCESS;
|
|
}
|
|
for (i = begin; i < end; i++) {
|
|
key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value;
|
|
PyTuple_SET_ITEM(keys, i - begin, Py_NewRef(key));
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, loc, keys);
|
|
ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, n);
|
|
return SUCCESS;
|
|
}
|
|
if (big) {
|
|
ADDOP_I(c, loc, BUILD_MAP, 0);
|
|
}
|
|
for (i = begin; i < end; i++) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
|
|
if (big) {
|
|
ADDOP_I(c, loc, MAP_ADD, 1);
|
|
}
|
|
}
|
|
if (!big) {
|
|
ADDOP_I(c, loc, BUILD_MAP, n);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_dict(struct compiler *c, expr_ty e)
|
|
{
|
|
location loc = LOC(e);
|
|
Py_ssize_t i, n, elements;
|
|
int have_dict;
|
|
int is_unpacking = 0;
|
|
n = asdl_seq_LEN(e->v.Dict.values);
|
|
have_dict = 0;
|
|
elements = 0;
|
|
for (i = 0; i < n; i++) {
|
|
is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
|
|
if (is_unpacking) {
|
|
if (elements) {
|
|
RETURN_IF_ERROR(compiler_subdict(c, e, i - elements, i));
|
|
if (have_dict) {
|
|
ADDOP_I(c, loc, DICT_UPDATE, 1);
|
|
}
|
|
have_dict = 1;
|
|
elements = 0;
|
|
}
|
|
if (have_dict == 0) {
|
|
ADDOP_I(c, loc, BUILD_MAP, 0);
|
|
have_dict = 1;
|
|
}
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
|
|
ADDOP_I(c, loc, DICT_UPDATE, 1);
|
|
}
|
|
else {
|
|
if (elements*2 > STACK_USE_GUIDELINE) {
|
|
RETURN_IF_ERROR(compiler_subdict(c, e, i - elements, i + 1));
|
|
if (have_dict) {
|
|
ADDOP_I(c, loc, DICT_UPDATE, 1);
|
|
}
|
|
have_dict = 1;
|
|
elements = 0;
|
|
}
|
|
else {
|
|
elements++;
|
|
}
|
|
}
|
|
}
|
|
if (elements) {
|
|
RETURN_IF_ERROR(compiler_subdict(c, e, n - elements, n));
|
|
if (have_dict) {
|
|
ADDOP_I(c, loc, DICT_UPDATE, 1);
|
|
}
|
|
have_dict = 1;
|
|
}
|
|
if (!have_dict) {
|
|
ADDOP_I(c, loc, BUILD_MAP, 0);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_compare(struct compiler *c, expr_ty e)
|
|
{
|
|
location loc = LOC(e);
|
|
Py_ssize_t i, n;
|
|
|
|
RETURN_IF_ERROR(check_compare(c, e));
|
|
VISIT(c, expr, e->v.Compare.left);
|
|
assert(asdl_seq_LEN(e->v.Compare.ops) > 0);
|
|
n = asdl_seq_LEN(e->v.Compare.ops) - 1;
|
|
if (n == 0) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
|
|
ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, 0));
|
|
}
|
|
else {
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
for (i = 0; i < n; i++) {
|
|
VISIT(c, expr,
|
|
(expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
|
|
ADDOP_I(c, loc, SWAP, 2);
|
|
ADDOP_I(c, loc, COPY, 2);
|
|
ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, i));
|
|
ADDOP_JUMP(c, loc, JUMP_IF_FALSE_OR_POP, cleanup);
|
|
}
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
|
|
ADDOP_COMPARE(c, loc, asdl_seq_GET(e->v.Compare.ops, n));
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
|
|
USE_LABEL(c, cleanup);
|
|
ADDOP_I(c, loc, SWAP, 2);
|
|
ADDOP(c, loc, POP_TOP);
|
|
|
|
USE_LABEL(c, end);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static PyTypeObject *
|
|
infer_type(expr_ty e)
|
|
{
|
|
switch (e->kind) {
|
|
case Tuple_kind:
|
|
return &PyTuple_Type;
|
|
case List_kind:
|
|
case ListComp_kind:
|
|
return &PyList_Type;
|
|
case Dict_kind:
|
|
case DictComp_kind:
|
|
return &PyDict_Type;
|
|
case Set_kind:
|
|
case SetComp_kind:
|
|
return &PySet_Type;
|
|
case GeneratorExp_kind:
|
|
return &PyGen_Type;
|
|
case Lambda_kind:
|
|
return &PyFunction_Type;
|
|
case JoinedStr_kind:
|
|
case FormattedValue_kind:
|
|
return &PyUnicode_Type;
|
|
case Constant_kind:
|
|
return Py_TYPE(e->v.Constant.value);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_caller(struct compiler *c, expr_ty e)
|
|
{
|
|
switch (e->kind) {
|
|
case Constant_kind:
|
|
case Tuple_kind:
|
|
case List_kind:
|
|
case ListComp_kind:
|
|
case Dict_kind:
|
|
case DictComp_kind:
|
|
case Set_kind:
|
|
case SetComp_kind:
|
|
case GeneratorExp_kind:
|
|
case JoinedStr_kind:
|
|
case FormattedValue_kind: {
|
|
location loc = LOC(e);
|
|
return compiler_warn(c, loc, "'%.200s' object is not callable; "
|
|
"perhaps you missed a comma?",
|
|
infer_type(e)->tp_name);
|
|
}
|
|
default:
|
|
return SUCCESS;
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_subscripter(struct compiler *c, expr_ty e)
|
|
{
|
|
PyObject *v;
|
|
|
|
switch (e->kind) {
|
|
case Constant_kind:
|
|
v = e->v.Constant.value;
|
|
if (!(v == Py_None || v == Py_Ellipsis ||
|
|
PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) ||
|
|
PyAnySet_Check(v)))
|
|
{
|
|
return SUCCESS;
|
|
}
|
|
/* fall through */
|
|
case Set_kind:
|
|
case SetComp_kind:
|
|
case GeneratorExp_kind:
|
|
case Lambda_kind: {
|
|
location loc = LOC(e);
|
|
return compiler_warn(c, loc, "'%.200s' object is not subscriptable; "
|
|
"perhaps you missed a comma?",
|
|
infer_type(e)->tp_name);
|
|
}
|
|
default:
|
|
return SUCCESS;
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_index(struct compiler *c, expr_ty e, expr_ty s)
|
|
{
|
|
PyObject *v;
|
|
|
|
PyTypeObject *index_type = infer_type(s);
|
|
if (index_type == NULL
|
|
|| PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS)
|
|
|| index_type == &PySlice_Type) {
|
|
return SUCCESS;
|
|
}
|
|
|
|
switch (e->kind) {
|
|
case Constant_kind:
|
|
v = e->v.Constant.value;
|
|
if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) {
|
|
return SUCCESS;
|
|
}
|
|
/* fall through */
|
|
case Tuple_kind:
|
|
case List_kind:
|
|
case ListComp_kind:
|
|
case JoinedStr_kind:
|
|
case FormattedValue_kind: {
|
|
location loc = LOC(e);
|
|
return compiler_warn(c, loc, "%.200s indices must be integers "
|
|
"or slices, not %.200s; "
|
|
"perhaps you missed a comma?",
|
|
infer_type(e)->tp_name,
|
|
index_type->tp_name);
|
|
}
|
|
default:
|
|
return SUCCESS;
|
|
}
|
|
}
|
|
|
|
static int
|
|
is_import_originated(struct compiler *c, expr_ty e)
|
|
{
|
|
/* Check whether the global scope has an import named
|
|
e, if it is a Name object. For not traversing all the
|
|
scope stack every time this function is called, it will
|
|
only check the global scope to determine whether something
|
|
is imported or not. */
|
|
|
|
if (e->kind != Name_kind) {
|
|
return 0;
|
|
}
|
|
|
|
long flags = _PyST_GetSymbol(c->c_st->st_top, e->v.Name.id);
|
|
return flags & DEF_IMPORT;
|
|
}
|
|
|
|
// If an attribute access spans multiple lines, update the current start
|
|
// location to point to the attribute name.
|
|
static location
|
|
update_start_location_to_match_attr(struct compiler *c, location loc,
|
|
expr_ty attr)
|
|
{
|
|
assert(attr->kind == Attribute_kind);
|
|
if (loc.lineno != attr->end_lineno) {
|
|
loc.lineno = attr->end_lineno;
|
|
int len = (int)PyUnicode_GET_LENGTH(attr->v.Attribute.attr);
|
|
if (len <= attr->end_col_offset) {
|
|
loc.col_offset = attr->end_col_offset - len;
|
|
}
|
|
else {
|
|
// GH-94694: Somebody's compiling weird ASTs. Just drop the columns:
|
|
loc.col_offset = -1;
|
|
loc.end_col_offset = -1;
|
|
}
|
|
// Make sure the end position still follows the start position, even for
|
|
// weird ASTs:
|
|
loc.end_lineno = Py_MAX(loc.lineno, loc.end_lineno);
|
|
if (loc.lineno == loc.end_lineno) {
|
|
loc.end_col_offset = Py_MAX(loc.col_offset, loc.end_col_offset);
|
|
}
|
|
}
|
|
return loc;
|
|
}
|
|
|
|
// Return 1 if the method call was optimized, 0 if not, and -1 on error.
|
|
static int
|
|
maybe_optimize_method_call(struct compiler *c, expr_ty e)
|
|
{
|
|
Py_ssize_t argsl, i, kwdsl;
|
|
expr_ty meth = e->v.Call.func;
|
|
asdl_expr_seq *args = e->v.Call.args;
|
|
asdl_keyword_seq *kwds = e->v.Call.keywords;
|
|
|
|
/* Check that the call node is an attribute access */
|
|
if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load) {
|
|
return 0;
|
|
}
|
|
|
|
/* Check that the base object is not something that is imported */
|
|
if (is_import_originated(c, meth->v.Attribute.value)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Check that there aren't too many arguments */
|
|
argsl = asdl_seq_LEN(args);
|
|
kwdsl = asdl_seq_LEN(kwds);
|
|
if (argsl + kwdsl + (kwdsl != 0) >= STACK_USE_GUIDELINE) {
|
|
return 0;
|
|
}
|
|
/* Check that there are no *varargs types of arguments. */
|
|
for (i = 0; i < argsl; i++) {
|
|
expr_ty elt = asdl_seq_GET(args, i);
|
|
if (elt->kind == Starred_kind) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < kwdsl; i++) {
|
|
keyword_ty kw = asdl_seq_GET(kwds, i);
|
|
if (kw->arg == NULL) {
|
|
return 0;
|
|
}
|
|
}
|
|
/* Alright, we can optimize the code. */
|
|
VISIT(c, expr, meth->v.Attribute.value);
|
|
location loc = LOC(meth);
|
|
loc = update_start_location_to_match_attr(c, loc, meth);
|
|
ADDOP_NAME(c, loc, LOAD_METHOD, meth->v.Attribute.attr, names);
|
|
VISIT_SEQ(c, expr, e->v.Call.args);
|
|
|
|
if (kwdsl) {
|
|
VISIT_SEQ(c, keyword, kwds);
|
|
RETURN_IF_ERROR(
|
|
compiler_call_simple_kw_helper(c, loc, kwds, kwdsl));
|
|
}
|
|
loc = update_start_location_to_match_attr(c, LOC(e), meth);
|
|
ADDOP_I(c, loc, CALL, argsl + kwdsl);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
validate_keywords(struct compiler *c, asdl_keyword_seq *keywords)
|
|
{
|
|
Py_ssize_t nkeywords = asdl_seq_LEN(keywords);
|
|
for (Py_ssize_t i = 0; i < nkeywords; i++) {
|
|
keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i));
|
|
if (key->arg == NULL) {
|
|
continue;
|
|
}
|
|
location loc = LOC(key);
|
|
if (forbidden_name(c, loc, key->arg, Store)) {
|
|
return ERROR;
|
|
}
|
|
for (Py_ssize_t j = i + 1; j < nkeywords; j++) {
|
|
keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j));
|
|
if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) {
|
|
compiler_error(c, LOC(other), "keyword argument repeated: %U", key->arg);
|
|
return ERROR;
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_call(struct compiler *c, expr_ty e)
|
|
{
|
|
RETURN_IF_ERROR(validate_keywords(c, e->v.Call.keywords));
|
|
int ret = maybe_optimize_method_call(c, e);
|
|
if (ret < 0) {
|
|
return ERROR;
|
|
}
|
|
if (ret == 1) {
|
|
return SUCCESS;
|
|
}
|
|
RETURN_IF_ERROR(check_caller(c, e->v.Call.func));
|
|
location loc = LOC(e->v.Call.func);
|
|
ADDOP(c, loc, PUSH_NULL);
|
|
VISIT(c, expr, e->v.Call.func);
|
|
loc = LOC(e);
|
|
return compiler_call_helper(c, loc, 0,
|
|
e->v.Call.args,
|
|
e->v.Call.keywords);
|
|
}
|
|
|
|
static int
|
|
compiler_joined_str(struct compiler *c, expr_ty e)
|
|
{
|
|
location loc = LOC(e);
|
|
Py_ssize_t value_count = asdl_seq_LEN(e->v.JoinedStr.values);
|
|
if (value_count > STACK_USE_GUIDELINE) {
|
|
_Py_DECLARE_STR(empty, "");
|
|
ADDOP_LOAD_CONST_NEW(c, loc, Py_NewRef(&_Py_STR(empty)));
|
|
ADDOP_NAME(c, loc, LOAD_METHOD, &_Py_ID(join), names);
|
|
ADDOP_I(c, loc, BUILD_LIST, 0);
|
|
for (Py_ssize_t i = 0; i < asdl_seq_LEN(e->v.JoinedStr.values); i++) {
|
|
VISIT(c, expr, asdl_seq_GET(e->v.JoinedStr.values, i));
|
|
ADDOP_I(c, loc, LIST_APPEND, 1);
|
|
}
|
|
ADDOP_I(c, loc, CALL, 1);
|
|
}
|
|
else {
|
|
VISIT_SEQ(c, expr, e->v.JoinedStr.values);
|
|
if (asdl_seq_LEN(e->v.JoinedStr.values) != 1) {
|
|
ADDOP_I(c, loc, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values));
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Used to implement f-strings. Format a single value. */
|
|
static int
|
|
compiler_formatted_value(struct compiler *c, expr_ty e)
|
|
{
|
|
/* Our oparg encodes 2 pieces of information: the conversion
|
|
character, and whether or not a format_spec was provided.
|
|
|
|
Convert the conversion char to 3 bits:
|
|
: 000 0x0 FVC_NONE The default if nothing specified.
|
|
!s : 001 0x1 FVC_STR
|
|
!r : 010 0x2 FVC_REPR
|
|
!a : 011 0x3 FVC_ASCII
|
|
|
|
next bit is whether or not we have a format spec:
|
|
yes : 100 0x4
|
|
no : 000 0x0
|
|
*/
|
|
|
|
int conversion = e->v.FormattedValue.conversion;
|
|
int oparg;
|
|
|
|
/* The expression to be formatted. */
|
|
VISIT(c, expr, e->v.FormattedValue.value);
|
|
|
|
switch (conversion) {
|
|
case 's': oparg = FVC_STR; break;
|
|
case 'r': oparg = FVC_REPR; break;
|
|
case 'a': oparg = FVC_ASCII; break;
|
|
case -1: oparg = FVC_NONE; break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"Unrecognized conversion character %d", conversion);
|
|
return ERROR;
|
|
}
|
|
if (e->v.FormattedValue.format_spec) {
|
|
/* Evaluate the format spec, and update our opcode arg. */
|
|
VISIT(c, expr, e->v.FormattedValue.format_spec);
|
|
oparg |= FVS_HAVE_SPEC;
|
|
}
|
|
|
|
/* And push our opcode and oparg */
|
|
location loc = LOC(e);
|
|
ADDOP_I(c, loc, FORMAT_VALUE, oparg);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_subkwargs(struct compiler *c, location loc,
|
|
asdl_keyword_seq *keywords,
|
|
Py_ssize_t begin, Py_ssize_t end)
|
|
{
|
|
Py_ssize_t i, n = end - begin;
|
|
keyword_ty kw;
|
|
PyObject *keys, *key;
|
|
assert(n > 0);
|
|
int big = n*2 > STACK_USE_GUIDELINE;
|
|
if (n > 1 && !big) {
|
|
for (i = begin; i < end; i++) {
|
|
kw = asdl_seq_GET(keywords, i);
|
|
VISIT(c, expr, kw->value);
|
|
}
|
|
keys = PyTuple_New(n);
|
|
if (keys == NULL) {
|
|
return ERROR;
|
|
}
|
|
for (i = begin; i < end; i++) {
|
|
key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg;
|
|
PyTuple_SET_ITEM(keys, i - begin, Py_NewRef(key));
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, loc, keys);
|
|
ADDOP_I(c, loc, BUILD_CONST_KEY_MAP, n);
|
|
return SUCCESS;
|
|
}
|
|
if (big) {
|
|
ADDOP_I(c, NO_LOCATION, BUILD_MAP, 0);
|
|
}
|
|
for (i = begin; i < end; i++) {
|
|
kw = asdl_seq_GET(keywords, i);
|
|
ADDOP_LOAD_CONST(c, loc, kw->arg);
|
|
VISIT(c, expr, kw->value);
|
|
if (big) {
|
|
ADDOP_I(c, NO_LOCATION, MAP_ADD, 1);
|
|
}
|
|
}
|
|
if (!big) {
|
|
ADDOP_I(c, loc, BUILD_MAP, n);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Used by compiler_call_helper and maybe_optimize_method_call to emit
|
|
* KW_NAMES before CALL.
|
|
*/
|
|
static int
|
|
compiler_call_simple_kw_helper(struct compiler *c, location loc,
|
|
asdl_keyword_seq *keywords, Py_ssize_t nkwelts)
|
|
{
|
|
PyObject *names;
|
|
names = PyTuple_New(nkwelts);
|
|
if (names == NULL) {
|
|
return ERROR;
|
|
}
|
|
for (int i = 0; i < nkwelts; i++) {
|
|
keyword_ty kw = asdl_seq_GET(keywords, i);
|
|
PyTuple_SET_ITEM(names, i, Py_NewRef(kw->arg));
|
|
}
|
|
Py_ssize_t arg = compiler_add_const(c, names);
|
|
if (arg < 0) {
|
|
return ERROR;
|
|
}
|
|
Py_DECREF(names);
|
|
ADDOP_I(c, loc, KW_NAMES, arg);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* shared code between compiler_call and compiler_class */
|
|
static int
|
|
compiler_call_helper(struct compiler *c, location loc,
|
|
int n, /* Args already pushed */
|
|
asdl_expr_seq *args,
|
|
asdl_keyword_seq *keywords)
|
|
{
|
|
Py_ssize_t i, nseen, nelts, nkwelts;
|
|
|
|
RETURN_IF_ERROR(validate_keywords(c, keywords));
|
|
|
|
nelts = asdl_seq_LEN(args);
|
|
nkwelts = asdl_seq_LEN(keywords);
|
|
|
|
if (nelts + nkwelts*2 > STACK_USE_GUIDELINE) {
|
|
goto ex_call;
|
|
}
|
|
for (i = 0; i < nelts; i++) {
|
|
expr_ty elt = asdl_seq_GET(args, i);
|
|
if (elt->kind == Starred_kind) {
|
|
goto ex_call;
|
|
}
|
|
}
|
|
for (i = 0; i < nkwelts; i++) {
|
|
keyword_ty kw = asdl_seq_GET(keywords, i);
|
|
if (kw->arg == NULL) {
|
|
goto ex_call;
|
|
}
|
|
}
|
|
|
|
/* No * or ** args, so can use faster calling sequence */
|
|
for (i = 0; i < nelts; i++) {
|
|
expr_ty elt = asdl_seq_GET(args, i);
|
|
assert(elt->kind != Starred_kind);
|
|
VISIT(c, expr, elt);
|
|
}
|
|
if (nkwelts) {
|
|
VISIT_SEQ(c, keyword, keywords);
|
|
RETURN_IF_ERROR(
|
|
compiler_call_simple_kw_helper(c, loc, keywords, nkwelts));
|
|
}
|
|
ADDOP_I(c, loc, CALL, n + nelts + nkwelts);
|
|
return SUCCESS;
|
|
|
|
ex_call:
|
|
|
|
/* Do positional arguments. */
|
|
if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) {
|
|
VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value);
|
|
}
|
|
else {
|
|
RETURN_IF_ERROR(starunpack_helper(c, loc, args, n, BUILD_LIST,
|
|
LIST_APPEND, LIST_EXTEND, 1));
|
|
}
|
|
/* Then keyword arguments */
|
|
if (nkwelts) {
|
|
/* Has a new dict been pushed */
|
|
int have_dict = 0;
|
|
|
|
nseen = 0; /* the number of keyword arguments on the stack following */
|
|
for (i = 0; i < nkwelts; i++) {
|
|
keyword_ty kw = asdl_seq_GET(keywords, i);
|
|
if (kw->arg == NULL) {
|
|
/* A keyword argument unpacking. */
|
|
if (nseen) {
|
|
RETURN_IF_ERROR(compiler_subkwargs(c, loc, keywords, i - nseen, i));
|
|
if (have_dict) {
|
|
ADDOP_I(c, loc, DICT_MERGE, 1);
|
|
}
|
|
have_dict = 1;
|
|
nseen = 0;
|
|
}
|
|
if (!have_dict) {
|
|
ADDOP_I(c, loc, BUILD_MAP, 0);
|
|
have_dict = 1;
|
|
}
|
|
VISIT(c, expr, kw->value);
|
|
ADDOP_I(c, loc, DICT_MERGE, 1);
|
|
}
|
|
else {
|
|
nseen++;
|
|
}
|
|
}
|
|
if (nseen) {
|
|
/* Pack up any trailing keyword arguments. */
|
|
RETURN_IF_ERROR(compiler_subkwargs(c, loc, keywords, nkwelts - nseen, nkwelts));
|
|
if (have_dict) {
|
|
ADDOP_I(c, loc, DICT_MERGE, 1);
|
|
}
|
|
have_dict = 1;
|
|
}
|
|
assert(have_dict);
|
|
}
|
|
ADDOP_I(c, loc, CALL_FUNCTION_EX, nkwelts > 0);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* List and set comprehensions and generator expressions work by creating a
|
|
nested function to perform the actual iteration. This means that the
|
|
iteration variables don't leak into the current scope.
|
|
The defined function is called immediately following its definition, with the
|
|
result of that call being the result of the expression.
|
|
The LC/SC version returns the populated container, while the GE version is
|
|
flagged in symtable.c as a generator, so it returns the generator object
|
|
when the function is called.
|
|
|
|
Possible cleanups:
|
|
- iterate over the generator sequence instead of using recursion
|
|
*/
|
|
|
|
|
|
static int
|
|
compiler_comprehension_generator(struct compiler *c, location loc,
|
|
asdl_comprehension_seq *generators, int gen_index,
|
|
int depth,
|
|
expr_ty elt, expr_ty val, int type)
|
|
{
|
|
comprehension_ty gen;
|
|
gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
|
|
if (gen->is_async) {
|
|
return compiler_async_comprehension_generator(
|
|
c, loc, generators, gen_index, depth, elt, val, type);
|
|
} else {
|
|
return compiler_sync_comprehension_generator(
|
|
c, loc, generators, gen_index, depth, elt, val, type);
|
|
}
|
|
}
|
|
|
|
static int
|
|
compiler_sync_comprehension_generator(struct compiler *c, location loc,
|
|
asdl_comprehension_seq *generators,
|
|
int gen_index, int depth,
|
|
expr_ty elt, expr_ty val, int type)
|
|
{
|
|
/* generate code for the iterator, then each of the ifs,
|
|
and then write to the element */
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, start);
|
|
NEW_JUMP_TARGET_LABEL(c, if_cleanup);
|
|
NEW_JUMP_TARGET_LABEL(c, anchor);
|
|
|
|
comprehension_ty gen = (comprehension_ty)asdl_seq_GET(generators,
|
|
gen_index);
|
|
|
|
if (gen_index == 0) {
|
|
/* Receive outermost iter as an implicit argument */
|
|
c->u->u_argcount = 1;
|
|
ADDOP_I(c, loc, LOAD_FAST, 0);
|
|
}
|
|
else {
|
|
/* Sub-iter - calculate on the fly */
|
|
/* Fast path for the temporary variable assignment idiom:
|
|
for y in [f(x)]
|
|
*/
|
|
asdl_expr_seq *elts;
|
|
switch (gen->iter->kind) {
|
|
case List_kind:
|
|
elts = gen->iter->v.List.elts;
|
|
break;
|
|
case Tuple_kind:
|
|
elts = gen->iter->v.Tuple.elts;
|
|
break;
|
|
default:
|
|
elts = NULL;
|
|
}
|
|
if (asdl_seq_LEN(elts) == 1) {
|
|
expr_ty elt = asdl_seq_GET(elts, 0);
|
|
if (elt->kind != Starred_kind) {
|
|
VISIT(c, expr, elt);
|
|
start = NO_LABEL;
|
|
}
|
|
}
|
|
if (IS_LABEL(start)) {
|
|
VISIT(c, expr, gen->iter);
|
|
ADDOP(c, loc, GET_ITER);
|
|
}
|
|
}
|
|
if (IS_LABEL(start)) {
|
|
depth++;
|
|
USE_LABEL(c, start);
|
|
ADDOP_JUMP(c, loc, FOR_ITER, anchor);
|
|
}
|
|
VISIT(c, expr, gen->target);
|
|
|
|
/* XXX this needs to be cleaned up...a lot! */
|
|
Py_ssize_t n = asdl_seq_LEN(gen->ifs);
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
|
|
RETURN_IF_ERROR(compiler_jump_if(c, loc, e, if_cleanup, 0));
|
|
}
|
|
|
|
if (++gen_index < asdl_seq_LEN(generators)) {
|
|
RETURN_IF_ERROR(
|
|
compiler_comprehension_generator(c, loc,
|
|
generators, gen_index, depth,
|
|
elt, val, type));
|
|
}
|
|
|
|
location elt_loc = LOC(elt);
|
|
|
|
/* only append after the last for generator */
|
|
if (gen_index >= asdl_seq_LEN(generators)) {
|
|
/* comprehension specific code */
|
|
switch (type) {
|
|
case COMP_GENEXP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_YIELD(c, elt_loc);
|
|
ADDOP(c, elt_loc, POP_TOP);
|
|
break;
|
|
case COMP_LISTCOMP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_I(c, elt_loc, LIST_APPEND, depth + 1);
|
|
break;
|
|
case COMP_SETCOMP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_I(c, elt_loc, SET_ADD, depth + 1);
|
|
break;
|
|
case COMP_DICTCOMP:
|
|
/* With '{k: v}', k is evaluated before v, so we do
|
|
the same. */
|
|
VISIT(c, expr, elt);
|
|
VISIT(c, expr, val);
|
|
elt_loc = LOCATION(elt->lineno,
|
|
val->end_lineno,
|
|
elt->col_offset,
|
|
val->end_col_offset);
|
|
ADDOP_I(c, elt_loc, MAP_ADD, depth + 1);
|
|
break;
|
|
default:
|
|
return ERROR;
|
|
}
|
|
}
|
|
|
|
USE_LABEL(c, if_cleanup);
|
|
if (IS_LABEL(start)) {
|
|
ADDOP_JUMP(c, elt_loc, JUMP, start);
|
|
|
|
USE_LABEL(c, anchor);
|
|
ADDOP(c, NO_LOCATION, END_FOR);
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_async_comprehension_generator(struct compiler *c, location loc,
|
|
asdl_comprehension_seq *generators,
|
|
int gen_index, int depth,
|
|
expr_ty elt, expr_ty val, int type)
|
|
{
|
|
NEW_JUMP_TARGET_LABEL(c, start);
|
|
NEW_JUMP_TARGET_LABEL(c, except);
|
|
NEW_JUMP_TARGET_LABEL(c, if_cleanup);
|
|
|
|
comprehension_ty gen = (comprehension_ty)asdl_seq_GET(generators,
|
|
gen_index);
|
|
|
|
if (gen_index == 0) {
|
|
/* Receive outermost iter as an implicit argument */
|
|
c->u->u_argcount = 1;
|
|
ADDOP_I(c, loc, LOAD_FAST, 0);
|
|
}
|
|
else {
|
|
/* Sub-iter - calculate on the fly */
|
|
VISIT(c, expr, gen->iter);
|
|
ADDOP(c, loc, GET_AITER);
|
|
}
|
|
|
|
USE_LABEL(c, start);
|
|
/* Runtime will push a block here, so we need to account for that */
|
|
RETURN_IF_ERROR(
|
|
compiler_push_fblock(c, loc, ASYNC_COMPREHENSION_GENERATOR,
|
|
start, NO_LABEL, NULL));
|
|
|
|
ADDOP_JUMP(c, loc, SETUP_FINALLY, except);
|
|
ADDOP(c, loc, GET_ANEXT);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADD_YIELD_FROM(c, loc, 1);
|
|
ADDOP(c, loc, POP_BLOCK);
|
|
VISIT(c, expr, gen->target);
|
|
|
|
Py_ssize_t n = asdl_seq_LEN(gen->ifs);
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
|
|
RETURN_IF_ERROR(compiler_jump_if(c, loc, e, if_cleanup, 0));
|
|
}
|
|
|
|
depth++;
|
|
if (++gen_index < asdl_seq_LEN(generators)) {
|
|
RETURN_IF_ERROR(
|
|
compiler_comprehension_generator(c, loc,
|
|
generators, gen_index, depth,
|
|
elt, val, type));
|
|
}
|
|
|
|
location elt_loc = LOC(elt);
|
|
/* only append after the last for generator */
|
|
if (gen_index >= asdl_seq_LEN(generators)) {
|
|
/* comprehension specific code */
|
|
switch (type) {
|
|
case COMP_GENEXP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_YIELD(c, elt_loc);
|
|
ADDOP(c, elt_loc, POP_TOP);
|
|
break;
|
|
case COMP_LISTCOMP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_I(c, elt_loc, LIST_APPEND, depth + 1);
|
|
break;
|
|
case COMP_SETCOMP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_I(c, elt_loc, SET_ADD, depth + 1);
|
|
break;
|
|
case COMP_DICTCOMP:
|
|
/* With '{k: v}', k is evaluated before v, so we do
|
|
the same. */
|
|
VISIT(c, expr, elt);
|
|
VISIT(c, expr, val);
|
|
elt_loc = LOCATION(elt->lineno,
|
|
val->end_lineno,
|
|
elt->col_offset,
|
|
val->end_col_offset);
|
|
ADDOP_I(c, elt_loc, MAP_ADD, depth + 1);
|
|
break;
|
|
default:
|
|
return ERROR;
|
|
}
|
|
}
|
|
|
|
USE_LABEL(c, if_cleanup);
|
|
ADDOP_JUMP(c, elt_loc, JUMP, start);
|
|
|
|
compiler_pop_fblock(c, ASYNC_COMPREHENSION_GENERATOR, start);
|
|
|
|
USE_LABEL(c, except);
|
|
|
|
ADDOP(c, loc, END_ASYNC_FOR);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_comprehension(struct compiler *c, expr_ty e, int type,
|
|
identifier name, asdl_comprehension_seq *generators, expr_ty elt,
|
|
expr_ty val)
|
|
{
|
|
PyCodeObject *co = NULL;
|
|
comprehension_ty outermost;
|
|
int scope_type = c->u->u_scope_type;
|
|
int is_async_generator = 0;
|
|
int is_top_level_await = IS_TOP_LEVEL_AWAIT(c);
|
|
|
|
outermost = (comprehension_ty) asdl_seq_GET(generators, 0);
|
|
if (compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
|
|
(void *)e, e->lineno) < 0)
|
|
{
|
|
goto error;
|
|
}
|
|
location loc = LOC(e);
|
|
|
|
is_async_generator = c->u->u_ste->ste_coroutine;
|
|
|
|
if (is_async_generator && type != COMP_GENEXP &&
|
|
scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
|
|
scope_type != COMPILER_SCOPE_COMPREHENSION &&
|
|
!is_top_level_await)
|
|
{
|
|
compiler_error(c, loc, "asynchronous comprehension outside of "
|
|
"an asynchronous function");
|
|
goto error_in_scope;
|
|
}
|
|
|
|
if (type != COMP_GENEXP) {
|
|
int op;
|
|
switch (type) {
|
|
case COMP_LISTCOMP:
|
|
op = BUILD_LIST;
|
|
break;
|
|
case COMP_SETCOMP:
|
|
op = BUILD_SET;
|
|
break;
|
|
case COMP_DICTCOMP:
|
|
op = BUILD_MAP;
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unknown comprehension type %d", type);
|
|
goto error_in_scope;
|
|
}
|
|
|
|
ADDOP_I(c, loc, op, 0);
|
|
}
|
|
|
|
if (compiler_comprehension_generator(c, loc, generators, 0, 0,
|
|
elt, val, type) < 0) {
|
|
goto error_in_scope;
|
|
}
|
|
|
|
if (type != COMP_GENEXP) {
|
|
ADDOP(c, LOC(e), RETURN_VALUE);
|
|
}
|
|
if (type == COMP_GENEXP) {
|
|
if (wrap_in_stopiteration_handler(c) < 0) {
|
|
goto error_in_scope;
|
|
}
|
|
}
|
|
|
|
co = assemble(c, 1);
|
|
compiler_exit_scope(c);
|
|
if (is_top_level_await && is_async_generator){
|
|
c->u->u_ste->ste_coroutine = 1;
|
|
}
|
|
if (co == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
loc = LOC(e);
|
|
if (compiler_make_closure(c, loc, co, 0) < 0) {
|
|
goto error;
|
|
}
|
|
Py_DECREF(co);
|
|
|
|
VISIT(c, expr, outermost->iter);
|
|
|
|
loc = LOC(e);
|
|
if (outermost->is_async) {
|
|
ADDOP(c, loc, GET_AITER);
|
|
} else {
|
|
ADDOP(c, loc, GET_ITER);
|
|
}
|
|
|
|
ADDOP_I(c, loc, CALL, 0);
|
|
|
|
if (is_async_generator && type != COMP_GENEXP) {
|
|
ADDOP_I(c, loc, GET_AWAITABLE, 0);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADD_YIELD_FROM(c, loc, 1);
|
|
}
|
|
|
|
return SUCCESS;
|
|
error_in_scope:
|
|
compiler_exit_scope(c);
|
|
error:
|
|
Py_XDECREF(co);
|
|
return ERROR;
|
|
}
|
|
|
|
static int
|
|
compiler_genexp(struct compiler *c, expr_ty e)
|
|
{
|
|
assert(e->kind == GeneratorExp_kind);
|
|
_Py_DECLARE_STR(anon_genexpr, "<genexpr>");
|
|
return compiler_comprehension(c, e, COMP_GENEXP, &_Py_STR(anon_genexpr),
|
|
e->v.GeneratorExp.generators,
|
|
e->v.GeneratorExp.elt, NULL);
|
|
}
|
|
|
|
static int
|
|
compiler_listcomp(struct compiler *c, expr_ty e)
|
|
{
|
|
assert(e->kind == ListComp_kind);
|
|
_Py_DECLARE_STR(anon_listcomp, "<listcomp>");
|
|
return compiler_comprehension(c, e, COMP_LISTCOMP, &_Py_STR(anon_listcomp),
|
|
e->v.ListComp.generators,
|
|
e->v.ListComp.elt, NULL);
|
|
}
|
|
|
|
static int
|
|
compiler_setcomp(struct compiler *c, expr_ty e)
|
|
{
|
|
assert(e->kind == SetComp_kind);
|
|
_Py_DECLARE_STR(anon_setcomp, "<setcomp>");
|
|
return compiler_comprehension(c, e, COMP_SETCOMP, &_Py_STR(anon_setcomp),
|
|
e->v.SetComp.generators,
|
|
e->v.SetComp.elt, NULL);
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_dictcomp(struct compiler *c, expr_ty e)
|
|
{
|
|
assert(e->kind == DictComp_kind);
|
|
_Py_DECLARE_STR(anon_dictcomp, "<dictcomp>");
|
|
return compiler_comprehension(c, e, COMP_DICTCOMP, &_Py_STR(anon_dictcomp),
|
|
e->v.DictComp.generators,
|
|
e->v.DictComp.key, e->v.DictComp.value);
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_visit_keyword(struct compiler *c, keyword_ty k)
|
|
{
|
|
VISIT(c, expr, k->value);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_with_except_finish(struct compiler *c, jump_target_label cleanup) {
|
|
NEW_JUMP_TARGET_LABEL(c, suppress);
|
|
ADDOP_JUMP(c, NO_LOCATION, POP_JUMP_IF_TRUE, suppress);
|
|
ADDOP_I(c, NO_LOCATION, RERAISE, 2);
|
|
|
|
USE_LABEL(c, suppress);
|
|
ADDOP(c, NO_LOCATION, POP_TOP); /* exc_value */
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
ADDOP(c, NO_LOCATION, POP_EXCEPT);
|
|
ADDOP(c, NO_LOCATION, POP_TOP);
|
|
ADDOP(c, NO_LOCATION, POP_TOP);
|
|
NEW_JUMP_TARGET_LABEL(c, exit);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, exit);
|
|
|
|
USE_LABEL(c, cleanup);
|
|
POP_EXCEPT_AND_RERAISE(c, NO_LOCATION);
|
|
|
|
USE_LABEL(c, exit);
|
|
return SUCCESS;
|
|
}
|
|
|
|
/*
|
|
Implements the async with statement.
|
|
|
|
The semantics outlined in that PEP are as follows:
|
|
|
|
async with EXPR as VAR:
|
|
BLOCK
|
|
|
|
It is implemented roughly as:
|
|
|
|
context = EXPR
|
|
exit = context.__aexit__ # not calling it
|
|
value = await context.__aenter__()
|
|
try:
|
|
VAR = value # if VAR present in the syntax
|
|
BLOCK
|
|
finally:
|
|
if an exception was raised:
|
|
exc = copy of (exception, instance, traceback)
|
|
else:
|
|
exc = (None, None, None)
|
|
if not (await exit(*exc)):
|
|
raise
|
|
*/
|
|
static int
|
|
compiler_async_with(struct compiler *c, stmt_ty s, int pos)
|
|
{
|
|
location loc = LOC(s);
|
|
withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);
|
|
|
|
assert(s->kind == AsyncWith_kind);
|
|
if (IS_TOP_LEVEL_AWAIT(c)){
|
|
c->u->u_ste->ste_coroutine = 1;
|
|
} else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){
|
|
return compiler_error(c, loc, "'async with' outside async function");
|
|
}
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, block);
|
|
NEW_JUMP_TARGET_LABEL(c, final);
|
|
NEW_JUMP_TARGET_LABEL(c, exit);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
|
|
/* Evaluate EXPR */
|
|
VISIT(c, expr, item->context_expr);
|
|
|
|
ADDOP(c, loc, BEFORE_ASYNC_WITH);
|
|
ADDOP_I(c, loc, GET_AWAITABLE, 1);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADD_YIELD_FROM(c, loc, 1);
|
|
|
|
ADDOP_JUMP(c, loc, SETUP_WITH, final);
|
|
|
|
/* SETUP_WITH pushes a finally block. */
|
|
USE_LABEL(c, block);
|
|
RETURN_IF_ERROR(compiler_push_fblock(c, loc, ASYNC_WITH, block, final, s));
|
|
|
|
if (item->optional_vars) {
|
|
VISIT(c, expr, item->optional_vars);
|
|
}
|
|
else {
|
|
/* Discard result from context.__aenter__() */
|
|
ADDOP(c, loc, POP_TOP);
|
|
}
|
|
|
|
pos++;
|
|
if (pos == asdl_seq_LEN(s->v.AsyncWith.items)) {
|
|
/* BLOCK code */
|
|
VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
|
|
}
|
|
else {
|
|
RETURN_IF_ERROR(compiler_async_with(c, s, pos));
|
|
}
|
|
|
|
compiler_pop_fblock(c, ASYNC_WITH, block);
|
|
|
|
ADDOP(c, loc, POP_BLOCK);
|
|
/* End of body; start the cleanup */
|
|
|
|
/* For successful outcome:
|
|
* call __exit__(None, None, None)
|
|
*/
|
|
RETURN_IF_ERROR(compiler_call_exit_with_nones(c, loc));
|
|
ADDOP_I(c, loc, GET_AWAITABLE, 2);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADD_YIELD_FROM(c, loc, 1);
|
|
|
|
ADDOP(c, loc, POP_TOP);
|
|
|
|
ADDOP_JUMP(c, loc, JUMP, exit);
|
|
|
|
/* For exceptional outcome: */
|
|
USE_LABEL(c, final);
|
|
|
|
ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
|
|
ADDOP(c, loc, PUSH_EXC_INFO);
|
|
ADDOP(c, loc, WITH_EXCEPT_START);
|
|
ADDOP_I(c, loc, GET_AWAITABLE, 2);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADD_YIELD_FROM(c, loc, 1);
|
|
RETURN_IF_ERROR(compiler_with_except_finish(c, cleanup));
|
|
|
|
USE_LABEL(c, exit);
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
Implements the with statement from PEP 343.
|
|
with EXPR as VAR:
|
|
BLOCK
|
|
is implemented as:
|
|
<code for EXPR>
|
|
SETUP_WITH E
|
|
<code to store to VAR> or POP_TOP
|
|
<code for BLOCK>
|
|
LOAD_CONST (None, None, None)
|
|
CALL_FUNCTION_EX 0
|
|
JUMP EXIT
|
|
E: WITH_EXCEPT_START (calls EXPR.__exit__)
|
|
POP_JUMP_IF_TRUE T:
|
|
RERAISE
|
|
T: POP_TOP (remove exception from stack)
|
|
POP_EXCEPT
|
|
POP_TOP
|
|
EXIT:
|
|
*/
|
|
|
|
static int
|
|
compiler_with(struct compiler *c, stmt_ty s, int pos)
|
|
{
|
|
withitem_ty item = asdl_seq_GET(s->v.With.items, pos);
|
|
|
|
assert(s->kind == With_kind);
|
|
|
|
NEW_JUMP_TARGET_LABEL(c, block);
|
|
NEW_JUMP_TARGET_LABEL(c, final);
|
|
NEW_JUMP_TARGET_LABEL(c, exit);
|
|
NEW_JUMP_TARGET_LABEL(c, cleanup);
|
|
|
|
/* Evaluate EXPR */
|
|
VISIT(c, expr, item->context_expr);
|
|
/* Will push bound __exit__ */
|
|
location loc = LOC(s);
|
|
ADDOP(c, loc, BEFORE_WITH);
|
|
ADDOP_JUMP(c, loc, SETUP_WITH, final);
|
|
|
|
/* SETUP_WITH pushes a finally block. */
|
|
USE_LABEL(c, block);
|
|
RETURN_IF_ERROR(compiler_push_fblock(c, loc, WITH, block, final, s));
|
|
|
|
if (item->optional_vars) {
|
|
VISIT(c, expr, item->optional_vars);
|
|
}
|
|
else {
|
|
/* Discard result from context.__enter__() */
|
|
ADDOP(c, loc, POP_TOP);
|
|
}
|
|
|
|
pos++;
|
|
if (pos == asdl_seq_LEN(s->v.With.items)) {
|
|
/* BLOCK code */
|
|
VISIT_SEQ(c, stmt, s->v.With.body)
|
|
}
|
|
else {
|
|
RETURN_IF_ERROR(compiler_with(c, s, pos));
|
|
}
|
|
|
|
ADDOP(c, NO_LOCATION, POP_BLOCK);
|
|
compiler_pop_fblock(c, WITH, block);
|
|
|
|
/* End of body; start the cleanup. */
|
|
|
|
/* For successful outcome:
|
|
* call __exit__(None, None, None)
|
|
*/
|
|
loc = LOC(s);
|
|
RETURN_IF_ERROR(compiler_call_exit_with_nones(c, loc));
|
|
ADDOP(c, loc, POP_TOP);
|
|
ADDOP_JUMP(c, loc, JUMP, exit);
|
|
|
|
/* For exceptional outcome: */
|
|
USE_LABEL(c, final);
|
|
|
|
ADDOP_JUMP(c, loc, SETUP_CLEANUP, cleanup);
|
|
ADDOP(c, loc, PUSH_EXC_INFO);
|
|
ADDOP(c, loc, WITH_EXCEPT_START);
|
|
RETURN_IF_ERROR(compiler_with_except_finish(c, cleanup));
|
|
|
|
USE_LABEL(c, exit);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_expr1(struct compiler *c, expr_ty e)
|
|
{
|
|
location loc = LOC(e);
|
|
switch (e->kind) {
|
|
case NamedExpr_kind:
|
|
VISIT(c, expr, e->v.NamedExpr.value);
|
|
ADDOP_I(c, loc, COPY, 1);
|
|
VISIT(c, expr, e->v.NamedExpr.target);
|
|
break;
|
|
case BoolOp_kind:
|
|
return compiler_boolop(c, e);
|
|
case BinOp_kind:
|
|
VISIT(c, expr, e->v.BinOp.left);
|
|
VISIT(c, expr, e->v.BinOp.right);
|
|
ADDOP_BINARY(c, loc, e->v.BinOp.op);
|
|
break;
|
|
case UnaryOp_kind:
|
|
VISIT(c, expr, e->v.UnaryOp.operand);
|
|
if (e->v.UnaryOp.op == UAdd) {
|
|
ADDOP_I(c, loc, CALL_INTRINSIC_1, INTRINSIC_UNARY_POSITIVE);
|
|
}
|
|
else {
|
|
ADDOP(c, loc, unaryop(e->v.UnaryOp.op));
|
|
}
|
|
break;
|
|
case Lambda_kind:
|
|
return compiler_lambda(c, e);
|
|
case IfExp_kind:
|
|
return compiler_ifexp(c, e);
|
|
case Dict_kind:
|
|
return compiler_dict(c, e);
|
|
case Set_kind:
|
|
return compiler_set(c, e);
|
|
case GeneratorExp_kind:
|
|
return compiler_genexp(c, e);
|
|
case ListComp_kind:
|
|
return compiler_listcomp(c, e);
|
|
case SetComp_kind:
|
|
return compiler_setcomp(c, e);
|
|
case DictComp_kind:
|
|
return compiler_dictcomp(c, e);
|
|
case Yield_kind:
|
|
if (c->u->u_ste->ste_type != FunctionBlock) {
|
|
return compiler_error(c, loc, "'yield' outside function");
|
|
}
|
|
if (e->v.Yield.value) {
|
|
VISIT(c, expr, e->v.Yield.value);
|
|
}
|
|
else {
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
}
|
|
ADDOP_YIELD(c, loc);
|
|
break;
|
|
case YieldFrom_kind:
|
|
if (c->u->u_ste->ste_type != FunctionBlock) {
|
|
return compiler_error(c, loc, "'yield' outside function");
|
|
}
|
|
if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION) {
|
|
return compiler_error(c, loc, "'yield from' inside async function");
|
|
}
|
|
VISIT(c, expr, e->v.YieldFrom.value);
|
|
ADDOP(c, loc, GET_YIELD_FROM_ITER);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADD_YIELD_FROM(c, loc, 0);
|
|
break;
|
|
case Await_kind:
|
|
if (!IS_TOP_LEVEL_AWAIT(c)){
|
|
if (c->u->u_ste->ste_type != FunctionBlock){
|
|
return compiler_error(c, loc, "'await' outside function");
|
|
}
|
|
|
|
if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
|
|
c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION) {
|
|
return compiler_error(c, loc, "'await' outside async function");
|
|
}
|
|
}
|
|
|
|
VISIT(c, expr, e->v.Await.value);
|
|
ADDOP_I(c, loc, GET_AWAITABLE, 0);
|
|
ADDOP_LOAD_CONST(c, loc, Py_None);
|
|
ADD_YIELD_FROM(c, loc, 1);
|
|
break;
|
|
case Compare_kind:
|
|
return compiler_compare(c, e);
|
|
case Call_kind:
|
|
return compiler_call(c, e);
|
|
case Constant_kind:
|
|
ADDOP_LOAD_CONST(c, loc, e->v.Constant.value);
|
|
break;
|
|
case JoinedStr_kind:
|
|
return compiler_joined_str(c, e);
|
|
case FormattedValue_kind:
|
|
return compiler_formatted_value(c, e);
|
|
/* The following exprs can be assignment targets. */
|
|
case Attribute_kind:
|
|
VISIT(c, expr, e->v.Attribute.value);
|
|
loc = LOC(e);
|
|
loc = update_start_location_to_match_attr(c, loc, e);
|
|
switch (e->v.Attribute.ctx) {
|
|
case Load:
|
|
ADDOP_NAME(c, loc, LOAD_ATTR, e->v.Attribute.attr, names);
|
|
break;
|
|
case Store:
|
|
if (forbidden_name(c, loc, e->v.Attribute.attr, e->v.Attribute.ctx)) {
|
|
return ERROR;
|
|
}
|
|
ADDOP_NAME(c, loc, STORE_ATTR, e->v.Attribute.attr, names);
|
|
break;
|
|
case Del:
|
|
ADDOP_NAME(c, loc, DELETE_ATTR, e->v.Attribute.attr, names);
|
|
break;
|
|
}
|
|
break;
|
|
case Subscript_kind:
|
|
return compiler_subscript(c, e);
|
|
case Starred_kind:
|
|
switch (e->v.Starred.ctx) {
|
|
case Store:
|
|
/* In all legitimate cases, the Starred node was already replaced
|
|
* by compiler_list/compiler_tuple. XXX: is that okay? */
|
|
return compiler_error(c, loc,
|
|
"starred assignment target must be in a list or tuple");
|
|
default:
|
|
return compiler_error(c, loc,
|
|
"can't use starred expression here");
|
|
}
|
|
break;
|
|
case Slice_kind:
|
|
{
|
|
int n = compiler_slice(c, e);
|
|
RETURN_IF_ERROR(n);
|
|
ADDOP_I(c, loc, BUILD_SLICE, n);
|
|
break;
|
|
}
|
|
case Name_kind:
|
|
return compiler_nameop(c, loc, e->v.Name.id, e->v.Name.ctx);
|
|
/* child nodes of List and Tuple will have expr_context set */
|
|
case List_kind:
|
|
return compiler_list(c, e);
|
|
case Tuple_kind:
|
|
return compiler_tuple(c, e);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_expr(struct compiler *c, expr_ty e)
|
|
{
|
|
int res = compiler_visit_expr1(c, e);
|
|
return res;
|
|
}
|
|
|
|
static bool
|
|
is_two_element_slice(expr_ty s)
|
|
{
|
|
return s->kind == Slice_kind &&
|
|
s->v.Slice.step == NULL;
|
|
}
|
|
|
|
static int
|
|
compiler_augassign(struct compiler *c, stmt_ty s)
|
|
{
|
|
assert(s->kind == AugAssign_kind);
|
|
expr_ty e = s->v.AugAssign.target;
|
|
|
|
location loc = LOC(e);
|
|
|
|
switch (e->kind) {
|
|
case Attribute_kind:
|
|
VISIT(c, expr, e->v.Attribute.value);
|
|
ADDOP_I(c, loc, COPY, 1);
|
|
loc = update_start_location_to_match_attr(c, loc, e);
|
|
ADDOP_NAME(c, loc, LOAD_ATTR, e->v.Attribute.attr, names);
|
|
break;
|
|
case Subscript_kind:
|
|
VISIT(c, expr, e->v.Subscript.value);
|
|
if (is_two_element_slice(e->v.Subscript.slice)) {
|
|
RETURN_IF_ERROR(compiler_slice(c, e->v.Subscript.slice));
|
|
ADDOP_I(c, loc, COPY, 3);
|
|
ADDOP_I(c, loc, COPY, 3);
|
|
ADDOP_I(c, loc, COPY, 3);
|
|
ADDOP(c, loc, BINARY_SLICE);
|
|
}
|
|
else {
|
|
VISIT(c, expr, e->v.Subscript.slice);
|
|
ADDOP_I(c, loc, COPY, 2);
|
|
ADDOP_I(c, loc, COPY, 2);
|
|
ADDOP(c, loc, BINARY_SUBSCR);
|
|
}
|
|
break;
|
|
case Name_kind:
|
|
RETURN_IF_ERROR(compiler_nameop(c, loc, e->v.Name.id, Load));
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"invalid node type (%d) for augmented assignment",
|
|
e->kind);
|
|
return ERROR;
|
|
}
|
|
|
|
loc = LOC(s);
|
|
|
|
VISIT(c, expr, s->v.AugAssign.value);
|
|
ADDOP_INPLACE(c, loc, s->v.AugAssign.op);
|
|
|
|
loc = LOC(e);
|
|
|
|
switch (e->kind) {
|
|
case Attribute_kind:
|
|
loc = update_start_location_to_match_attr(c, loc, e);
|
|
ADDOP_I(c, loc, SWAP, 2);
|
|
ADDOP_NAME(c, loc, STORE_ATTR, e->v.Attribute.attr, names);
|
|
break;
|
|
case Subscript_kind:
|
|
if (is_two_element_slice(e->v.Subscript.slice)) {
|
|
ADDOP_I(c, loc, SWAP, 4);
|
|
ADDOP_I(c, loc, SWAP, 3);
|
|
ADDOP_I(c, loc, SWAP, 2);
|
|
ADDOP(c, loc, STORE_SLICE);
|
|
}
|
|
else {
|
|
ADDOP_I(c, loc, SWAP, 3);
|
|
ADDOP_I(c, loc, SWAP, 2);
|
|
ADDOP(c, loc, STORE_SUBSCR);
|
|
}
|
|
break;
|
|
case Name_kind:
|
|
return compiler_nameop(c, loc, e->v.Name.id, Store);
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
check_ann_expr(struct compiler *c, expr_ty e)
|
|
{
|
|
VISIT(c, expr, e);
|
|
ADDOP(c, LOC(e), POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
check_annotation(struct compiler *c, stmt_ty s)
|
|
{
|
|
/* Annotations of complex targets does not produce anything
|
|
under annotations future */
|
|
if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Annotations are only evaluated in a module or class. */
|
|
if (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
|
|
c->u->u_scope_type == COMPILER_SCOPE_CLASS) {
|
|
return check_ann_expr(c, s->v.AnnAssign.annotation);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
check_ann_subscr(struct compiler *c, expr_ty e)
|
|
{
|
|
/* We check that everything in a subscript is defined at runtime. */
|
|
switch (e->kind) {
|
|
case Slice_kind:
|
|
if (e->v.Slice.lower && check_ann_expr(c, e->v.Slice.lower) < 0) {
|
|
return ERROR;
|
|
}
|
|
if (e->v.Slice.upper && check_ann_expr(c, e->v.Slice.upper) < 0) {
|
|
return ERROR;
|
|
}
|
|
if (e->v.Slice.step && check_ann_expr(c, e->v.Slice.step) < 0) {
|
|
return ERROR;
|
|
}
|
|
return SUCCESS;
|
|
case Tuple_kind: {
|
|
/* extended slice */
|
|
asdl_expr_seq *elts = e->v.Tuple.elts;
|
|
Py_ssize_t i, n = asdl_seq_LEN(elts);
|
|
for (i = 0; i < n; i++) {
|
|
RETURN_IF_ERROR(check_ann_subscr(c, asdl_seq_GET(elts, i)));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
default:
|
|
return check_ann_expr(c, e);
|
|
}
|
|
}
|
|
|
|
static int
|
|
compiler_annassign(struct compiler *c, stmt_ty s)
|
|
{
|
|
location loc = LOC(s);
|
|
expr_ty targ = s->v.AnnAssign.target;
|
|
PyObject* mangled;
|
|
|
|
assert(s->kind == AnnAssign_kind);
|
|
|
|
/* We perform the actual assignment first. */
|
|
if (s->v.AnnAssign.value) {
|
|
VISIT(c, expr, s->v.AnnAssign.value);
|
|
VISIT(c, expr, targ);
|
|
}
|
|
switch (targ->kind) {
|
|
case Name_kind:
|
|
if (forbidden_name(c, loc, targ->v.Name.id, Store)) {
|
|
return ERROR;
|
|
}
|
|
/* If we have a simple name in a module or class, store annotation. */
|
|
if (s->v.AnnAssign.simple &&
|
|
(c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
|
|
c->u->u_scope_type == COMPILER_SCOPE_CLASS)) {
|
|
if (c->c_future.ff_features & CO_FUTURE_ANNOTATIONS) {
|
|
VISIT(c, annexpr, s->v.AnnAssign.annotation)
|
|
}
|
|
else {
|
|
VISIT(c, expr, s->v.AnnAssign.annotation);
|
|
}
|
|
ADDOP_NAME(c, loc, LOAD_NAME, &_Py_ID(__annotations__), names);
|
|
mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id);
|
|
ADDOP_LOAD_CONST_NEW(c, loc, mangled);
|
|
ADDOP(c, loc, STORE_SUBSCR);
|
|
}
|
|
break;
|
|
case Attribute_kind:
|
|
if (forbidden_name(c, loc, targ->v.Attribute.attr, Store)) {
|
|
return ERROR;
|
|
}
|
|
if (!s->v.AnnAssign.value &&
|
|
check_ann_expr(c, targ->v.Attribute.value) < 0) {
|
|
return ERROR;
|
|
}
|
|
break;
|
|
case Subscript_kind:
|
|
if (!s->v.AnnAssign.value &&
|
|
(check_ann_expr(c, targ->v.Subscript.value) < 0 ||
|
|
check_ann_subscr(c, targ->v.Subscript.slice) < 0)) {
|
|
return ERROR;
|
|
}
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"invalid node type (%d) for annotated assignment",
|
|
targ->kind);
|
|
return ERROR;
|
|
}
|
|
/* Annotation is evaluated last. */
|
|
if (!s->v.AnnAssign.simple && check_annotation(c, s) < 0) {
|
|
return ERROR;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Raises a SyntaxError and returns 0.
|
|
If something goes wrong, a different exception may be raised.
|
|
*/
|
|
|
|
static int
|
|
compiler_error(struct compiler *c, location loc,
|
|
const char *format, ...)
|
|
{
|
|
va_list vargs;
|
|
va_start(vargs, format);
|
|
PyObject *msg = PyUnicode_FromFormatV(format, vargs);
|
|
va_end(vargs);
|
|
if (msg == NULL) {
|
|
return ERROR;
|
|
}
|
|
PyObject *loc_obj = PyErr_ProgramTextObject(c->c_filename, loc.lineno);
|
|
if (loc_obj == NULL) {
|
|
loc_obj = Py_NewRef(Py_None);
|
|
}
|
|
PyObject *args = Py_BuildValue("O(OiiOii)", msg, c->c_filename,
|
|
loc.lineno, loc.col_offset + 1, loc_obj,
|
|
loc.end_lineno, loc.end_col_offset + 1);
|
|
Py_DECREF(msg);
|
|
if (args == NULL) {
|
|
goto exit;
|
|
}
|
|
PyErr_SetObject(PyExc_SyntaxError, args);
|
|
exit:
|
|
Py_DECREF(loc_obj);
|
|
Py_XDECREF(args);
|
|
return ERROR;
|
|
}
|
|
|
|
/* Emits a SyntaxWarning and returns 1 on success.
|
|
If a SyntaxWarning raised as error, replaces it with a SyntaxError
|
|
and returns 0.
|
|
*/
|
|
static int
|
|
compiler_warn(struct compiler *c, location loc,
|
|
const char *format, ...)
|
|
{
|
|
va_list vargs;
|
|
va_start(vargs, format);
|
|
PyObject *msg = PyUnicode_FromFormatV(format, vargs);
|
|
va_end(vargs);
|
|
if (msg == NULL) {
|
|
return ERROR;
|
|
}
|
|
if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename,
|
|
loc.lineno, NULL, NULL) < 0)
|
|
{
|
|
if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
|
|
/* Replace the SyntaxWarning exception with a SyntaxError
|
|
to get a more accurate error report */
|
|
PyErr_Clear();
|
|
assert(PyUnicode_AsUTF8(msg) != NULL);
|
|
compiler_error(c, loc, PyUnicode_AsUTF8(msg));
|
|
}
|
|
Py_DECREF(msg);
|
|
return ERROR;
|
|
}
|
|
Py_DECREF(msg);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_subscript(struct compiler *c, expr_ty e)
|
|
{
|
|
location loc = LOC(e);
|
|
expr_context_ty ctx = e->v.Subscript.ctx;
|
|
int op = 0;
|
|
|
|
if (ctx == Load) {
|
|
RETURN_IF_ERROR(check_subscripter(c, e->v.Subscript.value));
|
|
RETURN_IF_ERROR(check_index(c, e->v.Subscript.value, e->v.Subscript.slice));
|
|
}
|
|
|
|
VISIT(c, expr, e->v.Subscript.value);
|
|
if (is_two_element_slice(e->v.Subscript.slice) && ctx != Del) {
|
|
RETURN_IF_ERROR(compiler_slice(c, e->v.Subscript.slice));
|
|
if (ctx == Load) {
|
|
ADDOP(c, loc, BINARY_SLICE);
|
|
}
|
|
else {
|
|
assert(ctx == Store);
|
|
ADDOP(c, loc, STORE_SLICE);
|
|
}
|
|
}
|
|
else {
|
|
VISIT(c, expr, e->v.Subscript.slice);
|
|
switch (ctx) {
|
|
case Load: op = BINARY_SUBSCR; break;
|
|
case Store: op = STORE_SUBSCR; break;
|
|
case Del: op = DELETE_SUBSCR; break;
|
|
}
|
|
assert(op);
|
|
ADDOP(c, loc, op);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Returns the number of the values emitted,
|
|
* thus are needed to build the slice, or -1 if there is an error. */
|
|
static int
|
|
compiler_slice(struct compiler *c, expr_ty s)
|
|
{
|
|
int n = 2;
|
|
assert(s->kind == Slice_kind);
|
|
|
|
/* only handles the cases where BUILD_SLICE is emitted */
|
|
if (s->v.Slice.lower) {
|
|
VISIT(c, expr, s->v.Slice.lower);
|
|
}
|
|
else {
|
|
ADDOP_LOAD_CONST(c, LOC(s), Py_None);
|
|
}
|
|
|
|
if (s->v.Slice.upper) {
|
|
VISIT(c, expr, s->v.Slice.upper);
|
|
}
|
|
else {
|
|
ADDOP_LOAD_CONST(c, LOC(s), Py_None);
|
|
}
|
|
|
|
if (s->v.Slice.step) {
|
|
n++;
|
|
VISIT(c, expr, s->v.Slice.step);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
// PEP 634: Structural Pattern Matching
|
|
|
|
// To keep things simple, all compiler_pattern_* and pattern_helper_* routines
|
|
// follow the convention of consuming TOS (the subject for the given pattern)
|
|
// and calling jump_to_fail_pop on failure (no match).
|
|
|
|
// When calling into these routines, it's important that pc->on_top be kept
|
|
// updated to reflect the current number of items that we are using on the top
|
|
// of the stack: they will be popped on failure, and any name captures will be
|
|
// stored *underneath* them on success. This lets us defer all names stores
|
|
// until the *entire* pattern matches.
|
|
|
|
#define WILDCARD_CHECK(N) \
|
|
((N)->kind == MatchAs_kind && !(N)->v.MatchAs.name)
|
|
|
|
#define WILDCARD_STAR_CHECK(N) \
|
|
((N)->kind == MatchStar_kind && !(N)->v.MatchStar.name)
|
|
|
|
// Limit permitted subexpressions, even if the parser & AST validator let them through
|
|
#define MATCH_VALUE_EXPR(N) \
|
|
((N)->kind == Constant_kind || (N)->kind == Attribute_kind)
|
|
|
|
// Allocate or resize pc->fail_pop to allow for n items to be popped on failure.
|
|
static int
|
|
ensure_fail_pop(struct compiler *c, pattern_context *pc, Py_ssize_t n)
|
|
{
|
|
Py_ssize_t size = n + 1;
|
|
if (size <= pc->fail_pop_size) {
|
|
return SUCCESS;
|
|
}
|
|
Py_ssize_t needed = sizeof(jump_target_label) * size;
|
|
jump_target_label *resized = PyObject_Realloc(pc->fail_pop, needed);
|
|
if (resized == NULL) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
pc->fail_pop = resized;
|
|
while (pc->fail_pop_size < size) {
|
|
NEW_JUMP_TARGET_LABEL(c, new_block);
|
|
pc->fail_pop[pc->fail_pop_size++] = new_block;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
// Use op to jump to the correct fail_pop block.
|
|
static int
|
|
jump_to_fail_pop(struct compiler *c, location loc,
|
|
pattern_context *pc, int op)
|
|
{
|
|
// Pop any items on the top of the stack, plus any objects we were going to
|
|
// capture on success:
|
|
Py_ssize_t pops = pc->on_top + PyList_GET_SIZE(pc->stores);
|
|
RETURN_IF_ERROR(ensure_fail_pop(c, pc, pops));
|
|
ADDOP_JUMP(c, loc, op, pc->fail_pop[pops]);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// Build all of the fail_pop blocks and reset fail_pop.
|
|
static int
|
|
emit_and_reset_fail_pop(struct compiler *c, location loc,
|
|
pattern_context *pc)
|
|
{
|
|
if (!pc->fail_pop_size) {
|
|
assert(pc->fail_pop == NULL);
|
|
return SUCCESS;
|
|
}
|
|
while (--pc->fail_pop_size) {
|
|
USE_LABEL(c, pc->fail_pop[pc->fail_pop_size]);
|
|
if (codegen_addop_noarg(INSTR_SEQUENCE(c), POP_TOP, loc) < 0) {
|
|
pc->fail_pop_size = 0;
|
|
PyObject_Free(pc->fail_pop);
|
|
pc->fail_pop = NULL;
|
|
return ERROR;
|
|
}
|
|
}
|
|
USE_LABEL(c, pc->fail_pop[0]);
|
|
PyObject_Free(pc->fail_pop);
|
|
pc->fail_pop = NULL;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_error_duplicate_store(struct compiler *c, location loc, identifier n)
|
|
{
|
|
return compiler_error(c, loc,
|
|
"multiple assignments to name %R in pattern", n);
|
|
}
|
|
|
|
// Duplicate the effect of 3.10's ROT_* instructions using SWAPs.
|
|
static int
|
|
pattern_helper_rotate(struct compiler *c, location loc, Py_ssize_t count)
|
|
{
|
|
while (1 < count) {
|
|
ADDOP_I(c, loc, SWAP, count--);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
pattern_helper_store_name(struct compiler *c, location loc,
|
|
identifier n, pattern_context *pc)
|
|
{
|
|
if (n == NULL) {
|
|
ADDOP(c, loc, POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
if (forbidden_name(c, loc, n, Store)) {
|
|
return ERROR;
|
|
}
|
|
// Can't assign to the same name twice:
|
|
int duplicate = PySequence_Contains(pc->stores, n);
|
|
RETURN_IF_ERROR(duplicate);
|
|
if (duplicate) {
|
|
return compiler_error_duplicate_store(c, loc, n);
|
|
}
|
|
// Rotate this object underneath any items we need to preserve:
|
|
Py_ssize_t rotations = pc->on_top + PyList_GET_SIZE(pc->stores) + 1;
|
|
RETURN_IF_ERROR(pattern_helper_rotate(c, loc, rotations));
|
|
RETURN_IF_ERROR(PyList_Append(pc->stores, n));
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
static int
|
|
pattern_unpack_helper(struct compiler *c, location loc,
|
|
asdl_pattern_seq *elts)
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(elts);
|
|
int seen_star = 0;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
pattern_ty elt = asdl_seq_GET(elts, i);
|
|
if (elt->kind == MatchStar_kind && !seen_star) {
|
|
if ((i >= (1 << 8)) ||
|
|
(n-i-1 >= (INT_MAX >> 8))) {
|
|
return compiler_error(c, loc,
|
|
"too many expressions in "
|
|
"star-unpacking sequence pattern");
|
|
}
|
|
ADDOP_I(c, loc, UNPACK_EX, (i + ((n-i-1) << 8)));
|
|
seen_star = 1;
|
|
}
|
|
else if (elt->kind == MatchStar_kind) {
|
|
return compiler_error(c, loc,
|
|
"multiple starred expressions in sequence pattern");
|
|
}
|
|
}
|
|
if (!seen_star) {
|
|
ADDOP_I(c, loc, UNPACK_SEQUENCE, n);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
pattern_helper_sequence_unpack(struct compiler *c, location loc,
|
|
asdl_pattern_seq *patterns, Py_ssize_t star,
|
|
pattern_context *pc)
|
|
{
|
|
RETURN_IF_ERROR(pattern_unpack_helper(c, loc, patterns));
|
|
Py_ssize_t size = asdl_seq_LEN(patterns);
|
|
// We've now got a bunch of new subjects on the stack. They need to remain
|
|
// there after each subpattern match:
|
|
pc->on_top += size;
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
// One less item to keep track of each time we loop through:
|
|
pc->on_top--;
|
|
pattern_ty pattern = asdl_seq_GET(patterns, i);
|
|
RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
// Like pattern_helper_sequence_unpack, but uses BINARY_SUBSCR instead of
|
|
// UNPACK_SEQUENCE / UNPACK_EX. This is more efficient for patterns with a
|
|
// starred wildcard like [first, *_] / [first, *_, last] / [*_, last] / etc.
|
|
static int
|
|
pattern_helper_sequence_subscr(struct compiler *c, location loc,
|
|
asdl_pattern_seq *patterns, Py_ssize_t star,
|
|
pattern_context *pc)
|
|
{
|
|
// We need to keep the subject around for extracting elements:
|
|
pc->on_top++;
|
|
Py_ssize_t size = asdl_seq_LEN(patterns);
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
pattern_ty pattern = asdl_seq_GET(patterns, i);
|
|
if (WILDCARD_CHECK(pattern)) {
|
|
continue;
|
|
}
|
|
if (i == star) {
|
|
assert(WILDCARD_STAR_CHECK(pattern));
|
|
continue;
|
|
}
|
|
ADDOP_I(c, loc, COPY, 1);
|
|
if (i < star) {
|
|
ADDOP_LOAD_CONST_NEW(c, loc, PyLong_FromSsize_t(i));
|
|
}
|
|
else {
|
|
// The subject may not support negative indexing! Compute a
|
|
// nonnegative index:
|
|
ADDOP(c, loc, GET_LEN);
|
|
ADDOP_LOAD_CONST_NEW(c, loc, PyLong_FromSsize_t(size - i));
|
|
ADDOP_BINARY(c, loc, Sub);
|
|
}
|
|
ADDOP(c, loc, BINARY_SUBSCR);
|
|
RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
|
|
}
|
|
// Pop the subject, we're done with it:
|
|
pc->on_top--;
|
|
ADDOP(c, loc, POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
|
|
// Like compiler_pattern, but turn off checks for irrefutability.
|
|
static int
|
|
compiler_pattern_subpattern(struct compiler *c,
|
|
pattern_ty p, pattern_context *pc)
|
|
{
|
|
int allow_irrefutable = pc->allow_irrefutable;
|
|
pc->allow_irrefutable = 1;
|
|
RETURN_IF_ERROR(compiler_pattern(c, p, pc));
|
|
pc->allow_irrefutable = allow_irrefutable;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_pattern_as(struct compiler *c, pattern_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchAs_kind);
|
|
if (p->v.MatchAs.pattern == NULL) {
|
|
// An irrefutable match:
|
|
if (!pc->allow_irrefutable) {
|
|
if (p->v.MatchAs.name) {
|
|
const char *e = "name capture %R makes remaining patterns unreachable";
|
|
return compiler_error(c, LOC(p), e, p->v.MatchAs.name);
|
|
}
|
|
const char *e = "wildcard makes remaining patterns unreachable";
|
|
return compiler_error(c, LOC(p), e);
|
|
}
|
|
return pattern_helper_store_name(c, LOC(p), p->v.MatchAs.name, pc);
|
|
}
|
|
// Need to make a copy for (possibly) storing later:
|
|
pc->on_top++;
|
|
ADDOP_I(c, LOC(p), COPY, 1);
|
|
RETURN_IF_ERROR(compiler_pattern(c, p->v.MatchAs.pattern, pc));
|
|
// Success! Store it:
|
|
pc->on_top--;
|
|
RETURN_IF_ERROR(pattern_helper_store_name(c, LOC(p), p->v.MatchAs.name, pc));
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_pattern_star(struct compiler *c, pattern_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchStar_kind);
|
|
RETURN_IF_ERROR(
|
|
pattern_helper_store_name(c, LOC(p), p->v.MatchStar.name, pc));
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
validate_kwd_attrs(struct compiler *c, asdl_identifier_seq *attrs, asdl_pattern_seq* patterns)
|
|
{
|
|
// Any errors will point to the pattern rather than the arg name as the
|
|
// parser is only supplying identifiers rather than Name or keyword nodes
|
|
Py_ssize_t nattrs = asdl_seq_LEN(attrs);
|
|
for (Py_ssize_t i = 0; i < nattrs; i++) {
|
|
identifier attr = ((identifier)asdl_seq_GET(attrs, i));
|
|
location loc = LOC((pattern_ty) asdl_seq_GET(patterns, i));
|
|
if (forbidden_name(c, loc, attr, Store)) {
|
|
return ERROR;
|
|
}
|
|
for (Py_ssize_t j = i + 1; j < nattrs; j++) {
|
|
identifier other = ((identifier)asdl_seq_GET(attrs, j));
|
|
if (!PyUnicode_Compare(attr, other)) {
|
|
location loc = LOC((pattern_ty) asdl_seq_GET(patterns, j));
|
|
compiler_error(c, loc, "attribute name repeated in class pattern: %U", attr);
|
|
return ERROR;
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_pattern_class(struct compiler *c, pattern_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchClass_kind);
|
|
asdl_pattern_seq *patterns = p->v.MatchClass.patterns;
|
|
asdl_identifier_seq *kwd_attrs = p->v.MatchClass.kwd_attrs;
|
|
asdl_pattern_seq *kwd_patterns = p->v.MatchClass.kwd_patterns;
|
|
Py_ssize_t nargs = asdl_seq_LEN(patterns);
|
|
Py_ssize_t nattrs = asdl_seq_LEN(kwd_attrs);
|
|
Py_ssize_t nkwd_patterns = asdl_seq_LEN(kwd_patterns);
|
|
if (nattrs != nkwd_patterns) {
|
|
// AST validator shouldn't let this happen, but if it does,
|
|
// just fail, don't crash out of the interpreter
|
|
const char * e = "kwd_attrs (%d) / kwd_patterns (%d) length mismatch in class pattern";
|
|
return compiler_error(c, LOC(p), e, nattrs, nkwd_patterns);
|
|
}
|
|
if (INT_MAX < nargs || INT_MAX < nargs + nattrs - 1) {
|
|
const char *e = "too many sub-patterns in class pattern %R";
|
|
return compiler_error(c, LOC(p), e, p->v.MatchClass.cls);
|
|
}
|
|
if (nattrs) {
|
|
RETURN_IF_ERROR(validate_kwd_attrs(c, kwd_attrs, kwd_patterns));
|
|
}
|
|
VISIT(c, expr, p->v.MatchClass.cls);
|
|
PyObject *attr_names = PyTuple_New(nattrs);
|
|
if (attr_names == NULL) {
|
|
return ERROR;
|
|
}
|
|
Py_ssize_t i;
|
|
for (i = 0; i < nattrs; i++) {
|
|
PyObject *name = asdl_seq_GET(kwd_attrs, i);
|
|
PyTuple_SET_ITEM(attr_names, i, Py_NewRef(name));
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, LOC(p), attr_names);
|
|
ADDOP_I(c, LOC(p), MATCH_CLASS, nargs);
|
|
ADDOP_I(c, LOC(p), COPY, 1);
|
|
ADDOP_LOAD_CONST(c, LOC(p), Py_None);
|
|
ADDOP_I(c, LOC(p), IS_OP, 1);
|
|
// TOS is now a tuple of (nargs + nattrs) attributes (or None):
|
|
pc->on_top++;
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, nargs + nattrs);
|
|
pc->on_top += nargs + nattrs - 1;
|
|
for (i = 0; i < nargs + nattrs; i++) {
|
|
pc->on_top--;
|
|
pattern_ty pattern;
|
|
if (i < nargs) {
|
|
// Positional:
|
|
pattern = asdl_seq_GET(patterns, i);
|
|
}
|
|
else {
|
|
// Keyword:
|
|
pattern = asdl_seq_GET(kwd_patterns, i - nargs);
|
|
}
|
|
if (WILDCARD_CHECK(pattern)) {
|
|
ADDOP(c, LOC(p), POP_TOP);
|
|
continue;
|
|
}
|
|
RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
|
|
}
|
|
// Success! Pop the tuple of attributes:
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_pattern_mapping(struct compiler *c, pattern_ty p,
|
|
pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchMapping_kind);
|
|
asdl_expr_seq *keys = p->v.MatchMapping.keys;
|
|
asdl_pattern_seq *patterns = p->v.MatchMapping.patterns;
|
|
Py_ssize_t size = asdl_seq_LEN(keys);
|
|
Py_ssize_t npatterns = asdl_seq_LEN(patterns);
|
|
if (size != npatterns) {
|
|
// AST validator shouldn't let this happen, but if it does,
|
|
// just fail, don't crash out of the interpreter
|
|
const char * e = "keys (%d) / patterns (%d) length mismatch in mapping pattern";
|
|
return compiler_error(c, LOC(p), e, size, npatterns);
|
|
}
|
|
// We have a double-star target if "rest" is set
|
|
PyObject *star_target = p->v.MatchMapping.rest;
|
|
// We need to keep the subject on top during the mapping and length checks:
|
|
pc->on_top++;
|
|
ADDOP(c, LOC(p), MATCH_MAPPING);
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
if (!size && !star_target) {
|
|
// If the pattern is just "{}", we're done! Pop the subject:
|
|
pc->on_top--;
|
|
ADDOP(c, LOC(p), POP_TOP);
|
|
return SUCCESS;
|
|
}
|
|
if (size) {
|
|
// If the pattern has any keys in it, perform a length check:
|
|
ADDOP(c, LOC(p), GET_LEN);
|
|
ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size));
|
|
ADDOP_COMPARE(c, LOC(p), GtE);
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
}
|
|
if (INT_MAX < size - 1) {
|
|
return compiler_error(c, LOC(p), "too many sub-patterns in mapping pattern");
|
|
}
|
|
// Collect all of the keys into a tuple for MATCH_KEYS and
|
|
// **rest. They can either be dotted names or literals:
|
|
|
|
// Maintaining a set of Constant_kind kind keys allows us to raise a
|
|
// SyntaxError in the case of duplicates.
|
|
PyObject *seen = PySet_New(NULL);
|
|
if (seen == NULL) {
|
|
return ERROR;
|
|
}
|
|
|
|
// NOTE: goto error on failure in the loop below to avoid leaking `seen`
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
expr_ty key = asdl_seq_GET(keys, i);
|
|
if (key == NULL) {
|
|
const char *e = "can't use NULL keys in MatchMapping "
|
|
"(set 'rest' parameter instead)";
|
|
location loc = LOC((pattern_ty) asdl_seq_GET(patterns, i));
|
|
compiler_error(c, loc, e);
|
|
goto error;
|
|
}
|
|
|
|
if (key->kind == Constant_kind) {
|
|
int in_seen = PySet_Contains(seen, key->v.Constant.value);
|
|
if (in_seen < 0) {
|
|
goto error;
|
|
}
|
|
if (in_seen) {
|
|
const char *e = "mapping pattern checks duplicate key (%R)";
|
|
compiler_error(c, LOC(p), e, key->v.Constant.value);
|
|
goto error;
|
|
}
|
|
if (PySet_Add(seen, key->v.Constant.value)) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
else if (key->kind != Attribute_kind) {
|
|
const char *e = "mapping pattern keys may only match literals and attribute lookups";
|
|
compiler_error(c, LOC(p), e);
|
|
goto error;
|
|
}
|
|
if (compiler_visit_expr(c, key) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
// all keys have been checked; there are no duplicates
|
|
Py_DECREF(seen);
|
|
|
|
ADDOP_I(c, LOC(p), BUILD_TUPLE, size);
|
|
ADDOP(c, LOC(p), MATCH_KEYS);
|
|
// There's now a tuple of keys and a tuple of values on top of the subject:
|
|
pc->on_top += 2;
|
|
ADDOP_I(c, LOC(p), COPY, 1);
|
|
ADDOP_LOAD_CONST(c, LOC(p), Py_None);
|
|
ADDOP_I(c, LOC(p), IS_OP, 1);
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
// So far so good. Use that tuple of values on the stack to match
|
|
// sub-patterns against:
|
|
ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, size);
|
|
pc->on_top += size - 1;
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
pc->on_top--;
|
|
pattern_ty pattern = asdl_seq_GET(patterns, i);
|
|
RETURN_IF_ERROR(compiler_pattern_subpattern(c, pattern, pc));
|
|
}
|
|
// If we get this far, it's a match! Whatever happens next should consume
|
|
// the tuple of keys and the subject:
|
|
pc->on_top -= 2;
|
|
if (star_target) {
|
|
// If we have a starred name, bind a dict of remaining items to it (this may
|
|
// seem a bit inefficient, but keys is rarely big enough to actually impact
|
|
// runtime):
|
|
// rest = dict(TOS1)
|
|
// for key in TOS:
|
|
// del rest[key]
|
|
ADDOP_I(c, LOC(p), BUILD_MAP, 0); // [subject, keys, empty]
|
|
ADDOP_I(c, LOC(p), SWAP, 3); // [empty, keys, subject]
|
|
ADDOP_I(c, LOC(p), DICT_UPDATE, 2); // [copy, keys]
|
|
ADDOP_I(c, LOC(p), UNPACK_SEQUENCE, size); // [copy, keys...]
|
|
while (size) {
|
|
ADDOP_I(c, LOC(p), COPY, 1 + size--); // [copy, keys..., copy]
|
|
ADDOP_I(c, LOC(p), SWAP, 2); // [copy, keys..., copy, key]
|
|
ADDOP(c, LOC(p), DELETE_SUBSCR); // [copy, keys...]
|
|
}
|
|
RETURN_IF_ERROR(pattern_helper_store_name(c, LOC(p), star_target, pc));
|
|
}
|
|
else {
|
|
ADDOP(c, LOC(p), POP_TOP); // Tuple of keys.
|
|
ADDOP(c, LOC(p), POP_TOP); // Subject.
|
|
}
|
|
return SUCCESS;
|
|
|
|
error:
|
|
Py_DECREF(seen);
|
|
return ERROR;
|
|
}
|
|
|
|
static int
|
|
compiler_pattern_or(struct compiler *c, pattern_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchOr_kind);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
Py_ssize_t size = asdl_seq_LEN(p->v.MatchOr.patterns);
|
|
assert(size > 1);
|
|
// We're going to be messing with pc. Keep the original info handy:
|
|
pattern_context old_pc = *pc;
|
|
Py_INCREF(pc->stores);
|
|
// control is the list of names bound by the first alternative. It is used
|
|
// for checking different name bindings in alternatives, and for correcting
|
|
// the order in which extracted elements are placed on the stack.
|
|
PyObject *control = NULL;
|
|
// NOTE: We can't use returning macros anymore! goto error on error.
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
pattern_ty alt = asdl_seq_GET(p->v.MatchOr.patterns, i);
|
|
PyObject *pc_stores = PyList_New(0);
|
|
if (pc_stores == NULL) {
|
|
goto error;
|
|
}
|
|
Py_SETREF(pc->stores, pc_stores);
|
|
// An irrefutable sub-pattern must be last, if it is allowed at all:
|
|
pc->allow_irrefutable = (i == size - 1) && old_pc.allow_irrefutable;
|
|
pc->fail_pop = NULL;
|
|
pc->fail_pop_size = 0;
|
|
pc->on_top = 0;
|
|
if (codegen_addop_i(INSTR_SEQUENCE(c), COPY, 1, LOC(alt)) < 0 ||
|
|
compiler_pattern(c, alt, pc) < 0) {
|
|
goto error;
|
|
}
|
|
// Success!
|
|
Py_ssize_t nstores = PyList_GET_SIZE(pc->stores);
|
|
if (!i) {
|
|
// This is the first alternative, so save its stores as a "control"
|
|
// for the others (they can't bind a different set of names, and
|
|
// might need to be reordered):
|
|
assert(control == NULL);
|
|
control = Py_NewRef(pc->stores);
|
|
}
|
|
else if (nstores != PyList_GET_SIZE(control)) {
|
|
goto diff;
|
|
}
|
|
else if (nstores) {
|
|
// There were captures. Check to see if we differ from control:
|
|
Py_ssize_t icontrol = nstores;
|
|
while (icontrol--) {
|
|
PyObject *name = PyList_GET_ITEM(control, icontrol);
|
|
Py_ssize_t istores = PySequence_Index(pc->stores, name);
|
|
if (istores < 0) {
|
|
PyErr_Clear();
|
|
goto diff;
|
|
}
|
|
if (icontrol != istores) {
|
|
// Reorder the names on the stack to match the order of the
|
|
// names in control. There's probably a better way of doing
|
|
// this; the current solution is potentially very
|
|
// inefficient when each alternative subpattern binds lots
|
|
// of names in different orders. It's fine for reasonable
|
|
// cases, though, and the peephole optimizer will ensure
|
|
// that the final code is as efficient as possible.
|
|
assert(istores < icontrol);
|
|
Py_ssize_t rotations = istores + 1;
|
|
// Perform the same rotation on pc->stores:
|
|
PyObject *rotated = PyList_GetSlice(pc->stores, 0,
|
|
rotations);
|
|
if (rotated == NULL ||
|
|
PyList_SetSlice(pc->stores, 0, rotations, NULL) ||
|
|
PyList_SetSlice(pc->stores, icontrol - istores,
|
|
icontrol - istores, rotated))
|
|
{
|
|
Py_XDECREF(rotated);
|
|
goto error;
|
|
}
|
|
Py_DECREF(rotated);
|
|
// That just did:
|
|
// rotated = pc_stores[:rotations]
|
|
// del pc_stores[:rotations]
|
|
// pc_stores[icontrol-istores:icontrol-istores] = rotated
|
|
// Do the same thing to the stack, using several
|
|
// rotations:
|
|
while (rotations--) {
|
|
if (pattern_helper_rotate(c, LOC(alt), icontrol + 1) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
assert(control);
|
|
if (codegen_addop_j(INSTR_SEQUENCE(c), LOC(alt), JUMP, end) < 0 ||
|
|
emit_and_reset_fail_pop(c, LOC(alt), pc) < 0)
|
|
{
|
|
goto error;
|
|
}
|
|
}
|
|
Py_DECREF(pc->stores);
|
|
*pc = old_pc;
|
|
Py_INCREF(pc->stores);
|
|
// Need to NULL this for the PyObject_Free call in the error block.
|
|
old_pc.fail_pop = NULL;
|
|
// No match. Pop the remaining copy of the subject and fail:
|
|
if (codegen_addop_noarg(INSTR_SEQUENCE(c), POP_TOP, LOC(p)) < 0 ||
|
|
jump_to_fail_pop(c, LOC(p), pc, JUMP) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
USE_LABEL(c, end);
|
|
Py_ssize_t nstores = PyList_GET_SIZE(control);
|
|
// There's a bunch of stuff on the stack between where the new stores
|
|
// are and where they need to be:
|
|
// - The other stores.
|
|
// - A copy of the subject.
|
|
// - Anything else that may be on top of the stack.
|
|
// - Any previous stores we've already stashed away on the stack.
|
|
Py_ssize_t nrots = nstores + 1 + pc->on_top + PyList_GET_SIZE(pc->stores);
|
|
for (Py_ssize_t i = 0; i < nstores; i++) {
|
|
// Rotate this capture to its proper place on the stack:
|
|
if (pattern_helper_rotate(c, LOC(p), nrots) < 0) {
|
|
goto error;
|
|
}
|
|
// Update the list of previous stores with this new name, checking for
|
|
// duplicates:
|
|
PyObject *name = PyList_GET_ITEM(control, i);
|
|
int dupe = PySequence_Contains(pc->stores, name);
|
|
if (dupe < 0) {
|
|
goto error;
|
|
}
|
|
if (dupe) {
|
|
compiler_error_duplicate_store(c, LOC(p), name);
|
|
goto error;
|
|
}
|
|
if (PyList_Append(pc->stores, name)) {
|
|
goto error;
|
|
}
|
|
}
|
|
Py_DECREF(old_pc.stores);
|
|
Py_DECREF(control);
|
|
// NOTE: Returning macros are safe again.
|
|
// Pop the copy of the subject:
|
|
ADDOP(c, LOC(p), POP_TOP);
|
|
return SUCCESS;
|
|
diff:
|
|
compiler_error(c, LOC(p), "alternative patterns bind different names");
|
|
error:
|
|
PyObject_Free(old_pc.fail_pop);
|
|
Py_DECREF(old_pc.stores);
|
|
Py_XDECREF(control);
|
|
return ERROR;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_sequence(struct compiler *c, pattern_ty p,
|
|
pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchSequence_kind);
|
|
asdl_pattern_seq *patterns = p->v.MatchSequence.patterns;
|
|
Py_ssize_t size = asdl_seq_LEN(patterns);
|
|
Py_ssize_t star = -1;
|
|
int only_wildcard = 1;
|
|
int star_wildcard = 0;
|
|
// Find a starred name, if it exists. There may be at most one:
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
pattern_ty pattern = asdl_seq_GET(patterns, i);
|
|
if (pattern->kind == MatchStar_kind) {
|
|
if (star >= 0) {
|
|
const char *e = "multiple starred names in sequence pattern";
|
|
return compiler_error(c, LOC(p), e);
|
|
}
|
|
star_wildcard = WILDCARD_STAR_CHECK(pattern);
|
|
only_wildcard &= star_wildcard;
|
|
star = i;
|
|
continue;
|
|
}
|
|
only_wildcard &= WILDCARD_CHECK(pattern);
|
|
}
|
|
// We need to keep the subject on top during the sequence and length checks:
|
|
pc->on_top++;
|
|
ADDOP(c, LOC(p), MATCH_SEQUENCE);
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
if (star < 0) {
|
|
// No star: len(subject) == size
|
|
ADDOP(c, LOC(p), GET_LEN);
|
|
ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size));
|
|
ADDOP_COMPARE(c, LOC(p), Eq);
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
}
|
|
else if (size > 1) {
|
|
// Star: len(subject) >= size - 1
|
|
ADDOP(c, LOC(p), GET_LEN);
|
|
ADDOP_LOAD_CONST_NEW(c, LOC(p), PyLong_FromSsize_t(size - 1));
|
|
ADDOP_COMPARE(c, LOC(p), GtE);
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
}
|
|
// Whatever comes next should consume the subject:
|
|
pc->on_top--;
|
|
if (only_wildcard) {
|
|
// Patterns like: [] / [_] / [_, _] / [*_] / [_, *_] / [_, _, *_] / etc.
|
|
ADDOP(c, LOC(p), POP_TOP);
|
|
}
|
|
else if (star_wildcard) {
|
|
RETURN_IF_ERROR(pattern_helper_sequence_subscr(c, LOC(p), patterns, star, pc));
|
|
}
|
|
else {
|
|
RETURN_IF_ERROR(pattern_helper_sequence_unpack(c, LOC(p), patterns, star, pc));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_pattern_value(struct compiler *c, pattern_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchValue_kind);
|
|
expr_ty value = p->v.MatchValue.value;
|
|
if (!MATCH_VALUE_EXPR(value)) {
|
|
const char *e = "patterns may only match literals and attribute lookups";
|
|
return compiler_error(c, LOC(p), e);
|
|
}
|
|
VISIT(c, expr, value);
|
|
ADDOP_COMPARE(c, LOC(p), Eq);
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_pattern_singleton(struct compiler *c, pattern_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchSingleton_kind);
|
|
ADDOP_LOAD_CONST(c, LOC(p), p->v.MatchSingleton.value);
|
|
ADDOP_COMPARE(c, LOC(p), Is);
|
|
RETURN_IF_ERROR(jump_to_fail_pop(c, LOC(p), pc, POP_JUMP_IF_FALSE));
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_pattern(struct compiler *c, pattern_ty p, pattern_context *pc)
|
|
{
|
|
switch (p->kind) {
|
|
case MatchValue_kind:
|
|
return compiler_pattern_value(c, p, pc);
|
|
case MatchSingleton_kind:
|
|
return compiler_pattern_singleton(c, p, pc);
|
|
case MatchSequence_kind:
|
|
return compiler_pattern_sequence(c, p, pc);
|
|
case MatchMapping_kind:
|
|
return compiler_pattern_mapping(c, p, pc);
|
|
case MatchClass_kind:
|
|
return compiler_pattern_class(c, p, pc);
|
|
case MatchStar_kind:
|
|
return compiler_pattern_star(c, p, pc);
|
|
case MatchAs_kind:
|
|
return compiler_pattern_as(c, p, pc);
|
|
case MatchOr_kind:
|
|
return compiler_pattern_or(c, p, pc);
|
|
}
|
|
// AST validator shouldn't let this happen, but if it does,
|
|
// just fail, don't crash out of the interpreter
|
|
const char *e = "invalid match pattern node in AST (kind=%d)";
|
|
return compiler_error(c, LOC(p), e, p->kind);
|
|
}
|
|
|
|
static int
|
|
compiler_match_inner(struct compiler *c, stmt_ty s, pattern_context *pc)
|
|
{
|
|
VISIT(c, expr, s->v.Match.subject);
|
|
NEW_JUMP_TARGET_LABEL(c, end);
|
|
Py_ssize_t cases = asdl_seq_LEN(s->v.Match.cases);
|
|
assert(cases > 0);
|
|
match_case_ty m = asdl_seq_GET(s->v.Match.cases, cases - 1);
|
|
int has_default = WILDCARD_CHECK(m->pattern) && 1 < cases;
|
|
for (Py_ssize_t i = 0; i < cases - has_default; i++) {
|
|
m = asdl_seq_GET(s->v.Match.cases, i);
|
|
// Only copy the subject if we're *not* on the last case:
|
|
if (i != cases - has_default - 1) {
|
|
ADDOP_I(c, LOC(m->pattern), COPY, 1);
|
|
}
|
|
pc->stores = PyList_New(0);
|
|
if (pc->stores == NULL) {
|
|
return ERROR;
|
|
}
|
|
// Irrefutable cases must be either guarded, last, or both:
|
|
pc->allow_irrefutable = m->guard != NULL || i == cases - 1;
|
|
pc->fail_pop = NULL;
|
|
pc->fail_pop_size = 0;
|
|
pc->on_top = 0;
|
|
// NOTE: Can't use returning macros here (they'll leak pc->stores)!
|
|
if (compiler_pattern(c, m->pattern, pc) < 0) {
|
|
Py_DECREF(pc->stores);
|
|
return ERROR;
|
|
}
|
|
assert(!pc->on_top);
|
|
// It's a match! Store all of the captured names (they're on the stack).
|
|
Py_ssize_t nstores = PyList_GET_SIZE(pc->stores);
|
|
for (Py_ssize_t n = 0; n < nstores; n++) {
|
|
PyObject *name = PyList_GET_ITEM(pc->stores, n);
|
|
if (compiler_nameop(c, LOC(m->pattern), name, Store) < 0) {
|
|
Py_DECREF(pc->stores);
|
|
return ERROR;
|
|
}
|
|
}
|
|
Py_DECREF(pc->stores);
|
|
// NOTE: Returning macros are safe again.
|
|
if (m->guard) {
|
|
RETURN_IF_ERROR(ensure_fail_pop(c, pc, 0));
|
|
RETURN_IF_ERROR(compiler_jump_if(c, LOC(m->pattern), m->guard, pc->fail_pop[0], 0));
|
|
}
|
|
// Success! Pop the subject off, we're done with it:
|
|
if (i != cases - has_default - 1) {
|
|
ADDOP(c, LOC(m->pattern), POP_TOP);
|
|
}
|
|
VISIT_SEQ(c, stmt, m->body);
|
|
ADDOP_JUMP(c, NO_LOCATION, JUMP, end);
|
|
// If the pattern fails to match, we want the line number of the
|
|
// cleanup to be associated with the failed pattern, not the last line
|
|
// of the body
|
|
RETURN_IF_ERROR(emit_and_reset_fail_pop(c, LOC(m->pattern), pc));
|
|
}
|
|
if (has_default) {
|
|
// A trailing "case _" is common, and lets us save a bit of redundant
|
|
// pushing and popping in the loop above:
|
|
m = asdl_seq_GET(s->v.Match.cases, cases - 1);
|
|
if (cases == 1) {
|
|
// No matches. Done with the subject:
|
|
ADDOP(c, LOC(m->pattern), POP_TOP);
|
|
}
|
|
else {
|
|
// Show line coverage for default case (it doesn't create bytecode)
|
|
ADDOP(c, LOC(m->pattern), NOP);
|
|
}
|
|
if (m->guard) {
|
|
RETURN_IF_ERROR(compiler_jump_if(c, LOC(m->pattern), m->guard, end, 0));
|
|
}
|
|
VISIT_SEQ(c, stmt, m->body);
|
|
}
|
|
USE_LABEL(c, end);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
compiler_match(struct compiler *c, stmt_ty s)
|
|
{
|
|
pattern_context pc;
|
|
pc.fail_pop = NULL;
|
|
int result = compiler_match_inner(c, s, &pc);
|
|
PyObject_Free(pc.fail_pop);
|
|
return result;
|
|
}
|
|
|
|
#undef WILDCARD_CHECK
|
|
#undef WILDCARD_STAR_CHECK
|
|
|
|
|
|
/* End of the compiler section, beginning of the assembler section */
|
|
|
|
|
|
struct assembler {
|
|
PyObject *a_bytecode; /* bytes containing bytecode */
|
|
int a_offset; /* offset into bytecode */
|
|
PyObject *a_except_table; /* bytes containing exception table */
|
|
int a_except_table_off; /* offset into exception table */
|
|
/* Location Info */
|
|
int a_lineno; /* lineno of last emitted instruction */
|
|
PyObject* a_linetable; /* bytes containing location info */
|
|
int a_location_off; /* offset of last written location info frame */
|
|
};
|
|
|
|
static basicblock**
|
|
make_cfg_traversal_stack(basicblock *entryblock) {
|
|
int nblocks = 0;
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
b->b_visited = 0;
|
|
nblocks++;
|
|
}
|
|
basicblock **stack = (basicblock **)PyMem_Malloc(sizeof(basicblock *) * nblocks);
|
|
if (!stack) {
|
|
PyErr_NoMemory();
|
|
}
|
|
return stack;
|
|
}
|
|
|
|
Py_LOCAL_INLINE(void)
|
|
stackdepth_push(basicblock ***sp, basicblock *b, int depth)
|
|
{
|
|
assert(b->b_startdepth < 0 || b->b_startdepth == depth);
|
|
if (b->b_startdepth < depth && b->b_startdepth < 100) {
|
|
assert(b->b_startdepth < 0);
|
|
b->b_startdepth = depth;
|
|
*(*sp)++ = b;
|
|
}
|
|
}
|
|
|
|
/* Find the flow path that needs the largest stack. We assume that
|
|
* cycles in the flow graph have no net effect on the stack depth.
|
|
*/
|
|
static int
|
|
stackdepth(basicblock *entryblock, int code_flags)
|
|
{
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
b->b_startdepth = INT_MIN;
|
|
}
|
|
basicblock **stack = make_cfg_traversal_stack(entryblock);
|
|
if (!stack) {
|
|
return ERROR;
|
|
}
|
|
|
|
int maxdepth = 0;
|
|
basicblock **sp = stack;
|
|
if (code_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
|
|
stackdepth_push(&sp, entryblock, 1);
|
|
} else {
|
|
stackdepth_push(&sp, entryblock, 0);
|
|
}
|
|
|
|
while (sp != stack) {
|
|
basicblock *b = *--sp;
|
|
int depth = b->b_startdepth;
|
|
assert(depth >= 0);
|
|
basicblock *next = b->b_next;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
int effect = stack_effect(instr->i_opcode, instr->i_oparg, 0);
|
|
if (effect == PY_INVALID_STACK_EFFECT) {
|
|
PyErr_Format(PyExc_SystemError,
|
|
"compiler stack_effect(opcode=%d, arg=%i) failed",
|
|
instr->i_opcode, instr->i_oparg);
|
|
return ERROR;
|
|
}
|
|
int new_depth = depth + effect;
|
|
assert(new_depth >= 0); /* invalid code or bug in stackdepth() */
|
|
if (new_depth > maxdepth) {
|
|
maxdepth = new_depth;
|
|
}
|
|
if (HAS_TARGET(instr->i_opcode)) {
|
|
effect = stack_effect(instr->i_opcode, instr->i_oparg, 1);
|
|
assert(effect != PY_INVALID_STACK_EFFECT);
|
|
int target_depth = depth + effect;
|
|
assert(target_depth >= 0); /* invalid code or bug in stackdepth() */
|
|
if (target_depth > maxdepth) {
|
|
maxdepth = target_depth;
|
|
}
|
|
stackdepth_push(&sp, instr->i_target, target_depth);
|
|
}
|
|
depth = new_depth;
|
|
assert(!IS_ASSEMBLER_OPCODE(instr->i_opcode));
|
|
if (IS_UNCONDITIONAL_JUMP_OPCODE(instr->i_opcode) ||
|
|
IS_SCOPE_EXIT_OPCODE(instr->i_opcode))
|
|
{
|
|
/* remaining code is dead */
|
|
next = NULL;
|
|
break;
|
|
}
|
|
}
|
|
if (next != NULL) {
|
|
assert(BB_HAS_FALLTHROUGH(b));
|
|
stackdepth_push(&sp, next, depth);
|
|
}
|
|
}
|
|
PyMem_Free(stack);
|
|
return maxdepth;
|
|
}
|
|
|
|
static int
|
|
assemble_init(struct assembler *a, int firstlineno)
|
|
{
|
|
memset(a, 0, sizeof(struct assembler));
|
|
a->a_lineno = firstlineno;
|
|
a->a_linetable = NULL;
|
|
a->a_location_off = 0;
|
|
a->a_except_table = NULL;
|
|
a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE);
|
|
if (a->a_bytecode == NULL) {
|
|
goto error;
|
|
}
|
|
a->a_linetable = PyBytes_FromStringAndSize(NULL, DEFAULT_CNOTAB_SIZE);
|
|
if (a->a_linetable == NULL) {
|
|
goto error;
|
|
}
|
|
a->a_except_table = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE);
|
|
if (a->a_except_table == NULL) {
|
|
goto error;
|
|
}
|
|
return SUCCESS;
|
|
error:
|
|
Py_XDECREF(a->a_bytecode);
|
|
Py_XDECREF(a->a_linetable);
|
|
Py_XDECREF(a->a_except_table);
|
|
return ERROR;
|
|
}
|
|
|
|
static void
|
|
assemble_free(struct assembler *a)
|
|
{
|
|
Py_XDECREF(a->a_bytecode);
|
|
Py_XDECREF(a->a_linetable);
|
|
Py_XDECREF(a->a_except_table);
|
|
}
|
|
|
|
static int
|
|
blocksize(basicblock *b)
|
|
{
|
|
int size = 0;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
size += instr_size(&b->b_instr[i]);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static basicblock *
|
|
push_except_block(ExceptStack *stack, struct cfg_instr *setup) {
|
|
assert(is_block_push(setup));
|
|
int opcode = setup->i_opcode;
|
|
basicblock * target = setup->i_target;
|
|
if (opcode == SETUP_WITH || opcode == SETUP_CLEANUP) {
|
|
target->b_preserve_lasti = 1;
|
|
}
|
|
stack->handlers[++stack->depth] = target;
|
|
return target;
|
|
}
|
|
|
|
static basicblock *
|
|
pop_except_block(ExceptStack *stack) {
|
|
assert(stack->depth > 0);
|
|
return stack->handlers[--stack->depth];
|
|
}
|
|
|
|
static basicblock *
|
|
except_stack_top(ExceptStack *stack) {
|
|
return stack->handlers[stack->depth];
|
|
}
|
|
|
|
static ExceptStack *
|
|
make_except_stack(void) {
|
|
ExceptStack *new = PyMem_Malloc(sizeof(ExceptStack));
|
|
if (new == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
new->depth = 0;
|
|
new->handlers[0] = NULL;
|
|
return new;
|
|
}
|
|
|
|
static ExceptStack *
|
|
copy_except_stack(ExceptStack *stack) {
|
|
ExceptStack *copy = PyMem_Malloc(sizeof(ExceptStack));
|
|
if (copy == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
memcpy(copy, stack, sizeof(ExceptStack));
|
|
return copy;
|
|
}
|
|
|
|
static int
|
|
label_exception_targets(basicblock *entryblock) {
|
|
basicblock **todo_stack = make_cfg_traversal_stack(entryblock);
|
|
if (todo_stack == NULL) {
|
|
return ERROR;
|
|
}
|
|
ExceptStack *except_stack = make_except_stack();
|
|
if (except_stack == NULL) {
|
|
PyMem_Free(todo_stack);
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
except_stack->depth = 0;
|
|
todo_stack[0] = entryblock;
|
|
entryblock->b_visited = 1;
|
|
entryblock->b_exceptstack = except_stack;
|
|
basicblock **todo = &todo_stack[1];
|
|
basicblock *handler = NULL;
|
|
while (todo > todo_stack) {
|
|
todo--;
|
|
basicblock *b = todo[0];
|
|
assert(b->b_visited == 1);
|
|
except_stack = b->b_exceptstack;
|
|
assert(except_stack != NULL);
|
|
b->b_exceptstack = NULL;
|
|
handler = except_stack_top(except_stack);
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
if (is_block_push(instr)) {
|
|
if (!instr->i_target->b_visited) {
|
|
ExceptStack *copy = copy_except_stack(except_stack);
|
|
if (copy == NULL) {
|
|
goto error;
|
|
}
|
|
instr->i_target->b_exceptstack = copy;
|
|
todo[0] = instr->i_target;
|
|
instr->i_target->b_visited = 1;
|
|
todo++;
|
|
}
|
|
handler = push_except_block(except_stack, instr);
|
|
}
|
|
else if (instr->i_opcode == POP_BLOCK) {
|
|
handler = pop_except_block(except_stack);
|
|
}
|
|
else if (is_jump(instr)) {
|
|
instr->i_except = handler;
|
|
assert(i == b->b_iused -1);
|
|
if (!instr->i_target->b_visited) {
|
|
if (BB_HAS_FALLTHROUGH(b)) {
|
|
ExceptStack *copy = copy_except_stack(except_stack);
|
|
if (copy == NULL) {
|
|
goto error;
|
|
}
|
|
instr->i_target->b_exceptstack = copy;
|
|
}
|
|
else {
|
|
instr->i_target->b_exceptstack = except_stack;
|
|
except_stack = NULL;
|
|
}
|
|
todo[0] = instr->i_target;
|
|
instr->i_target->b_visited = 1;
|
|
todo++;
|
|
}
|
|
}
|
|
else {
|
|
if (instr->i_opcode == YIELD_VALUE) {
|
|
instr->i_oparg = except_stack->depth;
|
|
}
|
|
instr->i_except = handler;
|
|
}
|
|
}
|
|
if (BB_HAS_FALLTHROUGH(b) && !b->b_next->b_visited) {
|
|
assert(except_stack != NULL);
|
|
b->b_next->b_exceptstack = except_stack;
|
|
todo[0] = b->b_next;
|
|
b->b_next->b_visited = 1;
|
|
todo++;
|
|
}
|
|
else if (except_stack != NULL) {
|
|
PyMem_Free(except_stack);
|
|
}
|
|
}
|
|
#ifdef Py_DEBUG
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
assert(b->b_exceptstack == NULL);
|
|
}
|
|
#endif
|
|
PyMem_Free(todo_stack);
|
|
return SUCCESS;
|
|
error:
|
|
PyMem_Free(todo_stack);
|
|
PyMem_Free(except_stack);
|
|
return ERROR;
|
|
}
|
|
|
|
|
|
static int
|
|
mark_except_handlers(basicblock *entryblock) {
|
|
#ifndef NDEBUG
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
assert(!b->b_except_handler);
|
|
}
|
|
#endif
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
for (int i=0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
if (is_block_push(instr)) {
|
|
instr->i_target->b_except_handler = 1;
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
mark_warm(basicblock *entryblock) {
|
|
basicblock **stack = make_cfg_traversal_stack(entryblock);
|
|
if (stack == NULL) {
|
|
return ERROR;
|
|
}
|
|
basicblock **sp = stack;
|
|
|
|
*sp++ = entryblock;
|
|
entryblock->b_visited = 1;
|
|
while (sp > stack) {
|
|
basicblock *b = *(--sp);
|
|
assert(!b->b_except_handler);
|
|
b->b_warm = 1;
|
|
basicblock *next = b->b_next;
|
|
if (next && BB_HAS_FALLTHROUGH(b) && !next->b_visited) {
|
|
*sp++ = next;
|
|
next->b_visited = 1;
|
|
}
|
|
for (int i=0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
if (is_jump(instr) && !instr->i_target->b_visited) {
|
|
*sp++ = instr->i_target;
|
|
instr->i_target->b_visited = 1;
|
|
}
|
|
}
|
|
}
|
|
PyMem_Free(stack);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
mark_cold(basicblock *entryblock) {
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
assert(!b->b_cold && !b->b_warm);
|
|
}
|
|
if (mark_warm(entryblock) < 0) {
|
|
return ERROR;
|
|
}
|
|
|
|
basicblock **stack = make_cfg_traversal_stack(entryblock);
|
|
if (stack == NULL) {
|
|
return ERROR;
|
|
}
|
|
|
|
basicblock **sp = stack;
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
if (b->b_except_handler) {
|
|
assert(!b->b_warm);
|
|
*sp++ = b;
|
|
b->b_visited = 1;
|
|
}
|
|
}
|
|
|
|
while (sp > stack) {
|
|
basicblock *b = *(--sp);
|
|
b->b_cold = 1;
|
|
basicblock *next = b->b_next;
|
|
if (next && BB_HAS_FALLTHROUGH(b)) {
|
|
if (!next->b_warm && !next->b_visited) {
|
|
*sp++ = next;
|
|
next->b_visited = 1;
|
|
}
|
|
}
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
if (is_jump(instr)) {
|
|
assert(i == b->b_iused - 1);
|
|
basicblock *target = b->b_instr[i].i_target;
|
|
if (!target->b_warm && !target->b_visited) {
|
|
*sp++ = target;
|
|
target->b_visited = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
PyMem_Free(stack);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
remove_redundant_jumps(cfg_builder *g);
|
|
|
|
static int
|
|
push_cold_blocks_to_end(cfg_builder *g, int code_flags) {
|
|
basicblock *entryblock = g->g_entryblock;
|
|
if (entryblock->b_next == NULL) {
|
|
/* single basicblock, no need to reorder */
|
|
return SUCCESS;
|
|
}
|
|
RETURN_IF_ERROR(mark_cold(entryblock));
|
|
|
|
/* If we have a cold block with fallthrough to a warm block, add */
|
|
/* an explicit jump instead of fallthrough */
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
if (b->b_cold && BB_HAS_FALLTHROUGH(b) && b->b_next && b->b_next->b_warm) {
|
|
basicblock *explicit_jump = cfg_builder_new_block(g);
|
|
if (explicit_jump == NULL) {
|
|
return ERROR;
|
|
}
|
|
basicblock_addop(explicit_jump, JUMP, b->b_next->b_label, NO_LOCATION);
|
|
explicit_jump->b_cold = 1;
|
|
explicit_jump->b_next = b->b_next;
|
|
b->b_next = explicit_jump;
|
|
|
|
/* set target */
|
|
struct cfg_instr *last = basicblock_last_instr(explicit_jump);
|
|
last->i_target = explicit_jump->b_next;
|
|
}
|
|
}
|
|
|
|
assert(!entryblock->b_cold); /* First block can't be cold */
|
|
basicblock *cold_blocks = NULL;
|
|
basicblock *cold_blocks_tail = NULL;
|
|
|
|
basicblock *b = entryblock;
|
|
while(b->b_next) {
|
|
assert(!b->b_cold);
|
|
while (b->b_next && !b->b_next->b_cold) {
|
|
b = b->b_next;
|
|
}
|
|
if (b->b_next == NULL) {
|
|
/* no more cold blocks */
|
|
break;
|
|
}
|
|
|
|
/* b->b_next is the beginning of a cold streak */
|
|
assert(!b->b_cold && b->b_next->b_cold);
|
|
|
|
basicblock *b_end = b->b_next;
|
|
while (b_end->b_next && b_end->b_next->b_cold) {
|
|
b_end = b_end->b_next;
|
|
}
|
|
|
|
/* b_end is the end of the cold streak */
|
|
assert(b_end && b_end->b_cold);
|
|
assert(b_end->b_next == NULL || !b_end->b_next->b_cold);
|
|
|
|
if (cold_blocks == NULL) {
|
|
cold_blocks = b->b_next;
|
|
}
|
|
else {
|
|
cold_blocks_tail->b_next = b->b_next;
|
|
}
|
|
cold_blocks_tail = b_end;
|
|
b->b_next = b_end->b_next;
|
|
b_end->b_next = NULL;
|
|
}
|
|
assert(b != NULL && b->b_next == NULL);
|
|
b->b_next = cold_blocks;
|
|
|
|
if (cold_blocks != NULL) {
|
|
RETURN_IF_ERROR(remove_redundant_jumps(g));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static void
|
|
convert_exception_handlers_to_nops(basicblock *entryblock) {
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
if (is_block_push(instr) || instr->i_opcode == POP_BLOCK) {
|
|
INSTR_SET_OP0(instr, NOP);
|
|
}
|
|
}
|
|
}
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
remove_redundant_nops(b);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
write_except_byte(struct assembler *a, int byte) {
|
|
unsigned char *p = (unsigned char *) PyBytes_AS_STRING(a->a_except_table);
|
|
p[a->a_except_table_off++] = byte;
|
|
}
|
|
|
|
#define CONTINUATION_BIT 64
|
|
|
|
static void
|
|
assemble_emit_exception_table_item(struct assembler *a, int value, int msb)
|
|
{
|
|
assert ((msb | 128) == 128);
|
|
assert(value >= 0 && value < (1 << 30));
|
|
if (value >= 1 << 24) {
|
|
write_except_byte(a, (value >> 24) | CONTINUATION_BIT | msb);
|
|
msb = 0;
|
|
}
|
|
if (value >= 1 << 18) {
|
|
write_except_byte(a, ((value >> 18)&0x3f) | CONTINUATION_BIT | msb);
|
|
msb = 0;
|
|
}
|
|
if (value >= 1 << 12) {
|
|
write_except_byte(a, ((value >> 12)&0x3f) | CONTINUATION_BIT | msb);
|
|
msb = 0;
|
|
}
|
|
if (value >= 1 << 6) {
|
|
write_except_byte(a, ((value >> 6)&0x3f) | CONTINUATION_BIT | msb);
|
|
msb = 0;
|
|
}
|
|
write_except_byte(a, (value&0x3f) | msb);
|
|
}
|
|
|
|
/* See Objects/exception_handling_notes.txt for details of layout */
|
|
#define MAX_SIZE_OF_ENTRY 20
|
|
|
|
static int
|
|
assemble_emit_exception_table_entry(struct assembler *a, int start, int end, basicblock *handler)
|
|
{
|
|
Py_ssize_t len = PyBytes_GET_SIZE(a->a_except_table);
|
|
if (a->a_except_table_off + MAX_SIZE_OF_ENTRY >= len) {
|
|
RETURN_IF_ERROR(_PyBytes_Resize(&a->a_except_table, len * 2));
|
|
}
|
|
int size = end-start;
|
|
assert(end > start);
|
|
int target = handler->b_offset;
|
|
int depth = handler->b_startdepth - 1;
|
|
if (handler->b_preserve_lasti) {
|
|
depth -= 1;
|
|
}
|
|
assert(depth >= 0);
|
|
int depth_lasti = (depth<<1) | handler->b_preserve_lasti;
|
|
assemble_emit_exception_table_item(a, start, (1<<7));
|
|
assemble_emit_exception_table_item(a, size, 0);
|
|
assemble_emit_exception_table_item(a, target, 0);
|
|
assemble_emit_exception_table_item(a, depth_lasti, 0);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
assemble_exception_table(struct assembler *a, basicblock *entryblock)
|
|
{
|
|
basicblock *b;
|
|
int ioffset = 0;
|
|
basicblock *handler = NULL;
|
|
int start = -1;
|
|
for (b = entryblock; b != NULL; b = b->b_next) {
|
|
ioffset = b->b_offset;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
if (instr->i_except != handler) {
|
|
if (handler != NULL) {
|
|
RETURN_IF_ERROR(
|
|
assemble_emit_exception_table_entry(a, start, ioffset, handler));
|
|
}
|
|
start = ioffset;
|
|
handler = instr->i_except;
|
|
}
|
|
ioffset += instr_size(instr);
|
|
}
|
|
}
|
|
if (handler != NULL) {
|
|
RETURN_IF_ERROR(assemble_emit_exception_table_entry(a, start, ioffset, handler));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Code location emitting code. See locations.md for a description of the format. */
|
|
|
|
#define MSB 0x80
|
|
|
|
static void
|
|
write_location_byte(struct assembler* a, int val)
|
|
{
|
|
PyBytes_AS_STRING(a->a_linetable)[a->a_location_off] = val&255;
|
|
a->a_location_off++;
|
|
}
|
|
|
|
|
|
static uint8_t *
|
|
location_pointer(struct assembler* a)
|
|
{
|
|
return (uint8_t *)PyBytes_AS_STRING(a->a_linetable) +
|
|
a->a_location_off;
|
|
}
|
|
|
|
static void
|
|
write_location_first_byte(struct assembler* a, int code, int length)
|
|
{
|
|
a->a_location_off += write_location_entry_start(
|
|
location_pointer(a), code, length);
|
|
}
|
|
|
|
static void
|
|
write_location_varint(struct assembler* a, unsigned int val)
|
|
{
|
|
uint8_t *ptr = location_pointer(a);
|
|
a->a_location_off += write_varint(ptr, val);
|
|
}
|
|
|
|
|
|
static void
|
|
write_location_signed_varint(struct assembler* a, int val)
|
|
{
|
|
uint8_t *ptr = location_pointer(a);
|
|
a->a_location_off += write_signed_varint(ptr, val);
|
|
}
|
|
|
|
static void
|
|
write_location_info_short_form(struct assembler* a, int length, int column, int end_column)
|
|
{
|
|
assert(length > 0 && length <= 8);
|
|
int column_low_bits = column & 7;
|
|
int column_group = column >> 3;
|
|
assert(column < 80);
|
|
assert(end_column >= column);
|
|
assert(end_column - column < 16);
|
|
write_location_first_byte(a, PY_CODE_LOCATION_INFO_SHORT0 + column_group, length);
|
|
write_location_byte(a, (column_low_bits << 4) | (end_column - column));
|
|
}
|
|
|
|
static void
|
|
write_location_info_oneline_form(struct assembler* a, int length, int line_delta, int column, int end_column)
|
|
{
|
|
assert(length > 0 && length <= 8);
|
|
assert(line_delta >= 0 && line_delta < 3);
|
|
assert(column < 128);
|
|
assert(end_column < 128);
|
|
write_location_first_byte(a, PY_CODE_LOCATION_INFO_ONE_LINE0 + line_delta, length);
|
|
write_location_byte(a, column);
|
|
write_location_byte(a, end_column);
|
|
}
|
|
|
|
static void
|
|
write_location_info_long_form(struct assembler* a, location loc, int length)
|
|
{
|
|
assert(length > 0 && length <= 8);
|
|
write_location_first_byte(a, PY_CODE_LOCATION_INFO_LONG, length);
|
|
write_location_signed_varint(a, loc.lineno - a->a_lineno);
|
|
assert(loc.end_lineno >= loc.lineno);
|
|
write_location_varint(a, loc.end_lineno - loc.lineno);
|
|
write_location_varint(a, loc.col_offset + 1);
|
|
write_location_varint(a, loc.end_col_offset + 1);
|
|
}
|
|
|
|
static void
|
|
write_location_info_none(struct assembler* a, int length)
|
|
{
|
|
write_location_first_byte(a, PY_CODE_LOCATION_INFO_NONE, length);
|
|
}
|
|
|
|
static void
|
|
write_location_info_no_column(struct assembler* a, int length, int line_delta)
|
|
{
|
|
write_location_first_byte(a, PY_CODE_LOCATION_INFO_NO_COLUMNS, length);
|
|
write_location_signed_varint(a, line_delta);
|
|
}
|
|
|
|
#define THEORETICAL_MAX_ENTRY_SIZE 25 /* 1 + 6 + 6 + 6 + 6 */
|
|
|
|
static int
|
|
write_location_info_entry(struct assembler* a, location loc, int isize)
|
|
{
|
|
Py_ssize_t len = PyBytes_GET_SIZE(a->a_linetable);
|
|
if (a->a_location_off + THEORETICAL_MAX_ENTRY_SIZE >= len) {
|
|
assert(len > THEORETICAL_MAX_ENTRY_SIZE);
|
|
RETURN_IF_ERROR(_PyBytes_Resize(&a->a_linetable, len*2));
|
|
}
|
|
if (loc.lineno < 0) {
|
|
write_location_info_none(a, isize);
|
|
return SUCCESS;
|
|
}
|
|
int line_delta = loc.lineno - a->a_lineno;
|
|
int column = loc.col_offset;
|
|
int end_column = loc.end_col_offset;
|
|
assert(column >= -1);
|
|
assert(end_column >= -1);
|
|
if (column < 0 || end_column < 0) {
|
|
if (loc.end_lineno == loc.lineno || loc.end_lineno == -1) {
|
|
write_location_info_no_column(a, isize, line_delta);
|
|
a->a_lineno = loc.lineno;
|
|
return SUCCESS;
|
|
}
|
|
}
|
|
else if (loc.end_lineno == loc.lineno) {
|
|
if (line_delta == 0 && column < 80 && end_column - column < 16 && end_column >= column) {
|
|
write_location_info_short_form(a, isize, column, end_column);
|
|
return SUCCESS;
|
|
}
|
|
if (line_delta >= 0 && line_delta < 3 && column < 128 && end_column < 128) {
|
|
write_location_info_oneline_form(a, isize, line_delta, column, end_column);
|
|
a->a_lineno = loc.lineno;
|
|
return SUCCESS;
|
|
}
|
|
}
|
|
write_location_info_long_form(a, loc, isize);
|
|
a->a_lineno = loc.lineno;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
assemble_emit_location(struct assembler* a, location loc, int isize)
|
|
{
|
|
if (isize == 0) {
|
|
return SUCCESS;
|
|
}
|
|
while (isize > 8) {
|
|
RETURN_IF_ERROR(write_location_info_entry(a, loc, 8));
|
|
isize -= 8;
|
|
}
|
|
return write_location_info_entry(a, loc, isize);
|
|
}
|
|
|
|
/* assemble_emit()
|
|
Extend the bytecode with a new instruction.
|
|
Update lnotab if necessary.
|
|
*/
|
|
|
|
static int
|
|
assemble_emit(struct assembler *a, struct cfg_instr *i)
|
|
{
|
|
Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode);
|
|
_Py_CODEUNIT *code;
|
|
|
|
int size = instr_size(i);
|
|
if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) {
|
|
if (len > PY_SSIZE_T_MAX / 2) {
|
|
return ERROR;
|
|
}
|
|
RETURN_IF_ERROR(_PyBytes_Resize(&a->a_bytecode, len * 2));
|
|
}
|
|
code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset;
|
|
a->a_offset += size;
|
|
write_instr(code, i, size);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
normalize_jumps_in_block(cfg_builder *g, basicblock *b) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
if (last == NULL || !is_jump(last)) {
|
|
return SUCCESS;
|
|
}
|
|
assert(!IS_ASSEMBLER_OPCODE(last->i_opcode));
|
|
bool is_forward = last->i_target->b_visited == 0;
|
|
switch(last->i_opcode) {
|
|
case JUMP:
|
|
last->i_opcode = is_forward ? JUMP_FORWARD : JUMP_BACKWARD;
|
|
return SUCCESS;
|
|
case JUMP_NO_INTERRUPT:
|
|
last->i_opcode = is_forward ?
|
|
JUMP_FORWARD : JUMP_BACKWARD_NO_INTERRUPT;
|
|
return SUCCESS;
|
|
}
|
|
int reversed_opcode = 0;
|
|
switch(last->i_opcode) {
|
|
case POP_JUMP_IF_NOT_NONE:
|
|
reversed_opcode = POP_JUMP_IF_NONE;
|
|
break;
|
|
case POP_JUMP_IF_NONE:
|
|
reversed_opcode = POP_JUMP_IF_NOT_NONE;
|
|
break;
|
|
case POP_JUMP_IF_FALSE:
|
|
reversed_opcode = POP_JUMP_IF_TRUE;
|
|
break;
|
|
case POP_JUMP_IF_TRUE:
|
|
reversed_opcode = POP_JUMP_IF_FALSE;
|
|
break;
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
if (!is_forward) {
|
|
/* As far as we can tell, the compiler never emits
|
|
* these jumps with a backwards target. If/when this
|
|
* exception is raised, we have found a use case for
|
|
* a backwards version of this jump (or to replace
|
|
* it with the sequence (COPY 1, POP_JUMP_IF_T/F, POP)
|
|
*/
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unexpected %s jumping backwards",
|
|
last->i_opcode == JUMP_IF_TRUE_OR_POP ?
|
|
"JUMP_IF_TRUE_OR_POP" : "JUMP_IF_FALSE_OR_POP");
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
if (is_forward) {
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* transform 'conditional jump T' to
|
|
* 'reversed_jump b_next' followed by 'jump_backwards T'
|
|
*/
|
|
|
|
basicblock *target = last->i_target;
|
|
basicblock *backwards_jump = cfg_builder_new_block(g);
|
|
if (backwards_jump == NULL) {
|
|
return ERROR;
|
|
}
|
|
basicblock_addop(backwards_jump, JUMP, target->b_label, NO_LOCATION);
|
|
backwards_jump->b_instr[0].i_target = target;
|
|
last->i_opcode = reversed_opcode;
|
|
last->i_target = b->b_next;
|
|
|
|
backwards_jump->b_cold = b->b_cold;
|
|
backwards_jump->b_next = b->b_next;
|
|
b->b_next = backwards_jump;
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
normalize_jumps(cfg_builder *g)
|
|
{
|
|
basicblock *entryblock = g->g_entryblock;
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
b->b_visited = 0;
|
|
}
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
b->b_visited = 1;
|
|
RETURN_IF_ERROR(normalize_jumps_in_block(g, b));
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static void
|
|
assemble_jump_offsets(basicblock *entryblock)
|
|
{
|
|
int bsize, totsize, extended_arg_recompile;
|
|
|
|
/* Compute the size of each block and fixup jump args.
|
|
Replace block pointer with position in bytecode. */
|
|
do {
|
|
totsize = 0;
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
bsize = blocksize(b);
|
|
b->b_offset = totsize;
|
|
totsize += bsize;
|
|
}
|
|
extended_arg_recompile = 0;
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
bsize = b->b_offset;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
int isize = instr_size(instr);
|
|
/* Relative jumps are computed relative to
|
|
the instruction pointer after fetching
|
|
the jump instruction.
|
|
*/
|
|
bsize += isize;
|
|
if (is_jump(instr)) {
|
|
instr->i_oparg = instr->i_target->b_offset;
|
|
if (is_relative_jump(instr)) {
|
|
if (instr->i_oparg < bsize) {
|
|
assert(IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
|
|
instr->i_oparg = bsize - instr->i_oparg;
|
|
}
|
|
else {
|
|
assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
|
|
instr->i_oparg -= bsize;
|
|
}
|
|
}
|
|
else {
|
|
assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
|
|
}
|
|
if (instr_size(instr) != isize) {
|
|
extended_arg_recompile = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* XXX: This is an awful hack that could hurt performance, but
|
|
on the bright side it should work until we come up
|
|
with a better solution.
|
|
|
|
The issue is that in the first loop blocksize() is called
|
|
which calls instr_size() which requires i_oparg be set
|
|
appropriately. There is a bootstrap problem because
|
|
i_oparg is calculated in the second loop above.
|
|
|
|
So we loop until we stop seeing new EXTENDED_ARGs.
|
|
The only EXTENDED_ARGs that could be popping up are
|
|
ones in jump instructions. So this should converge
|
|
fairly quickly.
|
|
*/
|
|
} while (extended_arg_recompile);
|
|
}
|
|
|
|
|
|
// helper functions for add_checks_for_loads_of_unknown_variables
|
|
static inline void
|
|
maybe_push(basicblock *b, uint64_t unsafe_mask, basicblock ***sp)
|
|
{
|
|
// Push b if the unsafe mask is giving us any new information.
|
|
// To avoid overflowing the stack, only allow each block once.
|
|
// Use b->b_visited=1 to mean that b is currently on the stack.
|
|
uint64_t both = b->b_unsafe_locals_mask | unsafe_mask;
|
|
if (b->b_unsafe_locals_mask != both) {
|
|
b->b_unsafe_locals_mask = both;
|
|
// More work left to do.
|
|
if (!b->b_visited) {
|
|
// not on the stack, so push it.
|
|
*(*sp)++ = b;
|
|
b->b_visited = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
scan_block_for_locals(basicblock *b, basicblock ***sp)
|
|
{
|
|
// bit i is set if local i is potentially uninitialized
|
|
uint64_t unsafe_mask = b->b_unsafe_locals_mask;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
assert(instr->i_opcode != EXTENDED_ARG);
|
|
assert(!IS_SUPERINSTRUCTION_OPCODE(instr->i_opcode));
|
|
if (instr->i_except != NULL) {
|
|
maybe_push(instr->i_except, unsafe_mask, sp);
|
|
}
|
|
if (instr->i_oparg >= 64) {
|
|
continue;
|
|
}
|
|
assert(instr->i_oparg >= 0);
|
|
uint64_t bit = (uint64_t)1 << instr->i_oparg;
|
|
switch (instr->i_opcode) {
|
|
case DELETE_FAST:
|
|
unsafe_mask |= bit;
|
|
break;
|
|
case STORE_FAST:
|
|
unsafe_mask &= ~bit;
|
|
break;
|
|
case LOAD_FAST_CHECK:
|
|
// If this doesn't raise, then the local is defined.
|
|
unsafe_mask &= ~bit;
|
|
break;
|
|
case LOAD_FAST:
|
|
if (unsafe_mask & bit) {
|
|
instr->i_opcode = LOAD_FAST_CHECK;
|
|
}
|
|
unsafe_mask &= ~bit;
|
|
break;
|
|
}
|
|
}
|
|
if (b->b_next && BB_HAS_FALLTHROUGH(b)) {
|
|
maybe_push(b->b_next, unsafe_mask, sp);
|
|
}
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
if (last && is_jump(last)) {
|
|
assert(last->i_target != NULL);
|
|
maybe_push(last->i_target, unsafe_mask, sp);
|
|
}
|
|
}
|
|
|
|
static int
|
|
fast_scan_many_locals(basicblock *entryblock, int nlocals)
|
|
{
|
|
assert(nlocals > 64);
|
|
Py_ssize_t *states = PyMem_Calloc(nlocals - 64, sizeof(Py_ssize_t));
|
|
if (states == NULL) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
Py_ssize_t blocknum = 0;
|
|
// state[i - 64] == blocknum if local i is guaranteed to
|
|
// be initialized, i.e., if it has had a previous LOAD_FAST or
|
|
// STORE_FAST within that basicblock (not followed by DELETE_FAST).
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
blocknum++;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
assert(instr->i_opcode != EXTENDED_ARG);
|
|
assert(!IS_SUPERINSTRUCTION_OPCODE(instr->i_opcode));
|
|
int arg = instr->i_oparg;
|
|
if (arg < 64) {
|
|
continue;
|
|
}
|
|
assert(arg >= 0);
|
|
switch (instr->i_opcode) {
|
|
case DELETE_FAST:
|
|
states[arg - 64] = blocknum - 1;
|
|
break;
|
|
case STORE_FAST:
|
|
states[arg - 64] = blocknum;
|
|
break;
|
|
case LOAD_FAST:
|
|
if (states[arg - 64] != blocknum) {
|
|
instr->i_opcode = LOAD_FAST_CHECK;
|
|
}
|
|
states[arg - 64] = blocknum;
|
|
break;
|
|
case LOAD_FAST_CHECK:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
PyMem_Free(states);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
add_checks_for_loads_of_uninitialized_variables(basicblock *entryblock,
|
|
struct compiler *c)
|
|
{
|
|
int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
|
|
if (nlocals == 0) {
|
|
return SUCCESS;
|
|
}
|
|
if (nlocals > 64) {
|
|
// To avoid O(nlocals**2) compilation, locals beyond the first
|
|
// 64 are only analyzed one basicblock at a time: initialization
|
|
// info is not passed between basicblocks.
|
|
if (fast_scan_many_locals(entryblock, nlocals) < 0) {
|
|
return ERROR;
|
|
}
|
|
nlocals = 64;
|
|
}
|
|
basicblock **stack = make_cfg_traversal_stack(entryblock);
|
|
if (stack == NULL) {
|
|
return ERROR;
|
|
}
|
|
basicblock **sp = stack;
|
|
|
|
// First origin of being uninitialized:
|
|
// The non-parameter locals in the entry block.
|
|
int nparams = (int)PyList_GET_SIZE(c->u->u_ste->ste_varnames);
|
|
uint64_t start_mask = 0;
|
|
for (int i = nparams; i < nlocals; i++) {
|
|
start_mask |= (uint64_t)1 << i;
|
|
}
|
|
maybe_push(entryblock, start_mask, &sp);
|
|
|
|
// Second origin of being uninitialized:
|
|
// There could be DELETE_FAST somewhere, so
|
|
// be sure to scan each basicblock at least once.
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
scan_block_for_locals(b, &sp);
|
|
}
|
|
|
|
// Now propagate the uncertainty from the origins we found: Use
|
|
// LOAD_FAST_CHECK for any LOAD_FAST where the local could be undefined.
|
|
while (sp > stack) {
|
|
basicblock *b = *--sp;
|
|
// mark as no longer on stack
|
|
b->b_visited = 0;
|
|
scan_block_for_locals(b, &sp);
|
|
}
|
|
PyMem_Free(stack);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_keys_inorder(PyObject *dict, Py_ssize_t offset)
|
|
{
|
|
PyObject *tuple, *k, *v;
|
|
Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
|
|
|
|
tuple = PyTuple_New(size);
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
while (PyDict_Next(dict, &pos, &k, &v)) {
|
|
i = PyLong_AS_LONG(v);
|
|
assert((i - offset) < size);
|
|
assert((i - offset) >= 0);
|
|
PyTuple_SET_ITEM(tuple, i - offset, Py_NewRef(k));
|
|
}
|
|
return tuple;
|
|
}
|
|
|
|
static PyObject *
|
|
consts_dict_keys_inorder(PyObject *dict)
|
|
{
|
|
PyObject *consts, *k, *v;
|
|
Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
|
|
|
|
consts = PyList_New(size); /* PyCode_Optimize() requires a list */
|
|
if (consts == NULL)
|
|
return NULL;
|
|
while (PyDict_Next(dict, &pos, &k, &v)) {
|
|
i = PyLong_AS_LONG(v);
|
|
/* The keys of the dictionary can be tuples wrapping a constant.
|
|
* (see dict_add_o and _PyCode_ConstantKey). In that case
|
|
* the object we want is always second. */
|
|
if (PyTuple_CheckExact(k)) {
|
|
k = PyTuple_GET_ITEM(k, 1);
|
|
}
|
|
assert(i < size);
|
|
assert(i >= 0);
|
|
PyList_SET_ITEM(consts, i, Py_NewRef(k));
|
|
}
|
|
return consts;
|
|
}
|
|
|
|
static int
|
|
compute_code_flags(struct compiler *c)
|
|
{
|
|
PySTEntryObject *ste = c->u->u_ste;
|
|
int flags = 0;
|
|
if (ste->ste_type == FunctionBlock) {
|
|
flags |= CO_NEWLOCALS | CO_OPTIMIZED;
|
|
if (ste->ste_nested)
|
|
flags |= CO_NESTED;
|
|
if (ste->ste_generator && !ste->ste_coroutine)
|
|
flags |= CO_GENERATOR;
|
|
if (!ste->ste_generator && ste->ste_coroutine)
|
|
flags |= CO_COROUTINE;
|
|
if (ste->ste_generator && ste->ste_coroutine)
|
|
flags |= CO_ASYNC_GENERATOR;
|
|
if (ste->ste_varargs)
|
|
flags |= CO_VARARGS;
|
|
if (ste->ste_varkeywords)
|
|
flags |= CO_VARKEYWORDS;
|
|
}
|
|
|
|
/* (Only) inherit compilerflags in PyCF_MASK */
|
|
flags |= (c->c_flags.cf_flags & PyCF_MASK);
|
|
|
|
if ((IS_TOP_LEVEL_AWAIT(c)) &&
|
|
ste->ste_coroutine &&
|
|
!ste->ste_generator) {
|
|
flags |= CO_COROUTINE;
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
// Merge *obj* with constant cache.
|
|
// Unlike merge_consts_recursive(), this function doesn't work recursively.
|
|
static int
|
|
merge_const_one(PyObject *const_cache, PyObject **obj)
|
|
{
|
|
PyDict_CheckExact(const_cache);
|
|
PyObject *key = _PyCode_ConstantKey(*obj);
|
|
if (key == NULL) {
|
|
return ERROR;
|
|
}
|
|
|
|
// t is borrowed reference
|
|
PyObject *t = PyDict_SetDefault(const_cache, key, key);
|
|
Py_DECREF(key);
|
|
if (t == NULL) {
|
|
return ERROR;
|
|
}
|
|
if (t == key) { // obj is new constant.
|
|
return SUCCESS;
|
|
}
|
|
|
|
if (PyTuple_CheckExact(t)) {
|
|
// t is still borrowed reference
|
|
t = PyTuple_GET_ITEM(t, 1);
|
|
}
|
|
|
|
Py_SETREF(*obj, Py_NewRef(t));
|
|
return SUCCESS;
|
|
}
|
|
|
|
// This is in codeobject.c.
|
|
extern void _Py_set_localsplus_info(int, PyObject *, unsigned char,
|
|
PyObject *, PyObject *);
|
|
|
|
static void
|
|
compute_localsplus_info(struct compiler *c, int nlocalsplus,
|
|
PyObject *names, PyObject *kinds)
|
|
{
|
|
PyObject *k, *v;
|
|
Py_ssize_t pos = 0;
|
|
while (PyDict_Next(c->u->u_varnames, &pos, &k, &v)) {
|
|
int offset = (int)PyLong_AS_LONG(v);
|
|
assert(offset >= 0);
|
|
assert(offset < nlocalsplus);
|
|
// For now we do not distinguish arg kinds.
|
|
_PyLocals_Kind kind = CO_FAST_LOCAL;
|
|
if (PyDict_GetItem(c->u->u_cellvars, k) != NULL) {
|
|
kind |= CO_FAST_CELL;
|
|
}
|
|
_Py_set_localsplus_info(offset, k, kind, names, kinds);
|
|
}
|
|
int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
|
|
|
|
// This counter mirrors the fix done in fix_cell_offsets().
|
|
int numdropped = 0;
|
|
pos = 0;
|
|
while (PyDict_Next(c->u->u_cellvars, &pos, &k, &v)) {
|
|
if (PyDict_GetItem(c->u->u_varnames, k) != NULL) {
|
|
// Skip cells that are already covered by locals.
|
|
numdropped += 1;
|
|
continue;
|
|
}
|
|
int offset = (int)PyLong_AS_LONG(v);
|
|
assert(offset >= 0);
|
|
offset += nlocals - numdropped;
|
|
assert(offset < nlocalsplus);
|
|
_Py_set_localsplus_info(offset, k, CO_FAST_CELL, names, kinds);
|
|
}
|
|
|
|
pos = 0;
|
|
while (PyDict_Next(c->u->u_freevars, &pos, &k, &v)) {
|
|
int offset = (int)PyLong_AS_LONG(v);
|
|
assert(offset >= 0);
|
|
offset += nlocals - numdropped;
|
|
assert(offset < nlocalsplus);
|
|
_Py_set_localsplus_info(offset, k, CO_FAST_FREE, names, kinds);
|
|
}
|
|
}
|
|
|
|
static PyCodeObject *
|
|
makecode(struct compiler *c, struct assembler *a, PyObject *constslist,
|
|
int maxdepth, int nlocalsplus, int code_flags)
|
|
{
|
|
PyCodeObject *co = NULL;
|
|
PyObject *names = NULL;
|
|
PyObject *consts = NULL;
|
|
PyObject *localsplusnames = NULL;
|
|
PyObject *localspluskinds = NULL;
|
|
names = dict_keys_inorder(c->u->u_names, 0);
|
|
if (!names) {
|
|
goto error;
|
|
}
|
|
if (merge_const_one(c->c_const_cache, &names) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
consts = PyList_AsTuple(constslist); /* PyCode_New requires a tuple */
|
|
if (consts == NULL) {
|
|
goto error;
|
|
}
|
|
if (merge_const_one(c->c_const_cache, &consts) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
assert(c->u->u_posonlyargcount < INT_MAX);
|
|
assert(c->u->u_argcount < INT_MAX);
|
|
assert(c->u->u_kwonlyargcount < INT_MAX);
|
|
int posonlyargcount = (int)c->u->u_posonlyargcount;
|
|
int posorkwargcount = (int)c->u->u_argcount;
|
|
assert(INT_MAX - posonlyargcount - posorkwargcount > 0);
|
|
int kwonlyargcount = (int)c->u->u_kwonlyargcount;
|
|
|
|
localsplusnames = PyTuple_New(nlocalsplus);
|
|
if (localsplusnames == NULL) {
|
|
goto error;
|
|
}
|
|
localspluskinds = PyBytes_FromStringAndSize(NULL, nlocalsplus);
|
|
if (localspluskinds == NULL) {
|
|
goto error;
|
|
}
|
|
compute_localsplus_info(c, nlocalsplus, localsplusnames, localspluskinds);
|
|
|
|
struct _PyCodeConstructor con = {
|
|
.filename = c->c_filename,
|
|
.name = c->u->u_name,
|
|
.qualname = c->u->u_qualname ? c->u->u_qualname : c->u->u_name,
|
|
.flags = code_flags,
|
|
|
|
.code = a->a_bytecode,
|
|
.firstlineno = c->u->u_firstlineno,
|
|
.linetable = a->a_linetable,
|
|
|
|
.consts = consts,
|
|
.names = names,
|
|
|
|
.localsplusnames = localsplusnames,
|
|
.localspluskinds = localspluskinds,
|
|
|
|
.argcount = posonlyargcount + posorkwargcount,
|
|
.posonlyargcount = posonlyargcount,
|
|
.kwonlyargcount = kwonlyargcount,
|
|
|
|
.stacksize = maxdepth,
|
|
|
|
.exceptiontable = a->a_except_table,
|
|
};
|
|
|
|
if (_PyCode_Validate(&con) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
if (merge_const_one(c->c_const_cache, &localsplusnames) < 0) {
|
|
goto error;
|
|
}
|
|
con.localsplusnames = localsplusnames;
|
|
|
|
co = _PyCode_New(&con);
|
|
if (co == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
error:
|
|
Py_XDECREF(names);
|
|
Py_XDECREF(consts);
|
|
Py_XDECREF(localsplusnames);
|
|
Py_XDECREF(localspluskinds);
|
|
return co;
|
|
}
|
|
|
|
|
|
/* For debugging purposes only */
|
|
#if 0
|
|
static void
|
|
dump_instr(struct cfg_instr *i)
|
|
{
|
|
const char *jrel = (is_relative_jump(i)) ? "jrel " : "";
|
|
const char *jabs = (is_jump(i) && !is_relative_jump(i))? "jabs " : "";
|
|
|
|
char arg[128];
|
|
|
|
*arg = '\0';
|
|
if (HAS_ARG(i->i_opcode)) {
|
|
sprintf(arg, "arg: %d ", i->i_oparg);
|
|
}
|
|
if (HAS_TARGET(i->i_opcode)) {
|
|
sprintf(arg, "target: %p [%d] ", i->i_target, i->i_oparg);
|
|
}
|
|
fprintf(stderr, "line: %d, opcode: %d %s%s%s\n",
|
|
i->i_loc.lineno, i->i_opcode, arg, jabs, jrel);
|
|
}
|
|
|
|
static inline int
|
|
basicblock_returns(const basicblock *b) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
return last && (last->i_opcode == RETURN_VALUE || last->i_opcode == RETURN_CONST);
|
|
}
|
|
|
|
static void
|
|
dump_basicblock(const basicblock *b)
|
|
{
|
|
const char *b_return = basicblock_returns(b) ? "return " : "";
|
|
fprintf(stderr, "%d: [EH=%d CLD=%d WRM=%d NO_FT=%d %p] used: %d, depth: %d, offset: %d %s\n",
|
|
b->b_label, b->b_except_handler, b->b_cold, b->b_warm, BB_NO_FALLTHROUGH(b), b, b->b_iused,
|
|
b->b_startdepth, b->b_offset, b_return);
|
|
if (b->b_instr) {
|
|
int i;
|
|
for (i = 0; i < b->b_iused; i++) {
|
|
fprintf(stderr, " [%02d] ", i);
|
|
dump_instr(b->b_instr + i);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
static int
|
|
translate_jump_labels_to_targets(basicblock *entryblock);
|
|
|
|
static int
|
|
optimize_cfg(cfg_builder *g, PyObject *consts, PyObject *const_cache);
|
|
|
|
static int
|
|
remove_unused_consts(basicblock *entryblock, PyObject *consts);
|
|
|
|
/* Duplicates exit BBs, so that line numbers can be propagated to them */
|
|
static int
|
|
duplicate_exits_without_lineno(cfg_builder *g);
|
|
|
|
static int *
|
|
build_cellfixedoffsets(struct compiler *c)
|
|
{
|
|
int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
|
|
int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars);
|
|
int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars);
|
|
|
|
int noffsets = ncellvars + nfreevars;
|
|
int *fixed = PyMem_New(int, noffsets);
|
|
if (fixed == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
for (int i = 0; i < noffsets; i++) {
|
|
fixed[i] = nlocals + i;
|
|
}
|
|
|
|
PyObject *varname, *cellindex;
|
|
Py_ssize_t pos = 0;
|
|
while (PyDict_Next(c->u->u_cellvars, &pos, &varname, &cellindex)) {
|
|
PyObject *varindex = PyDict_GetItem(c->u->u_varnames, varname);
|
|
if (varindex != NULL) {
|
|
assert(PyLong_AS_LONG(cellindex) < INT_MAX);
|
|
assert(PyLong_AS_LONG(varindex) < INT_MAX);
|
|
int oldindex = (int)PyLong_AS_LONG(cellindex);
|
|
int argoffset = (int)PyLong_AS_LONG(varindex);
|
|
fixed[oldindex] = argoffset;
|
|
}
|
|
}
|
|
|
|
return fixed;
|
|
}
|
|
|
|
static int
|
|
insert_prefix_instructions(struct compiler *c, basicblock *entryblock,
|
|
int *fixed, int nfreevars, int code_flags)
|
|
{
|
|
assert(c->u->u_firstlineno > 0);
|
|
|
|
/* Add the generator prefix instructions. */
|
|
if (code_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
|
|
struct cfg_instr make_gen = {
|
|
.i_opcode = RETURN_GENERATOR,
|
|
.i_oparg = 0,
|
|
.i_loc = LOCATION(c->u->u_firstlineno, c->u->u_firstlineno, -1, -1),
|
|
.i_target = NULL,
|
|
};
|
|
RETURN_IF_ERROR(insert_instruction(entryblock, 0, &make_gen));
|
|
struct cfg_instr pop_top = {
|
|
.i_opcode = POP_TOP,
|
|
.i_oparg = 0,
|
|
.i_loc = NO_LOCATION,
|
|
.i_target = NULL,
|
|
};
|
|
RETURN_IF_ERROR(insert_instruction(entryblock, 1, &pop_top));
|
|
}
|
|
|
|
/* Set up cells for any variable that escapes, to be put in a closure. */
|
|
const int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars);
|
|
if (ncellvars) {
|
|
// c->u->u_cellvars has the cells out of order so we sort them
|
|
// before adding the MAKE_CELL instructions. Note that we
|
|
// adjust for arg cells, which come first.
|
|
const int nvars = ncellvars + (int)PyDict_GET_SIZE(c->u->u_varnames);
|
|
int *sorted = PyMem_RawCalloc(nvars, sizeof(int));
|
|
if (sorted == NULL) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
for (int i = 0; i < ncellvars; i++) {
|
|
sorted[fixed[i]] = i + 1;
|
|
}
|
|
for (int i = 0, ncellsused = 0; ncellsused < ncellvars; i++) {
|
|
int oldindex = sorted[i] - 1;
|
|
if (oldindex == -1) {
|
|
continue;
|
|
}
|
|
struct cfg_instr make_cell = {
|
|
.i_opcode = MAKE_CELL,
|
|
// This will get fixed in offset_derefs().
|
|
.i_oparg = oldindex,
|
|
.i_loc = NO_LOCATION,
|
|
.i_target = NULL,
|
|
};
|
|
RETURN_IF_ERROR(insert_instruction(entryblock, ncellsused, &make_cell));
|
|
ncellsused += 1;
|
|
}
|
|
PyMem_RawFree(sorted);
|
|
}
|
|
|
|
if (nfreevars) {
|
|
struct cfg_instr copy_frees = {
|
|
.i_opcode = COPY_FREE_VARS,
|
|
.i_oparg = nfreevars,
|
|
.i_loc = NO_LOCATION,
|
|
.i_target = NULL,
|
|
};
|
|
RETURN_IF_ERROR(insert_instruction(entryblock, 0, ©_frees));
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Make sure that all returns have a line number, even if early passes
|
|
* have failed to propagate a correct line number.
|
|
* The resulting line number may not be correct according to PEP 626,
|
|
* but should be "good enough", and no worse than in older versions. */
|
|
static void
|
|
guarantee_lineno_for_exits(basicblock *entryblock, int firstlineno) {
|
|
int lineno = firstlineno;
|
|
assert(lineno > 0);
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
if (last == NULL) {
|
|
continue;
|
|
}
|
|
if (last->i_loc.lineno < 0) {
|
|
if (last->i_opcode == RETURN_VALUE) {
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
assert(b->b_instr[i].i_loc.lineno < 0);
|
|
|
|
b->b_instr[i].i_loc.lineno = lineno;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
lineno = last->i_loc.lineno;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
fix_cell_offsets(struct compiler *c, basicblock *entryblock, int *fixedmap)
|
|
{
|
|
int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
|
|
int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars);
|
|
int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars);
|
|
int noffsets = ncellvars + nfreevars;
|
|
|
|
// First deal with duplicates (arg cells).
|
|
int numdropped = 0;
|
|
for (int i = 0; i < noffsets ; i++) {
|
|
if (fixedmap[i] == i + nlocals) {
|
|
fixedmap[i] -= numdropped;
|
|
}
|
|
else {
|
|
// It was a duplicate (cell/arg).
|
|
numdropped += 1;
|
|
}
|
|
}
|
|
|
|
// Then update offsets, either relative to locals or by cell2arg.
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *inst = &b->b_instr[i];
|
|
// This is called before extended args are generated.
|
|
assert(inst->i_opcode != EXTENDED_ARG);
|
|
int oldoffset = inst->i_oparg;
|
|
switch(inst->i_opcode) {
|
|
case MAKE_CELL:
|
|
case LOAD_CLOSURE:
|
|
case LOAD_DEREF:
|
|
case STORE_DEREF:
|
|
case DELETE_DEREF:
|
|
case LOAD_CLASSDEREF:
|
|
assert(oldoffset >= 0);
|
|
assert(oldoffset < noffsets);
|
|
assert(fixedmap[oldoffset] >= 0);
|
|
inst->i_oparg = fixedmap[oldoffset];
|
|
}
|
|
}
|
|
}
|
|
|
|
return numdropped;
|
|
}
|
|
|
|
static void
|
|
propagate_line_numbers(basicblock *entryblock);
|
|
|
|
#ifndef NDEBUG
|
|
|
|
static bool
|
|
no_redundant_nops(cfg_builder *g) {
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
if (remove_redundant_nops(b) != 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
no_redundant_jumps(cfg_builder *g) {
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
if (last != NULL) {
|
|
if (IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
|
|
assert(last->i_target != b->b_next);
|
|
if (last->i_target == b->b_next) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
opcode_metadata_is_sane(cfg_builder *g) {
|
|
bool result = true;
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
int opcode = instr->i_opcode;
|
|
int oparg = instr->i_oparg;
|
|
assert(opcode <= MAX_REAL_OPCODE);
|
|
for (int jump = 0; jump <= 1; jump++) {
|
|
int popped = _PyOpcode_num_popped(opcode, oparg, jump ? true : false);
|
|
int pushed = _PyOpcode_num_pushed(opcode, oparg, jump ? true : false);
|
|
assert((pushed < 0) == (popped < 0));
|
|
if (pushed >= 0) {
|
|
assert(_PyOpcode_opcode_metadata[opcode].valid_entry);
|
|
int effect = stack_effect(opcode, instr->i_oparg, jump);
|
|
if (effect != pushed - popped) {
|
|
fprintf(stderr,
|
|
"op=%d arg=%d jump=%d: stack_effect (%d) != pushed (%d) - popped (%d)\n",
|
|
opcode, oparg, jump, effect, pushed, popped);
|
|
result = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static bool
|
|
no_empty_basic_blocks(cfg_builder *g) {
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
if (b->b_iused == 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
remove_redundant_jumps(cfg_builder *g) {
|
|
/* If a non-empty block ends with a jump instruction, check if the next
|
|
* non-empty block reached through normal flow control is the target
|
|
* of that jump. If it is, then the jump instruction is redundant and
|
|
* can be deleted.
|
|
*/
|
|
assert(no_empty_basic_blocks(g));
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
assert(last != NULL);
|
|
assert(!IS_ASSEMBLER_OPCODE(last->i_opcode));
|
|
if (IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
|
|
if (last->i_target == NULL) {
|
|
PyErr_SetString(PyExc_SystemError, "jump with NULL target");
|
|
return ERROR;
|
|
}
|
|
if (last->i_target == b->b_next) {
|
|
assert(b->b_next->b_iused);
|
|
INSTR_SET_OP0(last, NOP);
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
prepare_localsplus(struct compiler* c, cfg_builder *g, int code_flags)
|
|
{
|
|
assert(PyDict_GET_SIZE(c->u->u_varnames) < INT_MAX);
|
|
assert(PyDict_GET_SIZE(c->u->u_cellvars) < INT_MAX);
|
|
assert(PyDict_GET_SIZE(c->u->u_freevars) < INT_MAX);
|
|
int nlocals = (int)PyDict_GET_SIZE(c->u->u_varnames);
|
|
int ncellvars = (int)PyDict_GET_SIZE(c->u->u_cellvars);
|
|
int nfreevars = (int)PyDict_GET_SIZE(c->u->u_freevars);
|
|
assert(INT_MAX - nlocals - ncellvars > 0);
|
|
assert(INT_MAX - nlocals - ncellvars - nfreevars > 0);
|
|
int nlocalsplus = nlocals + ncellvars + nfreevars;
|
|
int* cellfixedoffsets = build_cellfixedoffsets(c);
|
|
if (cellfixedoffsets == NULL) {
|
|
return ERROR;
|
|
}
|
|
|
|
|
|
// This must be called before fix_cell_offsets().
|
|
if (insert_prefix_instructions(c, g->g_entryblock, cellfixedoffsets, nfreevars, code_flags)) {
|
|
PyMem_Free(cellfixedoffsets);
|
|
return ERROR;
|
|
}
|
|
|
|
int numdropped = fix_cell_offsets(c, g->g_entryblock, cellfixedoffsets);
|
|
PyMem_Free(cellfixedoffsets); // At this point we're done with it.
|
|
cellfixedoffsets = NULL;
|
|
if (numdropped < 0) {
|
|
return ERROR;
|
|
}
|
|
|
|
nlocalsplus -= numdropped;
|
|
return nlocalsplus;
|
|
}
|
|
|
|
static int
|
|
add_return_at_end(struct compiler *c, int addNone)
|
|
{
|
|
/* Make sure every instruction stream that falls off the end returns None.
|
|
* This also ensures that no jump target offsets are out of bounds.
|
|
*/
|
|
if (addNone) {
|
|
ADDOP_LOAD_CONST(c, NO_LOCATION, Py_None);
|
|
}
|
|
ADDOP(c, NO_LOCATION, RETURN_VALUE);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static PyCodeObject *
|
|
assemble(struct compiler *c, int addNone)
|
|
{
|
|
PyCodeObject *co = NULL;
|
|
PyObject *consts = NULL;
|
|
cfg_builder g_;
|
|
cfg_builder *g = &g_;
|
|
struct assembler a;
|
|
memset(&a, 0, sizeof(struct assembler));
|
|
|
|
int code_flags = compute_code_flags(c);
|
|
if (code_flags < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (add_return_at_end(c, addNone) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/** Preprocessing **/
|
|
if (instr_sequence_to_cfg(INSTR_SEQUENCE(c), g) < 0) {
|
|
goto error;
|
|
}
|
|
assert(cfg_builder_check(g));
|
|
|
|
int nblocks = 0;
|
|
for (basicblock *b = g->g_block_list; b != NULL; b = b->b_list) {
|
|
nblocks++;
|
|
}
|
|
if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) {
|
|
PyErr_NoMemory();
|
|
goto error;
|
|
}
|
|
|
|
/* Set firstlineno if it wasn't explicitly set. */
|
|
if (!c->u->u_firstlineno) {
|
|
if (g->g_entryblock->b_instr && g->g_entryblock->b_instr->i_loc.lineno) {
|
|
c->u->u_firstlineno = g->g_entryblock->b_instr->i_loc.lineno;
|
|
}
|
|
else {
|
|
c->u->u_firstlineno = 1;
|
|
}
|
|
}
|
|
|
|
/* Map labels to targets and mark exception handlers */
|
|
if (translate_jump_labels_to_targets(g->g_entryblock) < 0) {
|
|
goto error;
|
|
}
|
|
if (mark_except_handlers(g->g_entryblock) < 0) {
|
|
goto error;
|
|
}
|
|
if (label_exception_targets(g->g_entryblock)) {
|
|
goto error;
|
|
}
|
|
|
|
/** Optimization **/
|
|
consts = consts_dict_keys_inorder(c->u->u_consts);
|
|
if (consts == NULL) {
|
|
goto error;
|
|
}
|
|
if (optimize_cfg(g, consts, c->c_const_cache)) {
|
|
goto error;
|
|
}
|
|
if (remove_unused_consts(g->g_entryblock, consts) < 0) {
|
|
goto error;
|
|
}
|
|
if (add_checks_for_loads_of_uninitialized_variables(g->g_entryblock, c) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/** line numbers (TODO: move this before optimization stage) */
|
|
if (duplicate_exits_without_lineno(g) < 0) {
|
|
goto error;
|
|
}
|
|
propagate_line_numbers(g->g_entryblock);
|
|
guarantee_lineno_for_exits(g->g_entryblock, c->u->u_firstlineno);
|
|
|
|
if (push_cold_blocks_to_end(g, code_flags) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/** Assembly **/
|
|
|
|
int nlocalsplus = prepare_localsplus(c, g, code_flags);
|
|
if (nlocalsplus < 0) {
|
|
goto error;
|
|
}
|
|
|
|
int maxdepth = stackdepth(g->g_entryblock, code_flags);
|
|
if (maxdepth < 0) {
|
|
goto error;
|
|
}
|
|
/* TO DO -- For 3.12, make sure that `maxdepth <= MAX_ALLOWED_STACK_USE` */
|
|
|
|
convert_exception_handlers_to_nops(g->g_entryblock);
|
|
|
|
/* Order of basic blocks must have been determined by now */
|
|
if (normalize_jumps(g) < 0) {
|
|
goto error;
|
|
}
|
|
assert(no_redundant_jumps(g));
|
|
assert(opcode_metadata_is_sane(g));
|
|
|
|
/* Can't modify the bytecode after computing jump offsets. */
|
|
assemble_jump_offsets(g->g_entryblock);
|
|
|
|
/* Create assembler */
|
|
if (assemble_init(&a, c->u->u_firstlineno) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* Emit code. */
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
for (int j = 0; j < b->b_iused; j++) {
|
|
if (assemble_emit(&a, &b->b_instr[j]) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Emit location info */
|
|
a.a_lineno = c->u->u_firstlineno;
|
|
location loc = NO_LOCATION;
|
|
int size = 0;
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
for (int j = 0; j < b->b_iused; j++) {
|
|
if (!same_location(loc, b->b_instr[j].i_loc)) {
|
|
if (assemble_emit_location(&a, loc, size)) {
|
|
goto error;
|
|
}
|
|
loc = b->b_instr[j].i_loc;
|
|
size = 0;
|
|
}
|
|
size += instr_size(&b->b_instr[j]);
|
|
}
|
|
}
|
|
if (assemble_emit_location(&a, loc, size)) {
|
|
goto error;
|
|
}
|
|
|
|
if (assemble_exception_table(&a, g->g_entryblock) < 0) {
|
|
goto error;
|
|
}
|
|
if (_PyBytes_Resize(&a.a_except_table, a.a_except_table_off) < 0) {
|
|
goto error;
|
|
}
|
|
if (merge_const_one(c->c_const_cache, &a.a_except_table) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
if (_PyBytes_Resize(&a.a_linetable, a.a_location_off) < 0) {
|
|
goto error;
|
|
}
|
|
if (merge_const_one(c->c_const_cache, &a.a_linetable) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0) {
|
|
goto error;
|
|
}
|
|
if (merge_const_one(c->c_const_cache, &a.a_bytecode) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
co = makecode(c, &a, consts, maxdepth, nlocalsplus, code_flags);
|
|
error:
|
|
Py_XDECREF(consts);
|
|
cfg_builder_fini(g);
|
|
assemble_free(&a);
|
|
return co;
|
|
}
|
|
|
|
static PyObject*
|
|
get_const_value(int opcode, int oparg, PyObject *co_consts)
|
|
{
|
|
PyObject *constant = NULL;
|
|
assert(HAS_CONST(opcode));
|
|
if (opcode == LOAD_CONST) {
|
|
constant = PyList_GET_ITEM(co_consts, oparg);
|
|
}
|
|
|
|
if (constant == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"Internal error: failed to get value of a constant");
|
|
return NULL;
|
|
}
|
|
return Py_NewRef(constant);
|
|
}
|
|
|
|
/* Replace LOAD_CONST c1, LOAD_CONST c2 ... LOAD_CONST cn, BUILD_TUPLE n
|
|
with LOAD_CONST (c1, c2, ... cn).
|
|
The consts table must still be in list form so that the
|
|
new constant (c1, c2, ... cn) can be appended.
|
|
Called with codestr pointing to the first LOAD_CONST.
|
|
*/
|
|
static int
|
|
fold_tuple_on_constants(PyObject *const_cache,
|
|
struct cfg_instr *inst,
|
|
int n, PyObject *consts)
|
|
{
|
|
/* Pre-conditions */
|
|
assert(PyDict_CheckExact(const_cache));
|
|
assert(PyList_CheckExact(consts));
|
|
assert(inst[n].i_opcode == BUILD_TUPLE);
|
|
assert(inst[n].i_oparg == n);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
if (!HAS_CONST(inst[i].i_opcode)) {
|
|
return SUCCESS;
|
|
}
|
|
}
|
|
|
|
/* Buildup new tuple of constants */
|
|
PyObject *newconst = PyTuple_New(n);
|
|
if (newconst == NULL) {
|
|
return ERROR;
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
int op = inst[i].i_opcode;
|
|
int arg = inst[i].i_oparg;
|
|
PyObject *constant = get_const_value(op, arg, consts);
|
|
if (constant == NULL) {
|
|
return ERROR;
|
|
}
|
|
PyTuple_SET_ITEM(newconst, i, constant);
|
|
}
|
|
if (merge_const_one(const_cache, &newconst) < 0) {
|
|
Py_DECREF(newconst);
|
|
return ERROR;
|
|
}
|
|
|
|
Py_ssize_t index;
|
|
for (index = 0; index < PyList_GET_SIZE(consts); index++) {
|
|
if (PyList_GET_ITEM(consts, index) == newconst) {
|
|
break;
|
|
}
|
|
}
|
|
if (index == PyList_GET_SIZE(consts)) {
|
|
if ((size_t)index >= (size_t)INT_MAX - 1) {
|
|
Py_DECREF(newconst);
|
|
PyErr_SetString(PyExc_OverflowError, "too many constants");
|
|
return ERROR;
|
|
}
|
|
if (PyList_Append(consts, newconst)) {
|
|
Py_DECREF(newconst);
|
|
return ERROR;
|
|
}
|
|
}
|
|
Py_DECREF(newconst);
|
|
for (int i = 0; i < n; i++) {
|
|
INSTR_SET_OP0(&inst[i], NOP);
|
|
}
|
|
INSTR_SET_OP1(&inst[n], LOAD_CONST, (int)index);
|
|
return SUCCESS;
|
|
}
|
|
|
|
#define VISITED (-1)
|
|
|
|
// Replace an arbitrary run of SWAPs and NOPs with an optimal one that has the
|
|
// same effect.
|
|
static int
|
|
swaptimize(basicblock *block, int *ix)
|
|
{
|
|
// NOTE: "./python -m test test_patma" serves as a good, quick stress test
|
|
// for this function. Make sure to blow away cached *.pyc files first!
|
|
assert(*ix < block->b_iused);
|
|
struct cfg_instr *instructions = &block->b_instr[*ix];
|
|
// Find the length of the current sequence of SWAPs and NOPs, and record the
|
|
// maximum depth of the stack manipulations:
|
|
assert(instructions[0].i_opcode == SWAP);
|
|
int depth = instructions[0].i_oparg;
|
|
int len = 0;
|
|
int more = false;
|
|
int limit = block->b_iused - *ix;
|
|
while (++len < limit) {
|
|
int opcode = instructions[len].i_opcode;
|
|
if (opcode == SWAP) {
|
|
depth = Py_MAX(depth, instructions[len].i_oparg);
|
|
more = true;
|
|
}
|
|
else if (opcode != NOP) {
|
|
break;
|
|
}
|
|
}
|
|
// It's already optimal if there's only one SWAP:
|
|
if (!more) {
|
|
return SUCCESS;
|
|
}
|
|
// Create an array with elements {0, 1, 2, ..., depth - 1}:
|
|
int *stack = PyMem_Malloc(depth * sizeof(int));
|
|
if (stack == NULL) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
for (int i = 0; i < depth; i++) {
|
|
stack[i] = i;
|
|
}
|
|
// Simulate the combined effect of these instructions by "running" them on
|
|
// our "stack":
|
|
for (int i = 0; i < len; i++) {
|
|
if (instructions[i].i_opcode == SWAP) {
|
|
int oparg = instructions[i].i_oparg;
|
|
int top = stack[0];
|
|
// SWAPs are 1-indexed:
|
|
stack[0] = stack[oparg - 1];
|
|
stack[oparg - 1] = top;
|
|
}
|
|
}
|
|
// Now we can begin! Our approach here is based on a solution to a closely
|
|
// related problem (https://cs.stackexchange.com/a/13938). It's easiest to
|
|
// think of this algorithm as determining the steps needed to efficiently
|
|
// "un-shuffle" our stack. By performing the moves in *reverse* order,
|
|
// though, we can efficiently *shuffle* it! For this reason, we will be
|
|
// replacing instructions starting from the *end* of the run. Since the
|
|
// solution is optimal, we don't need to worry about running out of space:
|
|
int current = len - 1;
|
|
for (int i = 0; i < depth; i++) {
|
|
// Skip items that have already been visited, or just happen to be in
|
|
// the correct location:
|
|
if (stack[i] == VISITED || stack[i] == i) {
|
|
continue;
|
|
}
|
|
// Okay, we've found an item that hasn't been visited. It forms a cycle
|
|
// with other items; traversing the cycle and swapping each item with
|
|
// the next will put them all in the correct place. The weird
|
|
// loop-and-a-half is necessary to insert 0 into every cycle, since we
|
|
// can only swap from that position:
|
|
int j = i;
|
|
while (true) {
|
|
// Skip the actual swap if our item is zero, since swapping the top
|
|
// item with itself is pointless:
|
|
if (j) {
|
|
assert(0 <= current);
|
|
// SWAPs are 1-indexed:
|
|
instructions[current].i_opcode = SWAP;
|
|
instructions[current--].i_oparg = j + 1;
|
|
}
|
|
if (stack[j] == VISITED) {
|
|
// Completed the cycle:
|
|
assert(j == i);
|
|
break;
|
|
}
|
|
int next_j = stack[j];
|
|
stack[j] = VISITED;
|
|
j = next_j;
|
|
}
|
|
}
|
|
// NOP out any unused instructions:
|
|
while (0 <= current) {
|
|
INSTR_SET_OP0(&instructions[current--], NOP);
|
|
}
|
|
PyMem_Free(stack);
|
|
*ix += len - 1;
|
|
return SUCCESS;
|
|
}
|
|
|
|
// This list is pretty small, since it's only okay to reorder opcodes that:
|
|
// - can't affect control flow (like jumping or raising exceptions)
|
|
// - can't invoke arbitrary code (besides finalizers)
|
|
// - only touch the TOS (and pop it when finished)
|
|
#define SWAPPABLE(opcode) \
|
|
((opcode) == STORE_FAST || (opcode) == POP_TOP)
|
|
|
|
static int
|
|
next_swappable_instruction(basicblock *block, int i, int lineno)
|
|
{
|
|
while (++i < block->b_iused) {
|
|
struct cfg_instr *instruction = &block->b_instr[i];
|
|
if (0 <= lineno && instruction->i_loc.lineno != lineno) {
|
|
// Optimizing across this instruction could cause user-visible
|
|
// changes in the names bound between line tracing events!
|
|
return -1;
|
|
}
|
|
if (instruction->i_opcode == NOP) {
|
|
continue;
|
|
}
|
|
if (SWAPPABLE(instruction->i_opcode)) {
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// Attempt to apply SWAPs statically by swapping *instructions* rather than
|
|
// stack items. For example, we can replace SWAP(2), POP_TOP, STORE_FAST(42)
|
|
// with the more efficient NOP, STORE_FAST(42), POP_TOP.
|
|
static void
|
|
apply_static_swaps(basicblock *block, int i)
|
|
{
|
|
// SWAPs are to our left, and potential swaperands are to our right:
|
|
for (; 0 <= i; i--) {
|
|
assert(i < block->b_iused);
|
|
struct cfg_instr *swap = &block->b_instr[i];
|
|
if (swap->i_opcode != SWAP) {
|
|
if (swap->i_opcode == NOP || SWAPPABLE(swap->i_opcode)) {
|
|
// Nope, but we know how to handle these. Keep looking:
|
|
continue;
|
|
}
|
|
// We can't reason about what this instruction does. Bail:
|
|
return;
|
|
}
|
|
int j = next_swappable_instruction(block, i, -1);
|
|
if (j < 0) {
|
|
return;
|
|
}
|
|
int k = j;
|
|
int lineno = block->b_instr[j].i_loc.lineno;
|
|
for (int count = swap->i_oparg - 1; 0 < count; count--) {
|
|
k = next_swappable_instruction(block, k, lineno);
|
|
if (k < 0) {
|
|
return;
|
|
}
|
|
}
|
|
// Success!
|
|
INSTR_SET_OP0(swap, NOP);
|
|
struct cfg_instr temp = block->b_instr[j];
|
|
block->b_instr[j] = block->b_instr[k];
|
|
block->b_instr[k] = temp;
|
|
}
|
|
}
|
|
|
|
// Attempt to eliminate jumps to jumps by updating inst to jump to
|
|
// target->i_target using the provided opcode. Return whether or not the
|
|
// optimization was successful.
|
|
static bool
|
|
jump_thread(struct cfg_instr *inst, struct cfg_instr *target, int opcode)
|
|
{
|
|
assert(is_jump(inst));
|
|
assert(is_jump(target));
|
|
// bpo-45773: If inst->i_target == target->i_target, then nothing actually
|
|
// changes (and we fall into an infinite loop):
|
|
if ((inst->i_loc.lineno == target->i_loc.lineno || target->i_loc.lineno == -1) &&
|
|
inst->i_target != target->i_target)
|
|
{
|
|
inst->i_target = target->i_target;
|
|
inst->i_opcode = opcode;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Maximum size of basic block that should be copied in optimizer */
|
|
#define MAX_COPY_SIZE 4
|
|
|
|
/* Optimization */
|
|
static int
|
|
optimize_basic_block(PyObject *const_cache, basicblock *bb, PyObject *consts)
|
|
{
|
|
assert(PyDict_CheckExact(const_cache));
|
|
assert(PyList_CheckExact(consts));
|
|
struct cfg_instr nop;
|
|
INSTR_SET_OP0(&nop, NOP);
|
|
struct cfg_instr *target;
|
|
for (int i = 0; i < bb->b_iused; i++) {
|
|
struct cfg_instr *inst = &bb->b_instr[i];
|
|
int oparg = inst->i_oparg;
|
|
int nextop = i+1 < bb->b_iused ? bb->b_instr[i+1].i_opcode : 0;
|
|
if (HAS_TARGET(inst->i_opcode)) {
|
|
assert(inst->i_target->b_iused > 0);
|
|
target = &inst->i_target->b_instr[0];
|
|
assert(!IS_ASSEMBLER_OPCODE(target->i_opcode));
|
|
}
|
|
else {
|
|
target = &nop;
|
|
}
|
|
assert(!IS_ASSEMBLER_OPCODE(inst->i_opcode));
|
|
switch (inst->i_opcode) {
|
|
/* Remove LOAD_CONST const; conditional jump */
|
|
case LOAD_CONST:
|
|
{
|
|
PyObject* cnt;
|
|
int is_true;
|
|
int jump_if_true;
|
|
switch(nextop) {
|
|
case POP_JUMP_IF_FALSE:
|
|
case POP_JUMP_IF_TRUE:
|
|
cnt = get_const_value(inst->i_opcode, oparg, consts);
|
|
if (cnt == NULL) {
|
|
goto error;
|
|
}
|
|
is_true = PyObject_IsTrue(cnt);
|
|
Py_DECREF(cnt);
|
|
if (is_true == -1) {
|
|
goto error;
|
|
}
|
|
INSTR_SET_OP0(inst, NOP);
|
|
jump_if_true = nextop == POP_JUMP_IF_TRUE;
|
|
if (is_true == jump_if_true) {
|
|
bb->b_instr[i+1].i_opcode = JUMP;
|
|
}
|
|
else {
|
|
INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
|
|
}
|
|
break;
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
cnt = get_const_value(inst->i_opcode, oparg, consts);
|
|
if (cnt == NULL) {
|
|
goto error;
|
|
}
|
|
is_true = PyObject_IsTrue(cnt);
|
|
Py_DECREF(cnt);
|
|
if (is_true == -1) {
|
|
goto error;
|
|
}
|
|
jump_if_true = nextop == JUMP_IF_TRUE_OR_POP;
|
|
if (is_true == jump_if_true) {
|
|
bb->b_instr[i+1].i_opcode = JUMP;
|
|
}
|
|
else {
|
|
INSTR_SET_OP0(inst, NOP);
|
|
INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
|
|
}
|
|
break;
|
|
case IS_OP:
|
|
cnt = get_const_value(inst->i_opcode, oparg, consts);
|
|
if (cnt == NULL) {
|
|
goto error;
|
|
}
|
|
int jump_op = i+2 < bb->b_iused ? bb->b_instr[i+2].i_opcode : 0;
|
|
if (Py_IsNone(cnt) && (jump_op == POP_JUMP_IF_FALSE || jump_op == POP_JUMP_IF_TRUE)) {
|
|
unsigned char nextarg = bb->b_instr[i+1].i_oparg;
|
|
INSTR_SET_OP0(inst, NOP);
|
|
INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
|
|
bb->b_instr[i+2].i_opcode = nextarg ^ (jump_op == POP_JUMP_IF_FALSE) ?
|
|
POP_JUMP_IF_NOT_NONE : POP_JUMP_IF_NONE;
|
|
}
|
|
Py_DECREF(cnt);
|
|
break;
|
|
case RETURN_VALUE:
|
|
INSTR_SET_OP0(inst, NOP);
|
|
INSTR_SET_OP1(&bb->b_instr[++i], RETURN_CONST, oparg);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Try to fold tuples of constants.
|
|
Skip over BUILD_TUPLE(1) UNPACK_SEQUENCE(1).
|
|
Replace BUILD_TUPLE(2) UNPACK_SEQUENCE(2) with SWAP(2).
|
|
Replace BUILD_TUPLE(3) UNPACK_SEQUENCE(3) with SWAP(3). */
|
|
case BUILD_TUPLE:
|
|
if (nextop == UNPACK_SEQUENCE && oparg == bb->b_instr[i+1].i_oparg) {
|
|
switch(oparg) {
|
|
case 1:
|
|
INSTR_SET_OP0(inst, NOP);
|
|
INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
|
|
continue;
|
|
case 2:
|
|
case 3:
|
|
INSTR_SET_OP0(inst, NOP);
|
|
bb->b_instr[i+1].i_opcode = SWAP;
|
|
continue;
|
|
}
|
|
}
|
|
if (i >= oparg) {
|
|
if (fold_tuple_on_constants(const_cache, inst-oparg, oparg, consts)) {
|
|
goto error;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Simplify conditional jump to conditional jump where the
|
|
result of the first test implies the success of a similar
|
|
test or the failure of the opposite test.
|
|
Arises in code like:
|
|
"a and b or c"
|
|
"(a and b) and c"
|
|
"(a or b) or c"
|
|
"(a or b) and c"
|
|
x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_FALSE_OR_POP z
|
|
--> x:JUMP_IF_FALSE_OR_POP z
|
|
x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_TRUE_OR_POP z
|
|
--> x:POP_JUMP_IF_FALSE y+1
|
|
where y+1 is the instruction following the second test.
|
|
*/
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
switch (target->i_opcode) {
|
|
case POP_JUMP_IF_FALSE:
|
|
i -= jump_thread(inst, target, POP_JUMP_IF_FALSE);
|
|
break;
|
|
case JUMP:
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
i -= jump_thread(inst, target, JUMP_IF_FALSE_OR_POP);
|
|
break;
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
case POP_JUMP_IF_TRUE:
|
|
if (inst->i_loc.lineno == target->i_loc.lineno) {
|
|
// We don't need to bother checking for loops here,
|
|
// since a block's b_next cannot point to itself:
|
|
assert(inst->i_target != inst->i_target->b_next);
|
|
inst->i_opcode = POP_JUMP_IF_FALSE;
|
|
inst->i_target = inst->i_target->b_next;
|
|
--i;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
switch (target->i_opcode) {
|
|
case POP_JUMP_IF_TRUE:
|
|
i -= jump_thread(inst, target, POP_JUMP_IF_TRUE);
|
|
break;
|
|
case JUMP:
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
i -= jump_thread(inst, target, JUMP_IF_TRUE_OR_POP);
|
|
break;
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
case POP_JUMP_IF_FALSE:
|
|
if (inst->i_loc.lineno == target->i_loc.lineno) {
|
|
// We don't need to bother checking for loops here,
|
|
// since a block's b_next cannot point to itself:
|
|
assert(inst->i_target != inst->i_target->b_next);
|
|
inst->i_opcode = POP_JUMP_IF_TRUE;
|
|
inst->i_target = inst->i_target->b_next;
|
|
--i;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case POP_JUMP_IF_NOT_NONE:
|
|
case POP_JUMP_IF_NONE:
|
|
switch (target->i_opcode) {
|
|
case JUMP:
|
|
i -= jump_thread(inst, target, inst->i_opcode);
|
|
}
|
|
break;
|
|
case POP_JUMP_IF_FALSE:
|
|
switch (target->i_opcode) {
|
|
case JUMP:
|
|
i -= jump_thread(inst, target, POP_JUMP_IF_FALSE);
|
|
}
|
|
break;
|
|
case POP_JUMP_IF_TRUE:
|
|
switch (target->i_opcode) {
|
|
case JUMP:
|
|
i -= jump_thread(inst, target, POP_JUMP_IF_TRUE);
|
|
}
|
|
break;
|
|
case JUMP:
|
|
switch (target->i_opcode) {
|
|
case JUMP:
|
|
i -= jump_thread(inst, target, JUMP);
|
|
}
|
|
break;
|
|
case FOR_ITER:
|
|
if (target->i_opcode == JUMP) {
|
|
/* This will not work now because the jump (at target) could
|
|
* be forward or backward and FOR_ITER only jumps forward. We
|
|
* can re-enable this if ever we implement a backward version
|
|
* of FOR_ITER.
|
|
*/
|
|
/*
|
|
i -= jump_thread(inst, target, FOR_ITER);
|
|
*/
|
|
}
|
|
break;
|
|
case SWAP:
|
|
if (oparg == 1) {
|
|
INSTR_SET_OP0(inst, NOP);
|
|
break;
|
|
}
|
|
if (swaptimize(bb, &i) < 0) {
|
|
goto error;
|
|
}
|
|
apply_static_swaps(bb, i);
|
|
break;
|
|
case KW_NAMES:
|
|
break;
|
|
case PUSH_NULL:
|
|
if (nextop == LOAD_GLOBAL && (inst[1].i_opcode & 1) == 0) {
|
|
INSTR_SET_OP0(inst, NOP);
|
|
inst[1].i_oparg |= 1;
|
|
}
|
|
break;
|
|
default:
|
|
/* All HAS_CONST opcodes should be handled with LOAD_CONST */
|
|
assert (!HAS_CONST(inst->i_opcode));
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
error:
|
|
return ERROR;
|
|
}
|
|
|
|
/* If this block ends with an unconditional jump to a small exit block, then
|
|
* remove the jump and extend this block with the target.
|
|
* Returns 1 if extended, 0 if no change, and -1 on error.
|
|
*/
|
|
static int
|
|
inline_small_exit_blocks(basicblock *bb) {
|
|
struct cfg_instr *last = basicblock_last_instr(bb);
|
|
if (last == NULL) {
|
|
return 0;
|
|
}
|
|
if (!IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
|
|
return 0;
|
|
}
|
|
basicblock *target = last->i_target;
|
|
if (basicblock_exits_scope(target) && target->b_iused <= MAX_COPY_SIZE) {
|
|
INSTR_SET_OP0(last, NOP);
|
|
RETURN_IF_ERROR(basicblock_append_instructions(bb, target));
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
remove_redundant_nops(basicblock *bb) {
|
|
/* Remove NOPs when legal to do so. */
|
|
int dest = 0;
|
|
int prev_lineno = -1;
|
|
for (int src = 0; src < bb->b_iused; src++) {
|
|
int lineno = bb->b_instr[src].i_loc.lineno;
|
|
if (bb->b_instr[src].i_opcode == NOP) {
|
|
/* Eliminate no-op if it doesn't have a line number */
|
|
if (lineno < 0) {
|
|
continue;
|
|
}
|
|
/* or, if the previous instruction had the same line number. */
|
|
if (prev_lineno == lineno) {
|
|
continue;
|
|
}
|
|
/* or, if the next instruction has same line number or no line number */
|
|
if (src < bb->b_iused - 1) {
|
|
int next_lineno = bb->b_instr[src+1].i_loc.lineno;
|
|
if (next_lineno == lineno) {
|
|
continue;
|
|
}
|
|
if (next_lineno < 0) {
|
|
bb->b_instr[src+1].i_loc = bb->b_instr[src].i_loc;
|
|
continue;
|
|
}
|
|
}
|
|
else {
|
|
basicblock* next = bb->b_next;
|
|
while (next && next->b_iused == 0) {
|
|
next = next->b_next;
|
|
}
|
|
/* or if last instruction in BB and next BB has same line number */
|
|
if (next) {
|
|
if (lineno == next->b_instr[0].i_loc.lineno) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
if (dest != src) {
|
|
bb->b_instr[dest] = bb->b_instr[src];
|
|
}
|
|
dest++;
|
|
prev_lineno = lineno;
|
|
}
|
|
assert(dest <= bb->b_iused);
|
|
int num_removed = bb->b_iused - dest;
|
|
bb->b_iused = dest;
|
|
return num_removed;
|
|
}
|
|
|
|
static int
|
|
check_cfg(cfg_builder *g) {
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
/* Raise SystemError if jump or exit is not last instruction in the block. */
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
int opcode = b->b_instr[i].i_opcode;
|
|
assert(!IS_ASSEMBLER_OPCODE(opcode));
|
|
if (IS_TERMINATOR_OPCODE(opcode)) {
|
|
if (i != b->b_iused - 1) {
|
|
PyErr_SetString(PyExc_SystemError, "malformed control flow graph.");
|
|
return ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
mark_reachable(basicblock *entryblock) {
|
|
basicblock **stack = make_cfg_traversal_stack(entryblock);
|
|
if (stack == NULL) {
|
|
return ERROR;
|
|
}
|
|
basicblock **sp = stack;
|
|
entryblock->b_predecessors = 1;
|
|
*sp++ = entryblock;
|
|
while (sp > stack) {
|
|
basicblock *b = *(--sp);
|
|
b->b_visited = 1;
|
|
if (b->b_next && BB_HAS_FALLTHROUGH(b)) {
|
|
if (!b->b_next->b_visited) {
|
|
assert(b->b_next->b_predecessors == 0);
|
|
*sp++ = b->b_next;
|
|
}
|
|
b->b_next->b_predecessors++;
|
|
}
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
basicblock *target;
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
if (is_jump(instr) || is_block_push(instr)) {
|
|
target = instr->i_target;
|
|
if (!target->b_visited) {
|
|
assert(target->b_predecessors == 0 || target == b->b_next);
|
|
*sp++ = target;
|
|
}
|
|
target->b_predecessors++;
|
|
}
|
|
}
|
|
}
|
|
PyMem_Free(stack);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static void
|
|
eliminate_empty_basic_blocks(cfg_builder *g) {
|
|
/* Eliminate empty blocks */
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
basicblock *next = b->b_next;
|
|
while (next && next->b_iused == 0) {
|
|
next = next->b_next;
|
|
}
|
|
b->b_next = next;
|
|
}
|
|
while(g->g_entryblock && g->g_entryblock->b_iused == 0) {
|
|
g->g_entryblock = g->g_entryblock->b_next;
|
|
}
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
assert(b->b_iused > 0);
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
if (HAS_TARGET(instr->i_opcode)) {
|
|
basicblock *target = instr->i_target;
|
|
while (target->b_iused == 0) {
|
|
target = target->b_next;
|
|
}
|
|
instr->i_target = target;
|
|
assert(instr->i_target && instr->i_target->b_iused > 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* If an instruction has no line number, but it's predecessor in the BB does,
|
|
* then copy the line number. If a successor block has no line number, and only
|
|
* one predecessor, then inherit the line number.
|
|
* This ensures that all exit blocks (with one predecessor) receive a line number.
|
|
* Also reduces the size of the line number table,
|
|
* but has no impact on the generated line number events.
|
|
*/
|
|
static void
|
|
propagate_line_numbers(basicblock *entryblock) {
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
if (last == NULL) {
|
|
continue;
|
|
}
|
|
|
|
location prev_location = NO_LOCATION;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
if (b->b_instr[i].i_loc.lineno < 0) {
|
|
b->b_instr[i].i_loc = prev_location;
|
|
}
|
|
else {
|
|
prev_location = b->b_instr[i].i_loc;
|
|
}
|
|
}
|
|
if (BB_HAS_FALLTHROUGH(b) && b->b_next->b_predecessors == 1) {
|
|
assert(b->b_next->b_iused);
|
|
if (b->b_next->b_instr[0].i_loc.lineno < 0) {
|
|
b->b_next->b_instr[0].i_loc = prev_location;
|
|
}
|
|
}
|
|
if (is_jump(last)) {
|
|
basicblock *target = last->i_target;
|
|
if (target->b_predecessors == 1) {
|
|
if (target->b_instr[0].i_loc.lineno < 0) {
|
|
target->b_instr[0].i_loc = prev_location;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Calculate the actual jump target from the target_label */
|
|
static int
|
|
translate_jump_labels_to_targets(basicblock *entryblock)
|
|
{
|
|
int max_label = -1;
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
if (b->b_label > max_label) {
|
|
max_label = b->b_label;
|
|
}
|
|
}
|
|
size_t mapsize = sizeof(basicblock *) * (max_label + 1);
|
|
basicblock **label2block = (basicblock **)PyMem_Malloc(mapsize);
|
|
if (!label2block) {
|
|
PyErr_NoMemory();
|
|
return ERROR;
|
|
}
|
|
memset(label2block, 0, mapsize);
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
if (b->b_label >= 0) {
|
|
label2block[b->b_label] = b;
|
|
}
|
|
}
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
assert(instr->i_target == NULL);
|
|
if (HAS_TARGET(instr->i_opcode)) {
|
|
int lbl = instr->i_oparg;
|
|
assert(lbl >= 0 && lbl <= max_label);
|
|
instr->i_target = label2block[lbl];
|
|
assert(instr->i_target != NULL);
|
|
assert(instr->i_target->b_label == lbl);
|
|
}
|
|
}
|
|
}
|
|
PyMem_Free(label2block);
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Perform optimizations on a control flow graph.
|
|
The consts object should still be in list form to allow new constants
|
|
to be appended.
|
|
|
|
Code trasnformations that reduce code size initially fill the gaps with
|
|
NOPs. Later those NOPs are removed.
|
|
*/
|
|
|
|
static int
|
|
optimize_cfg(cfg_builder *g, PyObject *consts, PyObject *const_cache)
|
|
{
|
|
assert(PyDict_CheckExact(const_cache));
|
|
RETURN_IF_ERROR(check_cfg(g));
|
|
eliminate_empty_basic_blocks(g);
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
RETURN_IF_ERROR(inline_small_exit_blocks(b));
|
|
}
|
|
assert(no_empty_basic_blocks(g));
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
RETURN_IF_ERROR(optimize_basic_block(const_cache, b, consts));
|
|
remove_redundant_nops(b);
|
|
assert(b->b_predecessors == 0);
|
|
}
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
RETURN_IF_ERROR(inline_small_exit_blocks(b));
|
|
}
|
|
RETURN_IF_ERROR(mark_reachable(g->g_entryblock));
|
|
|
|
/* Delete unreachable instructions */
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
if (b->b_predecessors == 0) {
|
|
b->b_iused = 0;
|
|
}
|
|
}
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
remove_redundant_nops(b);
|
|
}
|
|
eliminate_empty_basic_blocks(g);
|
|
assert(no_redundant_nops(g));
|
|
RETURN_IF_ERROR(remove_redundant_jumps(g));
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
static int
|
|
remove_unused_consts(basicblock *entryblock, PyObject *consts)
|
|
{
|
|
assert(PyList_CheckExact(consts));
|
|
Py_ssize_t nconsts = PyList_GET_SIZE(consts);
|
|
if (nconsts == 0) {
|
|
return SUCCESS; /* nothing to do */
|
|
}
|
|
|
|
Py_ssize_t *index_map = NULL;
|
|
Py_ssize_t *reverse_index_map = NULL;
|
|
int err = ERROR;
|
|
|
|
index_map = PyMem_Malloc(nconsts * sizeof(Py_ssize_t));
|
|
if (index_map == NULL) {
|
|
goto end;
|
|
}
|
|
for (Py_ssize_t i = 1; i < nconsts; i++) {
|
|
index_map[i] = -1;
|
|
}
|
|
// The first constant may be docstring; keep it always.
|
|
index_map[0] = 0;
|
|
|
|
/* mark used consts */
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
if (HAS_CONST(b->b_instr[i].i_opcode)) {
|
|
int index = b->b_instr[i].i_oparg;
|
|
index_map[index] = index;
|
|
}
|
|
}
|
|
}
|
|
/* now index_map[i] == i if consts[i] is used, -1 otherwise */
|
|
|
|
/* condense consts */
|
|
Py_ssize_t n_used_consts = 0;
|
|
for (int i = 0; i < nconsts; i++) {
|
|
if (index_map[i] != -1) {
|
|
assert(index_map[i] == i);
|
|
index_map[n_used_consts++] = index_map[i];
|
|
}
|
|
}
|
|
if (n_used_consts == nconsts) {
|
|
/* nothing to do */
|
|
err = SUCCESS;
|
|
goto end;
|
|
}
|
|
|
|
/* move all used consts to the beginning of the consts list */
|
|
assert(n_used_consts < nconsts);
|
|
for (Py_ssize_t i = 0; i < n_used_consts; i++) {
|
|
Py_ssize_t old_index = index_map[i];
|
|
assert(i <= old_index && old_index < nconsts);
|
|
if (i != old_index) {
|
|
PyObject *value = PyList_GET_ITEM(consts, index_map[i]);
|
|
assert(value != NULL);
|
|
PyList_SetItem(consts, i, Py_NewRef(value));
|
|
}
|
|
}
|
|
|
|
/* truncate the consts list at its new size */
|
|
if (PyList_SetSlice(consts, n_used_consts, nconsts, NULL) < 0) {
|
|
goto end;
|
|
}
|
|
|
|
/* adjust const indices in the bytecode */
|
|
reverse_index_map = PyMem_Malloc(nconsts * sizeof(Py_ssize_t));
|
|
if (reverse_index_map == NULL) {
|
|
goto end;
|
|
}
|
|
for (Py_ssize_t i = 0; i < nconsts; i++) {
|
|
reverse_index_map[i] = -1;
|
|
}
|
|
for (Py_ssize_t i = 0; i < n_used_consts; i++) {
|
|
assert(index_map[i] != -1);
|
|
assert(reverse_index_map[index_map[i]] == -1);
|
|
reverse_index_map[index_map[i]] = i;
|
|
}
|
|
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
if (HAS_CONST(b->b_instr[i].i_opcode)) {
|
|
int index = b->b_instr[i].i_oparg;
|
|
assert(reverse_index_map[index] >= 0);
|
|
assert(reverse_index_map[index] < n_used_consts);
|
|
b->b_instr[i].i_oparg = (int)reverse_index_map[index];
|
|
}
|
|
}
|
|
}
|
|
|
|
err = SUCCESS;
|
|
end:
|
|
PyMem_Free(index_map);
|
|
PyMem_Free(reverse_index_map);
|
|
return err;
|
|
}
|
|
|
|
static inline bool
|
|
is_exit_without_lineno(basicblock *b) {
|
|
if (!basicblock_exits_scope(b)) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
if (b->b_instr[i].i_loc.lineno >= 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* PEP 626 mandates that the f_lineno of a frame is correct
|
|
* after a frame terminates. It would be prohibitively expensive
|
|
* to continuously update the f_lineno field at runtime,
|
|
* so we make sure that all exiting instruction (raises and returns)
|
|
* have a valid line number, allowing us to compute f_lineno lazily.
|
|
* We can do this by duplicating the exit blocks without line number
|
|
* so that none have more than one predecessor. We can then safely
|
|
* copy the line number from the sole predecessor block.
|
|
*/
|
|
static int
|
|
duplicate_exits_without_lineno(cfg_builder *g)
|
|
{
|
|
assert(no_empty_basic_blocks(g));
|
|
/* Copy all exit blocks without line number that are targets of a jump.
|
|
*/
|
|
basicblock *entryblock = g->g_entryblock;
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
assert(last != NULL);
|
|
if (is_jump(last)) {
|
|
basicblock *target = last->i_target;
|
|
if (is_exit_without_lineno(target) && target->b_predecessors > 1) {
|
|
basicblock *new_target = copy_basicblock(g, target);
|
|
if (new_target == NULL) {
|
|
return ERROR;
|
|
}
|
|
new_target->b_instr[0].i_loc = last->i_loc;
|
|
last->i_target = new_target;
|
|
target->b_predecessors--;
|
|
new_target->b_predecessors = 1;
|
|
new_target->b_next = target->b_next;
|
|
target->b_next = new_target;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Any remaining reachable exit blocks without line number can only be reached by
|
|
* fall through, and thus can only have a single predecessor */
|
|
for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
|
|
if (BB_HAS_FALLTHROUGH(b) && b->b_next && b->b_iused > 0) {
|
|
if (is_exit_without_lineno(b->b_next)) {
|
|
struct cfg_instr *last = basicblock_last_instr(b);
|
|
assert(last != NULL);
|
|
b->b_next->b_instr[0].i_loc = last->i_loc;
|
|
}
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Access to compiler optimizations for unit tests.
|
|
*
|
|
* _PyCompile_CodeGen takes and AST, applies code-gen and
|
|
* returns the unoptimized CFG as an instruction list.
|
|
*
|
|
* _PyCompile_OptimizeCfg takes an instruction list, constructs
|
|
* a CFG, optimizes it and converts back to an instruction list.
|
|
*
|
|
* An instruction list is a PyList where each item is either
|
|
* a tuple describing a single instruction:
|
|
* (opcode, oparg, lineno, end_lineno, col, end_col), or
|
|
* a jump target label marking the beginning of a basic block.
|
|
*/
|
|
|
|
static int
|
|
instructions_to_cfg(PyObject *instructions, cfg_builder *g)
|
|
{
|
|
assert(PyList_Check(instructions));
|
|
|
|
Py_ssize_t num_insts = PyList_GET_SIZE(instructions);
|
|
bool *is_target = PyMem_Calloc(num_insts, sizeof(bool));
|
|
if (is_target == NULL) {
|
|
return ERROR;
|
|
}
|
|
for (Py_ssize_t i = 0; i < num_insts; i++) {
|
|
PyObject *item = PyList_GET_ITEM(instructions, i);
|
|
if (!PyTuple_Check(item) || PyTuple_GET_SIZE(item) != 6) {
|
|
PyErr_SetString(PyExc_ValueError, "expected a 6-tuple");
|
|
goto error;
|
|
}
|
|
int opcode = PyLong_AsLong(PyTuple_GET_ITEM(item, 0));
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
if (HAS_TARGET(opcode)) {
|
|
int oparg = PyLong_AsLong(PyTuple_GET_ITEM(item, 1));
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
if (oparg < 0 || oparg >= num_insts) {
|
|
PyErr_SetString(PyExc_ValueError, "label out of range");
|
|
goto error;
|
|
}
|
|
is_target[oparg] = true;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < num_insts; i++) {
|
|
if (is_target[i]) {
|
|
jump_target_label lbl = {i};
|
|
RETURN_IF_ERROR(cfg_builder_use_label(g, lbl));
|
|
}
|
|
PyObject *item = PyList_GET_ITEM(instructions, i);
|
|
if (!PyTuple_Check(item) || PyTuple_GET_SIZE(item) != 6) {
|
|
PyErr_SetString(PyExc_ValueError, "expected a 6-tuple");
|
|
goto error;
|
|
}
|
|
int opcode = PyLong_AsLong(PyTuple_GET_ITEM(item, 0));
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
int oparg = PyLong_AsLong(PyTuple_GET_ITEM(item, 1));
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
location loc;
|
|
loc.lineno = PyLong_AsLong(PyTuple_GET_ITEM(item, 2));
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
loc.end_lineno = PyLong_AsLong(PyTuple_GET_ITEM(item, 3));
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
loc.col_offset = PyLong_AsLong(PyTuple_GET_ITEM(item, 4));
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
loc.end_col_offset = PyLong_AsLong(PyTuple_GET_ITEM(item, 5));
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
RETURN_IF_ERROR(cfg_builder_addop(g, opcode, oparg, loc));
|
|
}
|
|
|
|
PyMem_Free(is_target);
|
|
return SUCCESS;
|
|
error:
|
|
PyMem_Free(is_target);
|
|
return ERROR;
|
|
}
|
|
|
|
static PyObject *
|
|
cfg_to_instructions(cfg_builder *g)
|
|
{
|
|
PyObject *instructions = PyList_New(0);
|
|
if (instructions == NULL) {
|
|
return NULL;
|
|
}
|
|
int lbl = 0;
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
b->b_label = lbl;
|
|
lbl += b->b_iused;
|
|
}
|
|
for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct cfg_instr *instr = &b->b_instr[i];
|
|
location loc = instr->i_loc;
|
|
int arg = HAS_TARGET(instr->i_opcode) ?
|
|
instr->i_target->b_label : instr->i_oparg;
|
|
|
|
PyObject *inst_tuple = Py_BuildValue(
|
|
"(iiiiii)", instr->i_opcode, arg,
|
|
loc.lineno, loc.end_lineno,
|
|
loc.col_offset, loc.end_col_offset);
|
|
if (inst_tuple == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
if (PyList_Append(instructions, inst_tuple) != 0) {
|
|
Py_DECREF(inst_tuple);
|
|
goto error;
|
|
}
|
|
Py_DECREF(inst_tuple);
|
|
}
|
|
}
|
|
|
|
return instructions;
|
|
error:
|
|
Py_DECREF(instructions);
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *
|
|
_PyCompile_CodeGen(PyObject *ast, PyObject *filename, PyCompilerFlags *pflags,
|
|
int optimize)
|
|
{
|
|
PyObject *res = NULL;
|
|
|
|
if (!PyAST_Check(ast)) {
|
|
PyErr_SetString(PyExc_TypeError, "expected an AST");
|
|
return NULL;
|
|
}
|
|
|
|
PyArena *arena = _PyArena_New();
|
|
if (arena == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
mod_ty mod = PyAST_obj2mod(ast, arena, 0 /* exec */);
|
|
if (mod == NULL || !_PyAST_Validate(mod)) {
|
|
_PyArena_Free(arena);
|
|
return NULL;
|
|
}
|
|
|
|
struct compiler *c = new_compiler(mod, filename, pflags, optimize, arena);
|
|
if (c == NULL) {
|
|
_PyArena_Free(arena);
|
|
return NULL;
|
|
}
|
|
|
|
if (compiler_codegen(c, mod) < 0) {
|
|
goto finally;
|
|
}
|
|
|
|
cfg_builder g;
|
|
if (instr_sequence_to_cfg(INSTR_SEQUENCE(c), &g) < 0) {
|
|
goto finally;
|
|
}
|
|
if (translate_jump_labels_to_targets(g.g_entryblock) < 0) {
|
|
goto finally;
|
|
}
|
|
|
|
res = cfg_to_instructions(&g);
|
|
|
|
finally:
|
|
compiler_exit_scope(c);
|
|
cfg_builder_fini(&g);
|
|
compiler_free(c);
|
|
_PyArena_Free(arena);
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
_PyCompile_OptimizeCfg(PyObject *instructions, PyObject *consts)
|
|
{
|
|
PyObject *res = NULL;
|
|
PyObject *const_cache = NULL;
|
|
cfg_builder g;
|
|
memset(&g, 0, sizeof(cfg_builder));
|
|
if (cfg_builder_init(&g) < 0) {
|
|
goto error;
|
|
}
|
|
if (instructions_to_cfg(instructions, &g) < 0) {
|
|
goto error;
|
|
}
|
|
const_cache = PyDict_New();
|
|
if (const_cache == NULL) {
|
|
goto error;
|
|
}
|
|
if (translate_jump_labels_to_targets(g.g_entryblock) < 0) {
|
|
goto error;
|
|
}
|
|
if (optimize_cfg(&g, consts, const_cache) < 0) {
|
|
goto error;
|
|
}
|
|
res = cfg_to_instructions(&g);
|
|
error:
|
|
Py_XDECREF(const_cache);
|
|
cfg_builder_fini(&g);
|
|
return res;
|
|
}
|
|
|
|
|
|
/* Retained for API compatibility.
|
|
* Optimization is now done in optimize_cfg */
|
|
|
|
PyObject *
|
|
PyCode_Optimize(PyObject *code, PyObject* Py_UNUSED(consts),
|
|
PyObject *Py_UNUSED(names), PyObject *Py_UNUSED(lnotab_obj))
|
|
{
|
|
return Py_NewRef(code);
|
|
}
|