mirror of https://github.com/python/cpython
198 lines
5.7 KiB
Python
198 lines
5.7 KiB
Python
"""
|
|
List sort performance test.
|
|
|
|
To install `pyperf` you would need to:
|
|
|
|
python3 -m pip install pyperf
|
|
|
|
To run:
|
|
|
|
python3 Tools/scripts/sortperf
|
|
|
|
Options:
|
|
|
|
* `benchmark` name to run
|
|
* `--rnd-seed` to set random seed
|
|
* `--size` to set the sorted list size
|
|
|
|
Based on https://github.com/python/cpython/blob/963904335e579bfe39101adf3fd6a0cf705975ff/Lib/test/sortperf.py
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import time
|
|
import random
|
|
|
|
|
|
# ===============
|
|
# Data generation
|
|
# ===============
|
|
|
|
def _random_data(size: int, rand: random.Random) -> list[float]:
|
|
result = [rand.random() for _ in range(size)]
|
|
# Shuffle it a bit...
|
|
for i in range(10):
|
|
i = rand.randrange(size)
|
|
temp = result[:i]
|
|
del result[:i]
|
|
temp.reverse()
|
|
result.extend(temp)
|
|
del temp
|
|
assert len(result) == size
|
|
return result
|
|
|
|
|
|
def list_sort(size: int, rand: random.Random) -> list[float]:
|
|
return _random_data(size, rand)
|
|
|
|
|
|
def list_sort_descending(size: int, rand: random.Random) -> list[float]:
|
|
return list(reversed(list_sort_ascending(size, rand)))
|
|
|
|
|
|
def list_sort_ascending(size: int, rand: random.Random) -> list[float]:
|
|
return sorted(_random_data(size, rand))
|
|
|
|
|
|
def list_sort_ascending_exchanged(size: int, rand: random.Random) -> list[float]:
|
|
result = list_sort_ascending(size, rand)
|
|
# Do 3 random exchanges.
|
|
for _ in range(3):
|
|
i1 = rand.randrange(size)
|
|
i2 = rand.randrange(size)
|
|
result[i1], result[i2] = result[i2], result[i1]
|
|
return result
|
|
|
|
|
|
def list_sort_ascending_random(size: int, rand: random.Random) -> list[float]:
|
|
assert size >= 10, "This benchmark requires size to be >= 10"
|
|
result = list_sort_ascending(size, rand)
|
|
# Replace the last 10 with random floats.
|
|
result[-10:] = [rand.random() for _ in range(10)]
|
|
return result
|
|
|
|
|
|
def list_sort_ascending_one_percent(size: int, rand: random.Random) -> list[float]:
|
|
result = list_sort_ascending(size, rand)
|
|
# Replace 1% of the elements at random.
|
|
for _ in range(size // 100):
|
|
result[rand.randrange(size)] = rand.random()
|
|
return result
|
|
|
|
|
|
def list_sort_duplicates(size: int, rand: random.Random) -> list[float]:
|
|
assert size >= 4
|
|
result = list_sort_ascending(4, rand)
|
|
# Arrange for lots of duplicates.
|
|
result = result * (size // 4)
|
|
# Force the elements to be distinct objects, else timings can be
|
|
# artificially low.
|
|
return list(map(abs, result))
|
|
|
|
|
|
def list_sort_equal(size: int, rand: random.Random) -> list[float]:
|
|
# All equal. Again, force the elements to be distinct objects.
|
|
return list(map(abs, [-0.519012] * size))
|
|
|
|
|
|
def list_sort_worst_case(size: int, rand: random.Random) -> list[float]:
|
|
# This one looks like [3, 2, 1, 0, 0, 1, 2, 3]. It was a bad case
|
|
# for an older implementation of quicksort, which used the median
|
|
# of the first, last and middle elements as the pivot.
|
|
half = size // 2
|
|
result = list(range(half - 1, -1, -1))
|
|
result.extend(range(half))
|
|
# Force to float, so that the timings are comparable. This is
|
|
# significantly faster if we leave them as ints.
|
|
return list(map(float, result))
|
|
|
|
|
|
# =========
|
|
# Benchmark
|
|
# =========
|
|
|
|
class Benchmark:
|
|
def __init__(self, name: str, size: int, seed: int) -> None:
|
|
self._name = name
|
|
self._size = size
|
|
self._seed = seed
|
|
self._random = random.Random(self._seed)
|
|
|
|
def run(self, loops: int) -> float:
|
|
all_data = self._prepare_data(loops)
|
|
start = time.perf_counter()
|
|
|
|
for data in all_data:
|
|
data.sort() # Benching this method!
|
|
|
|
return time.perf_counter() - start
|
|
|
|
def _prepare_data(self, loops: int) -> list[float]:
|
|
bench = BENCHMARKS[self._name]
|
|
data = bench(self._size, self._random)
|
|
return [data.copy() for _ in range(loops)]
|
|
|
|
|
|
def add_cmdline_args(cmd: list[str], args) -> None:
|
|
if args.benchmark:
|
|
cmd.append(args.benchmark)
|
|
cmd.append(f"--size={args.size}")
|
|
cmd.append(f"--rng-seed={args.rng_seed}")
|
|
|
|
|
|
def add_parser_args(parser: argparse.ArgumentParser) -> None:
|
|
parser.add_argument(
|
|
"benchmark",
|
|
choices=BENCHMARKS,
|
|
nargs="?",
|
|
help="Can be any of: {0}".format(", ".join(BENCHMARKS)),
|
|
)
|
|
parser.add_argument(
|
|
"--size",
|
|
type=int,
|
|
default=DEFAULT_SIZE,
|
|
help=f"Size of the lists to sort (default: {DEFAULT_SIZE})",
|
|
)
|
|
parser.add_argument(
|
|
"--rng-seed",
|
|
type=int,
|
|
default=DEFAULT_RANDOM_SEED,
|
|
help=f"Random number generator seed (default: {DEFAULT_RANDOM_SEED})",
|
|
)
|
|
|
|
|
|
DEFAULT_SIZE = 1 << 14
|
|
DEFAULT_RANDOM_SEED = 0
|
|
BENCHMARKS = {
|
|
"list_sort": list_sort,
|
|
"list_sort_descending": list_sort_descending,
|
|
"list_sort_ascending": list_sort_ascending,
|
|
"list_sort_ascending_exchanged": list_sort_ascending_exchanged,
|
|
"list_sort_ascending_random": list_sort_ascending_random,
|
|
"list_sort_ascending_one_percent": list_sort_ascending_one_percent,
|
|
"list_sort_duplicates": list_sort_duplicates,
|
|
"list_sort_equal": list_sort_equal,
|
|
"list_sort_worst_case": list_sort_worst_case,
|
|
}
|
|
|
|
if __name__ == "__main__":
|
|
# This needs `pyperf` 3rd party library:
|
|
import pyperf
|
|
|
|
runner = pyperf.Runner(add_cmdline_args=add_cmdline_args)
|
|
add_parser_args(runner.argparser)
|
|
args = runner.parse_args()
|
|
|
|
runner.metadata["description"] = "Test `list.sort()` with different data"
|
|
runner.metadata["list_sort_size"] = args.size
|
|
runner.metadata["list_sort_random_seed"] = args.rng_seed
|
|
|
|
if args.benchmark:
|
|
benchmarks = (args.benchmark,)
|
|
else:
|
|
benchmarks = sorted(BENCHMARKS)
|
|
for bench in benchmarks:
|
|
benchmark = Benchmark(bench, args.size, args.rng_seed)
|
|
runner.bench_time_func(bench, benchmark.run)
|