mirror of https://github.com/python/cpython
2847 lines
82 KiB
C
2847 lines
82 KiB
C
|
|
/* Thread and interpreter state structures and their interfaces */
|
|
|
|
#include "Python.h"
|
|
#include "pycore_ceval.h"
|
|
#include "pycore_code.h" // stats
|
|
#include "pycore_critical_section.h" // _PyCriticalSection_Resume()
|
|
#include "pycore_dtoa.h" // _dtoa_state_INIT()
|
|
#include "pycore_emscripten_trampoline.h" // _Py_EmscriptenTrampoline_Init()
|
|
#include "pycore_frame.h"
|
|
#include "pycore_initconfig.h" // _PyStatus_OK()
|
|
#include "pycore_object.h" // _PyType_InitCache()
|
|
#include "pycore_object_stack.h" // _PyObjectStackChunk_ClearFreeList()
|
|
#include "pycore_parking_lot.h" // _PyParkingLot_AfterFork()
|
|
#include "pycore_pyerrors.h" // _PyErr_Clear()
|
|
#include "pycore_pylifecycle.h" // _PyAST_Fini()
|
|
#include "pycore_pymem.h" // _PyMem_SetDefaultAllocator()
|
|
#include "pycore_pystate.h"
|
|
#include "pycore_runtime_init.h" // _PyRuntimeState_INIT
|
|
#include "pycore_sysmodule.h" // _PySys_Audit()
|
|
#include "pycore_obmalloc.h" // _PyMem_obmalloc_state_on_heap()
|
|
|
|
/* --------------------------------------------------------------------------
|
|
CAUTION
|
|
|
|
Always use PyMem_RawMalloc() and PyMem_RawFree() directly in this file. A
|
|
number of these functions are advertised as safe to call when the GIL isn't
|
|
held, and in a debug build Python redirects (e.g.) PyMem_NEW (etc) to Python's
|
|
debugging obmalloc functions. Those aren't thread-safe (they rely on the GIL
|
|
to avoid the expense of doing their own locking).
|
|
-------------------------------------------------------------------------- */
|
|
|
|
#ifdef HAVE_DLOPEN
|
|
# ifdef HAVE_DLFCN_H
|
|
# include <dlfcn.h>
|
|
# endif
|
|
# if !HAVE_DECL_RTLD_LAZY
|
|
# define RTLD_LAZY 1
|
|
# endif
|
|
#endif
|
|
|
|
|
|
/****************************************/
|
|
/* helpers for the current thread state */
|
|
/****************************************/
|
|
|
|
// API for the current thread state is further down.
|
|
|
|
/* "current" means one of:
|
|
- bound to the current OS thread
|
|
- holds the GIL
|
|
*/
|
|
|
|
//-------------------------------------------------
|
|
// a highly efficient lookup for the current thread
|
|
//-------------------------------------------------
|
|
|
|
/*
|
|
The stored thread state is set by PyThreadState_Swap().
|
|
|
|
For each of these functions, the GIL must be held by the current thread.
|
|
*/
|
|
|
|
|
|
#ifdef HAVE_THREAD_LOCAL
|
|
_Py_thread_local PyThreadState *_Py_tss_tstate = NULL;
|
|
#endif
|
|
|
|
static inline PyThreadState *
|
|
current_fast_get(void)
|
|
{
|
|
#ifdef HAVE_THREAD_LOCAL
|
|
return _Py_tss_tstate;
|
|
#else
|
|
// XXX Fall back to the PyThread_tss_*() API.
|
|
# error "no supported thread-local variable storage classifier"
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
current_fast_set(_PyRuntimeState *Py_UNUSED(runtime), PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
#ifdef HAVE_THREAD_LOCAL
|
|
_Py_tss_tstate = tstate;
|
|
#else
|
|
// XXX Fall back to the PyThread_tss_*() API.
|
|
# error "no supported thread-local variable storage classifier"
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
current_fast_clear(_PyRuntimeState *Py_UNUSED(runtime))
|
|
{
|
|
#ifdef HAVE_THREAD_LOCAL
|
|
_Py_tss_tstate = NULL;
|
|
#else
|
|
// XXX Fall back to the PyThread_tss_*() API.
|
|
# error "no supported thread-local variable storage classifier"
|
|
#endif
|
|
}
|
|
|
|
#define tstate_verify_not_active(tstate) \
|
|
if (tstate == current_fast_get()) { \
|
|
_Py_FatalErrorFormat(__func__, "tstate %p is still current", tstate); \
|
|
}
|
|
|
|
PyThreadState *
|
|
_PyThreadState_GetCurrent(void)
|
|
{
|
|
return current_fast_get();
|
|
}
|
|
|
|
|
|
//------------------------------------------------
|
|
// the thread state bound to the current OS thread
|
|
//------------------------------------------------
|
|
|
|
static inline int
|
|
tstate_tss_initialized(Py_tss_t *key)
|
|
{
|
|
return PyThread_tss_is_created(key);
|
|
}
|
|
|
|
static inline int
|
|
tstate_tss_init(Py_tss_t *key)
|
|
{
|
|
assert(!tstate_tss_initialized(key));
|
|
return PyThread_tss_create(key);
|
|
}
|
|
|
|
static inline void
|
|
tstate_tss_fini(Py_tss_t *key)
|
|
{
|
|
assert(tstate_tss_initialized(key));
|
|
PyThread_tss_delete(key);
|
|
}
|
|
|
|
static inline PyThreadState *
|
|
tstate_tss_get(Py_tss_t *key)
|
|
{
|
|
assert(tstate_tss_initialized(key));
|
|
return (PyThreadState *)PyThread_tss_get(key);
|
|
}
|
|
|
|
static inline int
|
|
tstate_tss_set(Py_tss_t *key, PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
assert(tstate_tss_initialized(key));
|
|
return PyThread_tss_set(key, (void *)tstate);
|
|
}
|
|
|
|
static inline int
|
|
tstate_tss_clear(Py_tss_t *key)
|
|
{
|
|
assert(tstate_tss_initialized(key));
|
|
return PyThread_tss_set(key, (void *)NULL);
|
|
}
|
|
|
|
#ifdef HAVE_FORK
|
|
/* Reset the TSS key - called by PyOS_AfterFork_Child().
|
|
* This should not be necessary, but some - buggy - pthread implementations
|
|
* don't reset TSS upon fork(), see issue #10517.
|
|
*/
|
|
static PyStatus
|
|
tstate_tss_reinit(Py_tss_t *key)
|
|
{
|
|
if (!tstate_tss_initialized(key)) {
|
|
return _PyStatus_OK();
|
|
}
|
|
PyThreadState *tstate = tstate_tss_get(key);
|
|
|
|
tstate_tss_fini(key);
|
|
if (tstate_tss_init(key) != 0) {
|
|
return _PyStatus_NO_MEMORY();
|
|
}
|
|
|
|
/* If the thread had an associated auto thread state, reassociate it with
|
|
* the new key. */
|
|
if (tstate && tstate_tss_set(key, tstate) != 0) {
|
|
return _PyStatus_ERR("failed to re-set autoTSSkey");
|
|
}
|
|
return _PyStatus_OK();
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
The stored thread state is set by bind_tstate() (AKA PyThreadState_Bind().
|
|
|
|
The GIL does no need to be held for these.
|
|
*/
|
|
|
|
#define gilstate_tss_initialized(runtime) \
|
|
tstate_tss_initialized(&(runtime)->autoTSSkey)
|
|
#define gilstate_tss_init(runtime) \
|
|
tstate_tss_init(&(runtime)->autoTSSkey)
|
|
#define gilstate_tss_fini(runtime) \
|
|
tstate_tss_fini(&(runtime)->autoTSSkey)
|
|
#define gilstate_tss_get(runtime) \
|
|
tstate_tss_get(&(runtime)->autoTSSkey)
|
|
#define _gilstate_tss_set(runtime, tstate) \
|
|
tstate_tss_set(&(runtime)->autoTSSkey, tstate)
|
|
#define _gilstate_tss_clear(runtime) \
|
|
tstate_tss_clear(&(runtime)->autoTSSkey)
|
|
#define gilstate_tss_reinit(runtime) \
|
|
tstate_tss_reinit(&(runtime)->autoTSSkey)
|
|
|
|
static inline void
|
|
gilstate_tss_set(_PyRuntimeState *runtime, PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL && tstate->interp->runtime == runtime);
|
|
if (_gilstate_tss_set(runtime, tstate) != 0) {
|
|
Py_FatalError("failed to set current tstate (TSS)");
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gilstate_tss_clear(_PyRuntimeState *runtime)
|
|
{
|
|
if (_gilstate_tss_clear(runtime) != 0) {
|
|
Py_FatalError("failed to clear current tstate (TSS)");
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef NDEBUG
|
|
static inline int tstate_is_alive(PyThreadState *tstate);
|
|
|
|
static inline int
|
|
tstate_is_bound(PyThreadState *tstate)
|
|
{
|
|
return tstate->_status.bound && !tstate->_status.unbound;
|
|
}
|
|
#endif // !NDEBUG
|
|
|
|
static void bind_gilstate_tstate(PyThreadState *);
|
|
static void unbind_gilstate_tstate(PyThreadState *);
|
|
|
|
static void tstate_mimalloc_bind(PyThreadState *);
|
|
|
|
static void
|
|
bind_tstate(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
assert(tstate_is_alive(tstate) && !tstate->_status.bound);
|
|
assert(!tstate->_status.unbound); // just in case
|
|
assert(!tstate->_status.bound_gilstate);
|
|
assert(tstate != gilstate_tss_get(tstate->interp->runtime));
|
|
assert(!tstate->_status.active);
|
|
assert(tstate->thread_id == 0);
|
|
assert(tstate->native_thread_id == 0);
|
|
|
|
// Currently we don't necessarily store the thread state
|
|
// in thread-local storage (e.g. per-interpreter).
|
|
|
|
tstate->thread_id = PyThread_get_thread_ident();
|
|
#ifdef PY_HAVE_THREAD_NATIVE_ID
|
|
tstate->native_thread_id = PyThread_get_thread_native_id();
|
|
#endif
|
|
|
|
// mimalloc state needs to be initialized from the active thread.
|
|
tstate_mimalloc_bind(tstate);
|
|
|
|
tstate->_status.bound = 1;
|
|
}
|
|
|
|
static void
|
|
unbind_tstate(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
assert(tstate_is_bound(tstate));
|
|
#ifndef HAVE_PTHREAD_STUBS
|
|
assert(tstate->thread_id > 0);
|
|
#endif
|
|
#ifdef PY_HAVE_THREAD_NATIVE_ID
|
|
assert(tstate->native_thread_id > 0);
|
|
#endif
|
|
|
|
// We leave thread_id and native_thread_id alone
|
|
// since they can be useful for debugging.
|
|
// Check the `_status` field to know if these values
|
|
// are still valid.
|
|
|
|
// We leave tstate->_status.bound set to 1
|
|
// to indicate it was previously bound.
|
|
tstate->_status.unbound = 1;
|
|
}
|
|
|
|
|
|
/* Stick the thread state for this thread in thread specific storage.
|
|
|
|
When a thread state is created for a thread by some mechanism
|
|
other than PyGILState_Ensure(), it's important that the GILState
|
|
machinery knows about it so it doesn't try to create another
|
|
thread state for the thread.
|
|
(This is a better fix for SF bug #1010677 than the first one attempted.)
|
|
|
|
The only situation where you can legitimately have more than one
|
|
thread state for an OS level thread is when there are multiple
|
|
interpreters.
|
|
|
|
Before 3.12, the PyGILState_*() APIs didn't work with multiple
|
|
interpreters (see bpo-10915 and bpo-15751), so this function used
|
|
to set TSS only once. Thus, the first thread state created for that
|
|
given OS level thread would "win", which seemed reasonable behaviour.
|
|
*/
|
|
|
|
static void
|
|
bind_gilstate_tstate(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
assert(tstate_is_alive(tstate));
|
|
assert(tstate_is_bound(tstate));
|
|
// XXX assert(!tstate->_status.active);
|
|
assert(!tstate->_status.bound_gilstate);
|
|
|
|
_PyRuntimeState *runtime = tstate->interp->runtime;
|
|
PyThreadState *tcur = gilstate_tss_get(runtime);
|
|
assert(tstate != tcur);
|
|
|
|
if (tcur != NULL) {
|
|
tcur->_status.bound_gilstate = 0;
|
|
}
|
|
gilstate_tss_set(runtime, tstate);
|
|
tstate->_status.bound_gilstate = 1;
|
|
}
|
|
|
|
static void
|
|
unbind_gilstate_tstate(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
// XXX assert(tstate_is_alive(tstate));
|
|
assert(tstate_is_bound(tstate));
|
|
// XXX assert(!tstate->_status.active);
|
|
assert(tstate->_status.bound_gilstate);
|
|
assert(tstate == gilstate_tss_get(tstate->interp->runtime));
|
|
|
|
gilstate_tss_clear(tstate->interp->runtime);
|
|
tstate->_status.bound_gilstate = 0;
|
|
}
|
|
|
|
|
|
//----------------------------------------------
|
|
// the thread state that currently holds the GIL
|
|
//----------------------------------------------
|
|
|
|
/* This is not exported, as it is not reliable! It can only
|
|
ever be compared to the state for the *current* thread.
|
|
* If not equal, then it doesn't matter that the actual
|
|
value may change immediately after comparison, as it can't
|
|
possibly change to the current thread's state.
|
|
* If equal, then the current thread holds the lock, so the value can't
|
|
change until we yield the lock.
|
|
*/
|
|
static int
|
|
holds_gil(PyThreadState *tstate)
|
|
{
|
|
// XXX Fall back to tstate->interp->runtime->ceval.gil.last_holder
|
|
// (and tstate->interp->runtime->ceval.gil.locked).
|
|
assert(tstate != NULL);
|
|
/* Must be the tstate for this thread */
|
|
assert(tstate == gilstate_tss_get(tstate->interp->runtime));
|
|
return tstate == current_fast_get();
|
|
}
|
|
|
|
|
|
/****************************/
|
|
/* the global runtime state */
|
|
/****************************/
|
|
|
|
//----------
|
|
// lifecycle
|
|
//----------
|
|
|
|
/* Suppress deprecation warning for PyBytesObject.ob_shash */
|
|
_Py_COMP_DIAG_PUSH
|
|
_Py_COMP_DIAG_IGNORE_DEPR_DECLS
|
|
/* We use "initial" if the runtime gets re-used
|
|
(e.g. Py_Finalize() followed by Py_Initialize().
|
|
Note that we initialize "initial" relative to _PyRuntime,
|
|
to ensure pre-initialized pointers point to the active
|
|
runtime state (and not "initial"). */
|
|
static const _PyRuntimeState initial = _PyRuntimeState_INIT(_PyRuntime);
|
|
_Py_COMP_DIAG_POP
|
|
|
|
#define LOCKS_INIT(runtime) \
|
|
{ \
|
|
&(runtime)->interpreters.mutex, \
|
|
&(runtime)->xi.registry.mutex, \
|
|
&(runtime)->unicode_state.ids.mutex, \
|
|
&(runtime)->imports.extensions.mutex, \
|
|
&(runtime)->ceval.pending_mainthread.mutex, \
|
|
&(runtime)->atexit.mutex, \
|
|
&(runtime)->audit_hooks.mutex, \
|
|
&(runtime)->allocators.mutex, \
|
|
}
|
|
|
|
static void
|
|
init_runtime(_PyRuntimeState *runtime,
|
|
void *open_code_hook, void *open_code_userdata,
|
|
_Py_AuditHookEntry *audit_hook_head,
|
|
Py_ssize_t unicode_next_index)
|
|
{
|
|
assert(!runtime->preinitializing);
|
|
assert(!runtime->preinitialized);
|
|
assert(!runtime->core_initialized);
|
|
assert(!runtime->initialized);
|
|
assert(!runtime->_initialized);
|
|
|
|
runtime->open_code_hook = open_code_hook;
|
|
runtime->open_code_userdata = open_code_userdata;
|
|
runtime->audit_hooks.head = audit_hook_head;
|
|
|
|
PyPreConfig_InitPythonConfig(&runtime->preconfig);
|
|
|
|
// Set it to the ID of the main thread of the main interpreter.
|
|
runtime->main_thread = PyThread_get_thread_ident();
|
|
|
|
runtime->unicode_state.ids.next_index = unicode_next_index;
|
|
|
|
#if defined(__EMSCRIPTEN__) && defined(PY_CALL_TRAMPOLINE)
|
|
_Py_EmscriptenTrampoline_Init(runtime);
|
|
#endif
|
|
|
|
runtime->_initialized = 1;
|
|
}
|
|
|
|
PyStatus
|
|
_PyRuntimeState_Init(_PyRuntimeState *runtime)
|
|
{
|
|
/* We preserve the hook across init, because there is
|
|
currently no public API to set it between runtime
|
|
initialization and interpreter initialization. */
|
|
void *open_code_hook = runtime->open_code_hook;
|
|
void *open_code_userdata = runtime->open_code_userdata;
|
|
_Py_AuditHookEntry *audit_hook_head = runtime->audit_hooks.head;
|
|
// bpo-42882: Preserve next_index value if Py_Initialize()/Py_Finalize()
|
|
// is called multiple times.
|
|
Py_ssize_t unicode_next_index = runtime->unicode_state.ids.next_index;
|
|
|
|
if (runtime->_initialized) {
|
|
// Py_Initialize() must be running again.
|
|
// Reset to _PyRuntimeState_INIT.
|
|
memcpy(runtime, &initial, sizeof(*runtime));
|
|
assert(!runtime->_initialized);
|
|
}
|
|
|
|
if (gilstate_tss_init(runtime) != 0) {
|
|
_PyRuntimeState_Fini(runtime);
|
|
return _PyStatus_NO_MEMORY();
|
|
}
|
|
|
|
if (PyThread_tss_create(&runtime->trashTSSkey) != 0) {
|
|
_PyRuntimeState_Fini(runtime);
|
|
return _PyStatus_NO_MEMORY();
|
|
}
|
|
|
|
init_runtime(runtime, open_code_hook, open_code_userdata, audit_hook_head,
|
|
unicode_next_index);
|
|
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
void
|
|
_PyRuntimeState_Fini(_PyRuntimeState *runtime)
|
|
{
|
|
#ifdef Py_REF_DEBUG
|
|
/* The count is cleared by _Py_FinalizeRefTotal(). */
|
|
assert(runtime->object_state.interpreter_leaks == 0);
|
|
#endif
|
|
|
|
if (gilstate_tss_initialized(runtime)) {
|
|
gilstate_tss_fini(runtime);
|
|
}
|
|
|
|
if (PyThread_tss_is_created(&runtime->trashTSSkey)) {
|
|
PyThread_tss_delete(&runtime->trashTSSkey);
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_FORK
|
|
/* This function is called from PyOS_AfterFork_Child to ensure that
|
|
newly created child processes do not share locks with the parent. */
|
|
PyStatus
|
|
_PyRuntimeState_ReInitThreads(_PyRuntimeState *runtime)
|
|
{
|
|
// This was initially set in _PyRuntimeState_Init().
|
|
runtime->main_thread = PyThread_get_thread_ident();
|
|
|
|
// Clears the parking lot. Any waiting threads are dead. This must be
|
|
// called before releasing any locks that use the parking lot.
|
|
_PyParkingLot_AfterFork();
|
|
|
|
// Re-initialize global locks
|
|
PyMutex *locks[] = LOCKS_INIT(runtime);
|
|
for (size_t i = 0; i < Py_ARRAY_LENGTH(locks); i++) {
|
|
_PyMutex_at_fork_reinit(locks[i]);
|
|
}
|
|
|
|
/* bpo-42540: id_mutex is freed by _PyInterpreterState_Delete, which does
|
|
* not force the default allocator. */
|
|
if (_PyThread_at_fork_reinit(&runtime->interpreters.main->id_mutex) < 0) {
|
|
return _PyStatus_ERR("Failed to reinitialize runtime locks");
|
|
}
|
|
|
|
PyStatus status = gilstate_tss_reinit(runtime);
|
|
if (_PyStatus_EXCEPTION(status)) {
|
|
return status;
|
|
}
|
|
|
|
if (PyThread_tss_is_created(&runtime->trashTSSkey)) {
|
|
PyThread_tss_delete(&runtime->trashTSSkey);
|
|
}
|
|
if (PyThread_tss_create(&runtime->trashTSSkey) != 0) {
|
|
return _PyStatus_NO_MEMORY();
|
|
}
|
|
|
|
_PyThread_AfterFork(&runtime->threads);
|
|
|
|
return _PyStatus_OK();
|
|
}
|
|
#endif
|
|
|
|
|
|
/*************************************/
|
|
/* the per-interpreter runtime state */
|
|
/*************************************/
|
|
|
|
//----------
|
|
// lifecycle
|
|
//----------
|
|
|
|
/* Calling this indicates that the runtime is ready to create interpreters. */
|
|
|
|
PyStatus
|
|
_PyInterpreterState_Enable(_PyRuntimeState *runtime)
|
|
{
|
|
struct pyinterpreters *interpreters = &runtime->interpreters;
|
|
interpreters->next_id = 0;
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
|
|
static PyInterpreterState *
|
|
alloc_interpreter(void)
|
|
{
|
|
return PyMem_RawCalloc(1, sizeof(PyInterpreterState));
|
|
}
|
|
|
|
static void
|
|
free_interpreter(PyInterpreterState *interp)
|
|
{
|
|
// The main interpreter is statically allocated so
|
|
// should not be freed.
|
|
if (interp != &_PyRuntime._main_interpreter) {
|
|
if (_PyMem_obmalloc_state_on_heap(interp)) {
|
|
// interpreter has its own obmalloc state, free it
|
|
PyMem_RawFree(interp->obmalloc);
|
|
interp->obmalloc = NULL;
|
|
}
|
|
PyMem_RawFree(interp);
|
|
}
|
|
}
|
|
|
|
/* Get the interpreter state to a minimal consistent state.
|
|
Further init happens in pylifecycle.c before it can be used.
|
|
All fields not initialized here are expected to be zeroed out,
|
|
e.g. by PyMem_RawCalloc() or memset(), or otherwise pre-initialized.
|
|
The runtime state is not manipulated. Instead it is assumed that
|
|
the interpreter is getting added to the runtime.
|
|
|
|
Note that the main interpreter was statically initialized as part
|
|
of the runtime and most state is already set properly. That leaves
|
|
a small number of fields to initialize dynamically, as well as some
|
|
that are initialized lazily.
|
|
|
|
For subinterpreters we memcpy() the main interpreter in
|
|
PyInterpreterState_New(), leaving it in the same mostly-initialized
|
|
state. The only difference is that the interpreter has some
|
|
self-referential state that is statically initializexd to the
|
|
main interpreter. We fix those fields here, in addition
|
|
to the other dynamically initialized fields.
|
|
*/
|
|
static PyStatus
|
|
init_interpreter(PyInterpreterState *interp,
|
|
_PyRuntimeState *runtime, int64_t id,
|
|
PyInterpreterState *next)
|
|
{
|
|
if (interp->_initialized) {
|
|
return _PyStatus_ERR("interpreter already initialized");
|
|
}
|
|
|
|
assert(runtime != NULL);
|
|
interp->runtime = runtime;
|
|
|
|
assert(id > 0 || (id == 0 && interp == runtime->interpreters.main));
|
|
interp->id = id;
|
|
|
|
assert(runtime->interpreters.head == interp);
|
|
assert(next != NULL || (interp == runtime->interpreters.main));
|
|
interp->next = next;
|
|
|
|
PyStatus status = _PyObject_InitState(interp);
|
|
if (_PyStatus_EXCEPTION(status)) {
|
|
return status;
|
|
}
|
|
|
|
_PyEval_InitState(interp);
|
|
_PyGC_InitState(&interp->gc);
|
|
PyConfig_InitPythonConfig(&interp->config);
|
|
_PyType_InitCache(interp);
|
|
for (int i = 0; i < _PY_MONITORING_UNGROUPED_EVENTS; i++) {
|
|
interp->monitors.tools[i] = 0;
|
|
}
|
|
for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) {
|
|
for (int e = 0; e < _PY_MONITORING_EVENTS; e++) {
|
|
interp->monitoring_callables[t][e] = NULL;
|
|
|
|
}
|
|
}
|
|
interp->sys_profile_initialized = false;
|
|
interp->sys_trace_initialized = false;
|
|
interp->optimizer = &_PyOptimizer_Default;
|
|
interp->optimizer_backedge_threshold = _PyOptimizer_Default.backedge_threshold;
|
|
interp->optimizer_resume_threshold = _PyOptimizer_Default.backedge_threshold;
|
|
interp->next_func_version = 1;
|
|
interp->executor_list_head = NULL;
|
|
if (interp != &runtime->_main_interpreter) {
|
|
/* Fix the self-referential, statically initialized fields. */
|
|
interp->dtoa = (struct _dtoa_state)_dtoa_state_INIT(interp);
|
|
}
|
|
|
|
interp->_initialized = 1;
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
|
|
PyStatus
|
|
_PyInterpreterState_New(PyThreadState *tstate, PyInterpreterState **pinterp)
|
|
{
|
|
*pinterp = NULL;
|
|
|
|
// Don't get runtime from tstate since tstate can be NULL
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
|
|
// tstate is NULL when pycore_create_interpreter() calls
|
|
// _PyInterpreterState_New() to create the main interpreter.
|
|
if (tstate != NULL) {
|
|
if (_PySys_Audit(tstate, "cpython.PyInterpreterState_New", NULL) < 0) {
|
|
return _PyStatus_ERR("sys.audit failed");
|
|
}
|
|
}
|
|
|
|
/* We completely serialize creation of multiple interpreters, since
|
|
it simplifies things here and blocking concurrent calls isn't a problem.
|
|
Regardless, we must fully block subinterpreter creation until
|
|
after the main interpreter is created. */
|
|
HEAD_LOCK(runtime);
|
|
|
|
struct pyinterpreters *interpreters = &runtime->interpreters;
|
|
int64_t id = interpreters->next_id;
|
|
interpreters->next_id += 1;
|
|
|
|
// Allocate the interpreter and add it to the runtime state.
|
|
PyInterpreterState *interp;
|
|
PyStatus status;
|
|
PyInterpreterState *old_head = interpreters->head;
|
|
if (old_head == NULL) {
|
|
// We are creating the main interpreter.
|
|
assert(interpreters->main == NULL);
|
|
assert(id == 0);
|
|
|
|
interp = &runtime->_main_interpreter;
|
|
assert(interp->id == 0);
|
|
assert(interp->next == NULL);
|
|
|
|
interpreters->main = interp;
|
|
}
|
|
else {
|
|
assert(interpreters->main != NULL);
|
|
assert(id != 0);
|
|
|
|
interp = alloc_interpreter();
|
|
if (interp == NULL) {
|
|
status = _PyStatus_NO_MEMORY();
|
|
goto error;
|
|
}
|
|
// Set to _PyInterpreterState_INIT.
|
|
memcpy(interp, &initial._main_interpreter, sizeof(*interp));
|
|
|
|
if (id < 0) {
|
|
/* overflow or Py_Initialize() not called yet! */
|
|
status = _PyStatus_ERR("failed to get an interpreter ID");
|
|
goto error;
|
|
}
|
|
}
|
|
interpreters->head = interp;
|
|
|
|
status = init_interpreter(interp, runtime,
|
|
id, old_head);
|
|
if (_PyStatus_EXCEPTION(status)) {
|
|
goto error;
|
|
}
|
|
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
assert(interp != NULL);
|
|
*pinterp = interp;
|
|
return _PyStatus_OK();
|
|
|
|
error:
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
if (interp != NULL) {
|
|
free_interpreter(interp);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
|
|
PyInterpreterState *
|
|
PyInterpreterState_New(void)
|
|
{
|
|
// tstate can be NULL
|
|
PyThreadState *tstate = current_fast_get();
|
|
|
|
PyInterpreterState *interp;
|
|
PyStatus status = _PyInterpreterState_New(tstate, &interp);
|
|
if (_PyStatus_EXCEPTION(status)) {
|
|
Py_ExitStatusException(status);
|
|
}
|
|
assert(interp != NULL);
|
|
return interp;
|
|
}
|
|
|
|
|
|
static void
|
|
interpreter_clear(PyInterpreterState *interp, PyThreadState *tstate)
|
|
{
|
|
assert(interp != NULL);
|
|
assert(tstate != NULL);
|
|
_PyRuntimeState *runtime = interp->runtime;
|
|
|
|
/* XXX Conditions we need to enforce:
|
|
|
|
* the GIL must be held by the current thread
|
|
* tstate must be the "current" thread state (current_fast_get())
|
|
* tstate->interp must be interp
|
|
* for the main interpreter, tstate must be the main thread
|
|
*/
|
|
// XXX Ideally, we would not rely on any thread state in this function
|
|
// (and we would drop the "tstate" argument).
|
|
|
|
if (_PySys_Audit(tstate, "cpython.PyInterpreterState_Clear", NULL) < 0) {
|
|
_PyErr_Clear(tstate);
|
|
}
|
|
|
|
// Clear the current/main thread state last.
|
|
HEAD_LOCK(runtime);
|
|
PyThreadState *p = interp->threads.head;
|
|
HEAD_UNLOCK(runtime);
|
|
while (p != NULL) {
|
|
// See https://github.com/python/cpython/issues/102126
|
|
// Must be called without HEAD_LOCK held as it can deadlock
|
|
// if any finalizer tries to acquire that lock.
|
|
PyThreadState_Clear(p);
|
|
HEAD_LOCK(runtime);
|
|
p = p->next;
|
|
HEAD_UNLOCK(runtime);
|
|
}
|
|
if (tstate->interp == interp) {
|
|
/* We fix tstate->_status below when we for sure aren't using it
|
|
(e.g. no longer need the GIL). */
|
|
// XXX Eliminate the need to do this.
|
|
tstate->_status.cleared = 0;
|
|
}
|
|
|
|
Py_CLEAR(interp->optimizer);
|
|
interp->optimizer = &_PyOptimizer_Default;
|
|
interp->optimizer_backedge_threshold = _PyOptimizer_Default.backedge_threshold;
|
|
interp->optimizer_resume_threshold = _PyOptimizer_Default.backedge_threshold;
|
|
|
|
/* It is possible that any of the objects below have a finalizer
|
|
that runs Python code or otherwise relies on a thread state
|
|
or even the interpreter state. For now we trust that isn't
|
|
a problem.
|
|
*/
|
|
// XXX Make sure we properly deal with problematic finalizers.
|
|
|
|
Py_CLEAR(interp->audit_hooks);
|
|
|
|
// At this time, all the threads should be cleared so we don't need
|
|
// atomic operations for eval_breaker
|
|
interp->ceval.eval_breaker = 0;
|
|
|
|
for (int i = 0; i < _PY_MONITORING_UNGROUPED_EVENTS; i++) {
|
|
interp->monitors.tools[i] = 0;
|
|
}
|
|
for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) {
|
|
for (int e = 0; e < _PY_MONITORING_EVENTS; e++) {
|
|
Py_CLEAR(interp->monitoring_callables[t][e]);
|
|
}
|
|
}
|
|
interp->sys_profile_initialized = false;
|
|
interp->sys_trace_initialized = false;
|
|
for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) {
|
|
Py_CLEAR(interp->monitoring_tool_names[t]);
|
|
}
|
|
|
|
PyConfig_Clear(&interp->config);
|
|
Py_CLEAR(interp->codec_search_path);
|
|
Py_CLEAR(interp->codec_search_cache);
|
|
Py_CLEAR(interp->codec_error_registry);
|
|
|
|
assert(interp->imports.modules == NULL);
|
|
assert(interp->imports.modules_by_index == NULL);
|
|
assert(interp->imports.importlib == NULL);
|
|
assert(interp->imports.import_func == NULL);
|
|
|
|
Py_CLEAR(interp->sysdict_copy);
|
|
Py_CLEAR(interp->builtins_copy);
|
|
Py_CLEAR(interp->dict);
|
|
#ifdef HAVE_FORK
|
|
Py_CLEAR(interp->before_forkers);
|
|
Py_CLEAR(interp->after_forkers_parent);
|
|
Py_CLEAR(interp->after_forkers_child);
|
|
#endif
|
|
|
|
_PyAST_Fini(interp);
|
|
_PyWarnings_Fini(interp);
|
|
_PyAtExit_Fini(interp);
|
|
|
|
// All Python types must be destroyed before the last GC collection. Python
|
|
// types create a reference cycle to themselves in their in their
|
|
// PyTypeObject.tp_mro member (the tuple contains the type).
|
|
|
|
/* Last garbage collection on this interpreter */
|
|
_PyGC_CollectNoFail(tstate);
|
|
_PyGC_Fini(interp);
|
|
|
|
/* We don't clear sysdict and builtins until the end of this function.
|
|
Because clearing other attributes can execute arbitrary Python code
|
|
which requires sysdict and builtins. */
|
|
PyDict_Clear(interp->sysdict);
|
|
PyDict_Clear(interp->builtins);
|
|
Py_CLEAR(interp->sysdict);
|
|
Py_CLEAR(interp->builtins);
|
|
|
|
if (tstate->interp == interp) {
|
|
/* We are now safe to fix tstate->_status.cleared. */
|
|
// XXX Do this (much) earlier?
|
|
tstate->_status.cleared = 1;
|
|
}
|
|
|
|
for (int i=0; i < DICT_MAX_WATCHERS; i++) {
|
|
interp->dict_state.watchers[i] = NULL;
|
|
}
|
|
|
|
for (int i=0; i < TYPE_MAX_WATCHERS; i++) {
|
|
interp->type_watchers[i] = NULL;
|
|
}
|
|
|
|
for (int i=0; i < FUNC_MAX_WATCHERS; i++) {
|
|
interp->func_watchers[i] = NULL;
|
|
}
|
|
interp->active_func_watchers = 0;
|
|
|
|
for (int i=0; i < CODE_MAX_WATCHERS; i++) {
|
|
interp->code_watchers[i] = NULL;
|
|
}
|
|
interp->active_code_watchers = 0;
|
|
// XXX Once we have one allocator per interpreter (i.e.
|
|
// per-interpreter GC) we must ensure that all of the interpreter's
|
|
// objects have been cleaned up at the point.
|
|
}
|
|
|
|
|
|
void
|
|
PyInterpreterState_Clear(PyInterpreterState *interp)
|
|
{
|
|
// Use the current Python thread state to call audit hooks and to collect
|
|
// garbage. It can be different than the current Python thread state
|
|
// of 'interp'.
|
|
PyThreadState *current_tstate = current_fast_get();
|
|
_PyImport_ClearCore(interp);
|
|
interpreter_clear(interp, current_tstate);
|
|
}
|
|
|
|
|
|
void
|
|
_PyInterpreterState_Clear(PyThreadState *tstate)
|
|
{
|
|
_PyImport_ClearCore(tstate->interp);
|
|
interpreter_clear(tstate->interp, tstate);
|
|
}
|
|
|
|
|
|
static inline void tstate_deactivate(PyThreadState *tstate);
|
|
static void tstate_set_detached(PyThreadState *tstate);
|
|
static void zapthreads(PyInterpreterState *interp);
|
|
|
|
void
|
|
PyInterpreterState_Delete(PyInterpreterState *interp)
|
|
{
|
|
_PyRuntimeState *runtime = interp->runtime;
|
|
struct pyinterpreters *interpreters = &runtime->interpreters;
|
|
|
|
// XXX Clearing the "current" thread state should happen before
|
|
// we start finalizing the interpreter (or the current thread state).
|
|
PyThreadState *tcur = current_fast_get();
|
|
if (tcur != NULL && interp == tcur->interp) {
|
|
/* Unset current thread. After this, many C API calls become crashy. */
|
|
_PyThreadState_Detach(tcur);
|
|
}
|
|
|
|
zapthreads(interp);
|
|
|
|
// XXX These two calls should be done at the end of clear_interpreter(),
|
|
// but currently some objects get decref'ed after that.
|
|
#ifdef Py_REF_DEBUG
|
|
_PyInterpreterState_FinalizeRefTotal(interp);
|
|
#endif
|
|
_PyInterpreterState_FinalizeAllocatedBlocks(interp);
|
|
|
|
HEAD_LOCK(runtime);
|
|
PyInterpreterState **p;
|
|
for (p = &interpreters->head; ; p = &(*p)->next) {
|
|
if (*p == NULL) {
|
|
Py_FatalError("NULL interpreter");
|
|
}
|
|
if (*p == interp) {
|
|
break;
|
|
}
|
|
}
|
|
if (interp->threads.head != NULL) {
|
|
Py_FatalError("remaining threads");
|
|
}
|
|
*p = interp->next;
|
|
|
|
if (interpreters->main == interp) {
|
|
interpreters->main = NULL;
|
|
if (interpreters->head != NULL) {
|
|
Py_FatalError("remaining subinterpreters");
|
|
}
|
|
}
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
if (interp->id_mutex != NULL) {
|
|
PyThread_free_lock(interp->id_mutex);
|
|
}
|
|
|
|
_PyObject_FiniState(interp);
|
|
|
|
free_interpreter(interp);
|
|
}
|
|
|
|
|
|
#ifdef HAVE_FORK
|
|
/*
|
|
* Delete all interpreter states except the main interpreter. If there
|
|
* is a current interpreter state, it *must* be the main interpreter.
|
|
*/
|
|
PyStatus
|
|
_PyInterpreterState_DeleteExceptMain(_PyRuntimeState *runtime)
|
|
{
|
|
struct pyinterpreters *interpreters = &runtime->interpreters;
|
|
|
|
PyThreadState *tstate = _PyThreadState_Swap(runtime, NULL);
|
|
if (tstate != NULL && tstate->interp != interpreters->main) {
|
|
return _PyStatus_ERR("not main interpreter");
|
|
}
|
|
|
|
HEAD_LOCK(runtime);
|
|
PyInterpreterState *interp = interpreters->head;
|
|
interpreters->head = NULL;
|
|
while (interp != NULL) {
|
|
if (interp == interpreters->main) {
|
|
interpreters->main->next = NULL;
|
|
interpreters->head = interp;
|
|
interp = interp->next;
|
|
continue;
|
|
}
|
|
|
|
// XXX Won't this fail since PyInterpreterState_Clear() requires
|
|
// the "current" tstate to be set?
|
|
PyInterpreterState_Clear(interp); // XXX must activate?
|
|
zapthreads(interp);
|
|
if (interp->id_mutex != NULL) {
|
|
PyThread_free_lock(interp->id_mutex);
|
|
}
|
|
PyInterpreterState *prev_interp = interp;
|
|
interp = interp->next;
|
|
free_interpreter(prev_interp);
|
|
}
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
if (interpreters->head == NULL) {
|
|
return _PyStatus_ERR("missing main interpreter");
|
|
}
|
|
_PyThreadState_Swap(runtime, tstate);
|
|
return _PyStatus_OK();
|
|
}
|
|
#endif
|
|
|
|
|
|
int
|
|
_PyInterpreterState_SetRunningMain(PyInterpreterState *interp)
|
|
{
|
|
if (_PyInterpreterState_FailIfRunningMain(interp) < 0) {
|
|
return -1;
|
|
}
|
|
PyThreadState *tstate = current_fast_get();
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
if (tstate->interp != interp) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"current tstate has wrong interpreter");
|
|
return -1;
|
|
}
|
|
interp->threads.main = tstate;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
_PyInterpreterState_SetNotRunningMain(PyInterpreterState *interp)
|
|
{
|
|
PyThreadState *tstate = interp->threads.main;
|
|
assert(tstate == current_fast_get());
|
|
|
|
if (tstate->on_delete != NULL) {
|
|
// The threading module was imported for the first time in this
|
|
// thread, so it was set as threading._main_thread. (See gh-75698.)
|
|
// The thread has finished running the Python program so we mark
|
|
// the thread object as finished.
|
|
assert(tstate->_whence != _PyThreadState_WHENCE_THREADING);
|
|
tstate->on_delete(tstate->on_delete_data);
|
|
tstate->on_delete = NULL;
|
|
tstate->on_delete_data = NULL;
|
|
}
|
|
|
|
interp->threads.main = NULL;
|
|
}
|
|
|
|
int
|
|
_PyInterpreterState_IsRunningMain(PyInterpreterState *interp)
|
|
{
|
|
return (interp->threads.main != NULL);
|
|
}
|
|
|
|
int
|
|
_PyInterpreterState_FailIfRunningMain(PyInterpreterState *interp)
|
|
{
|
|
if (interp->threads.main != NULL) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"interpreter already running");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
//----------
|
|
// accessors
|
|
//----------
|
|
|
|
int64_t
|
|
PyInterpreterState_GetID(PyInterpreterState *interp)
|
|
{
|
|
if (interp == NULL) {
|
|
PyErr_SetString(PyExc_RuntimeError, "no interpreter provided");
|
|
return -1;
|
|
}
|
|
return interp->id;
|
|
}
|
|
|
|
|
|
int
|
|
_PyInterpreterState_IDInitref(PyInterpreterState *interp)
|
|
{
|
|
if (interp->id_mutex != NULL) {
|
|
return 0;
|
|
}
|
|
interp->id_mutex = PyThread_allocate_lock();
|
|
if (interp->id_mutex == NULL) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"failed to create init interpreter ID mutex");
|
|
return -1;
|
|
}
|
|
interp->id_refcount = 0;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
_PyInterpreterState_IDIncref(PyInterpreterState *interp)
|
|
{
|
|
if (_PyInterpreterState_IDInitref(interp) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
PyThread_acquire_lock(interp->id_mutex, WAIT_LOCK);
|
|
interp->id_refcount += 1;
|
|
PyThread_release_lock(interp->id_mutex);
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
_PyInterpreterState_IDDecref(PyInterpreterState *interp)
|
|
{
|
|
assert(interp->id_mutex != NULL);
|
|
_PyRuntimeState *runtime = interp->runtime;
|
|
|
|
PyThread_acquire_lock(interp->id_mutex, WAIT_LOCK);
|
|
assert(interp->id_refcount != 0);
|
|
interp->id_refcount -= 1;
|
|
int64_t refcount = interp->id_refcount;
|
|
PyThread_release_lock(interp->id_mutex);
|
|
|
|
if (refcount == 0 && interp->requires_idref) {
|
|
PyThreadState *tstate = _PyThreadState_New(interp,
|
|
_PyThreadState_WHENCE_INTERP);
|
|
_PyThreadState_Bind(tstate);
|
|
|
|
// XXX Possible GILState issues?
|
|
PyThreadState *save_tstate = _PyThreadState_Swap(runtime, tstate);
|
|
Py_EndInterpreter(tstate);
|
|
_PyThreadState_Swap(runtime, save_tstate);
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyInterpreterState_RequiresIDRef(PyInterpreterState *interp)
|
|
{
|
|
return interp->requires_idref;
|
|
}
|
|
|
|
void
|
|
_PyInterpreterState_RequireIDRef(PyInterpreterState *interp, int required)
|
|
{
|
|
interp->requires_idref = required ? 1 : 0;
|
|
}
|
|
|
|
PyObject *
|
|
PyUnstable_InterpreterState_GetMainModule(PyInterpreterState *interp)
|
|
{
|
|
PyObject *modules = _PyImport_GetModules(interp);
|
|
if (modules == NULL) {
|
|
PyErr_SetString(PyExc_RuntimeError, "interpreter not initialized");
|
|
return NULL;
|
|
}
|
|
return PyMapping_GetItemString(modules, "__main__");
|
|
}
|
|
|
|
PyObject *
|
|
PyInterpreterState_GetDict(PyInterpreterState *interp)
|
|
{
|
|
if (interp->dict == NULL) {
|
|
interp->dict = PyDict_New();
|
|
if (interp->dict == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
/* Returning NULL means no per-interpreter dict is available. */
|
|
return interp->dict;
|
|
}
|
|
|
|
|
|
//-----------------------------
|
|
// look up an interpreter state
|
|
//-----------------------------
|
|
|
|
/* Return the interpreter associated with the current OS thread.
|
|
|
|
The GIL must be held.
|
|
*/
|
|
|
|
PyInterpreterState*
|
|
PyInterpreterState_Get(void)
|
|
{
|
|
PyThreadState *tstate = current_fast_get();
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
PyInterpreterState *interp = tstate->interp;
|
|
if (interp == NULL) {
|
|
Py_FatalError("no current interpreter");
|
|
}
|
|
return interp;
|
|
}
|
|
|
|
|
|
static PyInterpreterState *
|
|
interp_look_up_id(_PyRuntimeState *runtime, int64_t requested_id)
|
|
{
|
|
PyInterpreterState *interp = runtime->interpreters.head;
|
|
while (interp != NULL) {
|
|
int64_t id = PyInterpreterState_GetID(interp);
|
|
if (id < 0) {
|
|
return NULL;
|
|
}
|
|
if (requested_id == id) {
|
|
return interp;
|
|
}
|
|
interp = PyInterpreterState_Next(interp);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the interpreter state with the given ID.
|
|
|
|
Fail with RuntimeError if the interpreter is not found. */
|
|
|
|
PyInterpreterState *
|
|
_PyInterpreterState_LookUpID(int64_t requested_id)
|
|
{
|
|
PyInterpreterState *interp = NULL;
|
|
if (requested_id >= 0) {
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
HEAD_LOCK(runtime);
|
|
interp = interp_look_up_id(runtime, requested_id);
|
|
HEAD_UNLOCK(runtime);
|
|
}
|
|
if (interp == NULL && !PyErr_Occurred()) {
|
|
PyErr_Format(PyExc_InterpreterNotFoundError,
|
|
"unrecognized interpreter ID %lld", requested_id);
|
|
}
|
|
return interp;
|
|
}
|
|
|
|
|
|
/********************************/
|
|
/* the per-thread runtime state */
|
|
/********************************/
|
|
|
|
#ifndef NDEBUG
|
|
static inline int
|
|
tstate_is_alive(PyThreadState *tstate)
|
|
{
|
|
return (tstate->_status.initialized &&
|
|
!tstate->_status.finalized &&
|
|
!tstate->_status.cleared &&
|
|
!tstate->_status.finalizing);
|
|
}
|
|
#endif
|
|
|
|
|
|
//----------
|
|
// lifecycle
|
|
//----------
|
|
|
|
/* Minimum size of data stack chunk */
|
|
#define DATA_STACK_CHUNK_SIZE (16*1024)
|
|
|
|
static _PyStackChunk*
|
|
allocate_chunk(int size_in_bytes, _PyStackChunk* previous)
|
|
{
|
|
assert(size_in_bytes % sizeof(PyObject **) == 0);
|
|
_PyStackChunk *res = _PyObject_VirtualAlloc(size_in_bytes);
|
|
if (res == NULL) {
|
|
return NULL;
|
|
}
|
|
res->previous = previous;
|
|
res->size = size_in_bytes;
|
|
res->top = 0;
|
|
return res;
|
|
}
|
|
|
|
static _PyThreadStateImpl *
|
|
alloc_threadstate(void)
|
|
{
|
|
return PyMem_RawCalloc(1, sizeof(_PyThreadStateImpl));
|
|
}
|
|
|
|
static void
|
|
free_threadstate(_PyThreadStateImpl *tstate)
|
|
{
|
|
// The initial thread state of the interpreter is allocated
|
|
// as part of the interpreter state so should not be freed.
|
|
if (tstate == &tstate->base.interp->_initial_thread) {
|
|
// Restore to _PyThreadState_INIT.
|
|
memcpy(tstate,
|
|
&initial._main_interpreter._initial_thread,
|
|
sizeof(*tstate));
|
|
}
|
|
else {
|
|
PyMem_RawFree(tstate);
|
|
}
|
|
}
|
|
|
|
/* Get the thread state to a minimal consistent state.
|
|
Further init happens in pylifecycle.c before it can be used.
|
|
All fields not initialized here are expected to be zeroed out,
|
|
e.g. by PyMem_RawCalloc() or memset(), or otherwise pre-initialized.
|
|
The interpreter state is not manipulated. Instead it is assumed that
|
|
the thread is getting added to the interpreter.
|
|
*/
|
|
|
|
static void
|
|
init_threadstate(_PyThreadStateImpl *_tstate,
|
|
PyInterpreterState *interp, uint64_t id, int whence)
|
|
{
|
|
PyThreadState *tstate = (PyThreadState *)_tstate;
|
|
if (tstate->_status.initialized) {
|
|
Py_FatalError("thread state already initialized");
|
|
}
|
|
|
|
assert(interp != NULL);
|
|
tstate->interp = interp;
|
|
|
|
// next/prev are set in add_threadstate().
|
|
assert(tstate->next == NULL);
|
|
assert(tstate->prev == NULL);
|
|
|
|
assert(tstate->_whence == _PyThreadState_WHENCE_NOTSET);
|
|
assert(whence >= 0 && whence <= _PyThreadState_WHENCE_EXEC);
|
|
tstate->_whence = whence;
|
|
|
|
assert(id > 0);
|
|
tstate->id = id;
|
|
|
|
// thread_id and native_thread_id are set in bind_tstate().
|
|
|
|
tstate->py_recursion_limit = interp->ceval.recursion_limit,
|
|
tstate->py_recursion_remaining = interp->ceval.recursion_limit,
|
|
tstate->c_recursion_remaining = Py_C_RECURSION_LIMIT;
|
|
|
|
tstate->exc_info = &tstate->exc_state;
|
|
|
|
// PyGILState_Release must not try to delete this thread state.
|
|
// This is cleared when PyGILState_Ensure() creates the thread state.
|
|
tstate->gilstate_counter = 1;
|
|
|
|
tstate->current_frame = NULL;
|
|
tstate->datastack_chunk = NULL;
|
|
tstate->datastack_top = NULL;
|
|
tstate->datastack_limit = NULL;
|
|
tstate->what_event = -1;
|
|
|
|
if (interp->stoptheworld.requested || _PyRuntime.stoptheworld.requested) {
|
|
// Start in the suspended state if there is an ongoing stop-the-world.
|
|
tstate->state = _Py_THREAD_SUSPENDED;
|
|
}
|
|
|
|
tstate->_status.initialized = 1;
|
|
}
|
|
|
|
static void
|
|
add_threadstate(PyInterpreterState *interp, PyThreadState *tstate,
|
|
PyThreadState *next)
|
|
{
|
|
assert(interp->threads.head != tstate);
|
|
if (next != NULL) {
|
|
assert(next->prev == NULL || next->prev == tstate);
|
|
next->prev = tstate;
|
|
}
|
|
tstate->next = next;
|
|
assert(tstate->prev == NULL);
|
|
interp->threads.head = tstate;
|
|
}
|
|
|
|
static PyThreadState *
|
|
new_threadstate(PyInterpreterState *interp, int whence)
|
|
{
|
|
_PyThreadStateImpl *tstate;
|
|
_PyRuntimeState *runtime = interp->runtime;
|
|
// We don't need to allocate a thread state for the main interpreter
|
|
// (the common case), but doing it later for the other case revealed a
|
|
// reentrancy problem (deadlock). So for now we always allocate before
|
|
// taking the interpreters lock. See GH-96071.
|
|
_PyThreadStateImpl *new_tstate = alloc_threadstate();
|
|
int used_newtstate;
|
|
if (new_tstate == NULL) {
|
|
return NULL;
|
|
}
|
|
/* We serialize concurrent creation to protect global state. */
|
|
HEAD_LOCK(runtime);
|
|
|
|
interp->threads.next_unique_id += 1;
|
|
uint64_t id = interp->threads.next_unique_id;
|
|
|
|
// Allocate the thread state and add it to the interpreter.
|
|
PyThreadState *old_head = interp->threads.head;
|
|
if (old_head == NULL) {
|
|
// It's the interpreter's initial thread state.
|
|
used_newtstate = 0;
|
|
tstate = &interp->_initial_thread;
|
|
}
|
|
// XXX Re-use interp->_initial_thread if not in use?
|
|
else {
|
|
// Every valid interpreter must have at least one thread.
|
|
assert(id > 1);
|
|
assert(old_head->prev == NULL);
|
|
used_newtstate = 1;
|
|
tstate = new_tstate;
|
|
// Set to _PyThreadState_INIT.
|
|
memcpy(tstate,
|
|
&initial._main_interpreter._initial_thread,
|
|
sizeof(*tstate));
|
|
}
|
|
|
|
init_threadstate(tstate, interp, id, whence);
|
|
add_threadstate(interp, (PyThreadState *)tstate, old_head);
|
|
|
|
HEAD_UNLOCK(runtime);
|
|
if (!used_newtstate) {
|
|
// Must be called with lock unlocked to avoid re-entrancy deadlock.
|
|
PyMem_RawFree(new_tstate);
|
|
}
|
|
return (PyThreadState *)tstate;
|
|
}
|
|
|
|
PyThreadState *
|
|
PyThreadState_New(PyInterpreterState *interp)
|
|
{
|
|
PyThreadState *tstate = new_threadstate(interp,
|
|
_PyThreadState_WHENCE_UNKNOWN);
|
|
if (tstate) {
|
|
bind_tstate(tstate);
|
|
// This makes sure there's a gilstate tstate bound
|
|
// as soon as possible.
|
|
if (gilstate_tss_get(tstate->interp->runtime) == NULL) {
|
|
bind_gilstate_tstate(tstate);
|
|
}
|
|
}
|
|
return tstate;
|
|
}
|
|
|
|
// This must be followed by a call to _PyThreadState_Bind();
|
|
PyThreadState *
|
|
_PyThreadState_New(PyInterpreterState *interp, int whence)
|
|
{
|
|
return new_threadstate(interp, whence);
|
|
}
|
|
|
|
// We keep this for stable ABI compabibility.
|
|
PyAPI_FUNC(PyThreadState*)
|
|
_PyThreadState_Prealloc(PyInterpreterState *interp)
|
|
{
|
|
return _PyThreadState_New(interp, _PyThreadState_WHENCE_UNKNOWN);
|
|
}
|
|
|
|
// We keep this around for (accidental) stable ABI compatibility.
|
|
// Realistically, no extensions are using it.
|
|
PyAPI_FUNC(void)
|
|
_PyThreadState_Init(PyThreadState *tstate)
|
|
{
|
|
Py_FatalError("_PyThreadState_Init() is for internal use only");
|
|
}
|
|
|
|
|
|
static void
|
|
clear_datastack(PyThreadState *tstate)
|
|
{
|
|
_PyStackChunk *chunk = tstate->datastack_chunk;
|
|
tstate->datastack_chunk = NULL;
|
|
while (chunk != NULL) {
|
|
_PyStackChunk *prev = chunk->previous;
|
|
_PyObject_VirtualFree(chunk, chunk->size);
|
|
chunk = prev;
|
|
}
|
|
}
|
|
|
|
void
|
|
_Py_ClearFreeLists(_PyFreeListState *state, int is_finalization)
|
|
{
|
|
// In the free-threaded build, freelists are per-PyThreadState and cleared in PyThreadState_Clear()
|
|
// In the default build, freelists are per-interpreter and cleared in finalize_interp_types()
|
|
_PyFloat_ClearFreeList(state, is_finalization);
|
|
_PyTuple_ClearFreeList(state, is_finalization);
|
|
_PyList_ClearFreeList(state, is_finalization);
|
|
_PyDict_ClearFreeList(state, is_finalization);
|
|
_PyContext_ClearFreeList(state, is_finalization);
|
|
_PyAsyncGen_ClearFreeLists(state, is_finalization);
|
|
_PyObjectStackChunk_ClearFreeList(state, is_finalization);
|
|
}
|
|
|
|
void
|
|
PyThreadState_Clear(PyThreadState *tstate)
|
|
{
|
|
assert(tstate->_status.initialized && !tstate->_status.cleared);
|
|
assert(current_fast_get()->interp == tstate->interp);
|
|
// XXX assert(!tstate->_status.bound || tstate->_status.unbound);
|
|
tstate->_status.finalizing = 1; // just in case
|
|
|
|
/* XXX Conditions we need to enforce:
|
|
|
|
* the GIL must be held by the current thread
|
|
* current_fast_get()->interp must match tstate->interp
|
|
* for the main interpreter, current_fast_get() must be the main thread
|
|
*/
|
|
|
|
int verbose = _PyInterpreterState_GetConfig(tstate->interp)->verbose;
|
|
|
|
if (verbose && tstate->current_frame != NULL) {
|
|
/* bpo-20526: After the main thread calls
|
|
_PyInterpreterState_SetFinalizing() in Py_FinalizeEx()
|
|
(or in Py_EndInterpreter() for subinterpreters),
|
|
threads must exit when trying to take the GIL.
|
|
If a thread exit in the middle of _PyEval_EvalFrameDefault(),
|
|
tstate->frame is not reset to its previous value.
|
|
It is more likely with daemon threads, but it can happen
|
|
with regular threads if threading._shutdown() fails
|
|
(ex: interrupted by CTRL+C). */
|
|
fprintf(stderr,
|
|
"PyThreadState_Clear: warning: thread still has a frame\n");
|
|
}
|
|
|
|
/* At this point tstate shouldn't be used any more,
|
|
neither to run Python code nor for other uses.
|
|
|
|
This is tricky when current_fast_get() == tstate, in the same way
|
|
as noted in interpreter_clear() above. The below finalizers
|
|
can possibly run Python code or otherwise use the partially
|
|
cleared thread state. For now we trust that isn't a problem
|
|
in practice.
|
|
*/
|
|
// XXX Deal with the possibility of problematic finalizers.
|
|
|
|
/* Don't clear tstate->pyframe: it is a borrowed reference */
|
|
|
|
Py_CLEAR(tstate->dict);
|
|
Py_CLEAR(tstate->async_exc);
|
|
|
|
Py_CLEAR(tstate->current_exception);
|
|
|
|
Py_CLEAR(tstate->exc_state.exc_value);
|
|
|
|
/* The stack of exception states should contain just this thread. */
|
|
if (verbose && tstate->exc_info != &tstate->exc_state) {
|
|
fprintf(stderr,
|
|
"PyThreadState_Clear: warning: thread still has a generator\n");
|
|
}
|
|
|
|
if (tstate->c_profilefunc != NULL) {
|
|
tstate->interp->sys_profiling_threads--;
|
|
tstate->c_profilefunc = NULL;
|
|
}
|
|
if (tstate->c_tracefunc != NULL) {
|
|
tstate->interp->sys_tracing_threads--;
|
|
tstate->c_tracefunc = NULL;
|
|
}
|
|
Py_CLEAR(tstate->c_profileobj);
|
|
Py_CLEAR(tstate->c_traceobj);
|
|
|
|
Py_CLEAR(tstate->async_gen_firstiter);
|
|
Py_CLEAR(tstate->async_gen_finalizer);
|
|
|
|
Py_CLEAR(tstate->context);
|
|
|
|
if (tstate->on_delete != NULL) {
|
|
// For the "main" thread of each interpreter, this is meant
|
|
// to be done in _PyInterpreterState_SetNotRunningMain().
|
|
// That leaves threads created by the threading module,
|
|
// and any threads killed by forking.
|
|
// However, we also accommodate "main" threads that still
|
|
// don't call _PyInterpreterState_SetNotRunningMain() yet.
|
|
tstate->on_delete(tstate->on_delete_data);
|
|
}
|
|
#ifdef Py_GIL_DISABLED
|
|
// Each thread should clear own freelists in free-threading builds.
|
|
_PyFreeListState *freelist_state = &((_PyThreadStateImpl*)tstate)->freelist_state;
|
|
_Py_ClearFreeLists(freelist_state, 1);
|
|
_PySlice_ClearCache(freelist_state);
|
|
#endif
|
|
|
|
_PyThreadState_ClearMimallocHeaps(tstate);
|
|
|
|
tstate->_status.cleared = 1;
|
|
|
|
// XXX Call _PyThreadStateSwap(runtime, NULL) here if "current".
|
|
// XXX Do it as early in the function as possible.
|
|
}
|
|
|
|
static void
|
|
decrement_stoptheworld_countdown(struct _stoptheworld_state *stw);
|
|
|
|
/* Common code for PyThreadState_Delete() and PyThreadState_DeleteCurrent() */
|
|
static void
|
|
tstate_delete_common(PyThreadState *tstate)
|
|
{
|
|
assert(tstate->_status.cleared && !tstate->_status.finalized);
|
|
assert(tstate->state != _Py_THREAD_ATTACHED);
|
|
|
|
PyInterpreterState *interp = tstate->interp;
|
|
if (interp == NULL) {
|
|
Py_FatalError("NULL interpreter");
|
|
}
|
|
_PyRuntimeState *runtime = interp->runtime;
|
|
|
|
HEAD_LOCK(runtime);
|
|
if (tstate->prev) {
|
|
tstate->prev->next = tstate->next;
|
|
}
|
|
else {
|
|
interp->threads.head = tstate->next;
|
|
}
|
|
if (tstate->next) {
|
|
tstate->next->prev = tstate->prev;
|
|
}
|
|
if (tstate->state != _Py_THREAD_SUSPENDED) {
|
|
// Any ongoing stop-the-world request should not wait for us because
|
|
// our thread is getting deleted.
|
|
if (interp->stoptheworld.requested) {
|
|
decrement_stoptheworld_countdown(&interp->stoptheworld);
|
|
}
|
|
if (runtime->stoptheworld.requested) {
|
|
decrement_stoptheworld_countdown(&runtime->stoptheworld);
|
|
}
|
|
}
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
// XXX Unbind in PyThreadState_Clear(), or earlier
|
|
// (and assert not-equal here)?
|
|
if (tstate->_status.bound_gilstate) {
|
|
unbind_gilstate_tstate(tstate);
|
|
}
|
|
unbind_tstate(tstate);
|
|
|
|
// XXX Move to PyThreadState_Clear()?
|
|
clear_datastack(tstate);
|
|
|
|
tstate->_status.finalized = 1;
|
|
}
|
|
|
|
static void
|
|
zapthreads(PyInterpreterState *interp)
|
|
{
|
|
PyThreadState *tstate;
|
|
/* No need to lock the mutex here because this should only happen
|
|
when the threads are all really dead (XXX famous last words). */
|
|
while ((tstate = interp->threads.head) != NULL) {
|
|
tstate_verify_not_active(tstate);
|
|
tstate_delete_common(tstate);
|
|
free_threadstate((_PyThreadStateImpl *)tstate);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
PyThreadState_Delete(PyThreadState *tstate)
|
|
{
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
tstate_verify_not_active(tstate);
|
|
tstate_delete_common(tstate);
|
|
free_threadstate((_PyThreadStateImpl *)tstate);
|
|
}
|
|
|
|
|
|
void
|
|
_PyThreadState_DeleteCurrent(PyThreadState *tstate)
|
|
{
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
tstate_set_detached(tstate);
|
|
tstate_delete_common(tstate);
|
|
current_fast_clear(tstate->interp->runtime);
|
|
_PyEval_ReleaseLock(tstate->interp, NULL);
|
|
free_threadstate((_PyThreadStateImpl *)tstate);
|
|
}
|
|
|
|
void
|
|
PyThreadState_DeleteCurrent(void)
|
|
{
|
|
PyThreadState *tstate = current_fast_get();
|
|
_PyThreadState_DeleteCurrent(tstate);
|
|
}
|
|
|
|
|
|
/*
|
|
* Delete all thread states except the one passed as argument.
|
|
* Note that, if there is a current thread state, it *must* be the one
|
|
* passed as argument. Also, this won't touch any other interpreters
|
|
* than the current one, since we don't know which thread state should
|
|
* be kept in those other interpreters.
|
|
*/
|
|
void
|
|
_PyThreadState_DeleteExcept(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
PyInterpreterState *interp = tstate->interp;
|
|
_PyRuntimeState *runtime = interp->runtime;
|
|
|
|
HEAD_LOCK(runtime);
|
|
/* Remove all thread states, except tstate, from the linked list of
|
|
thread states. This will allow calling PyThreadState_Clear()
|
|
without holding the lock. */
|
|
PyThreadState *list = interp->threads.head;
|
|
if (list == tstate) {
|
|
list = tstate->next;
|
|
}
|
|
if (tstate->prev) {
|
|
tstate->prev->next = tstate->next;
|
|
}
|
|
if (tstate->next) {
|
|
tstate->next->prev = tstate->prev;
|
|
}
|
|
tstate->prev = tstate->next = NULL;
|
|
interp->threads.head = tstate;
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
/* Clear and deallocate all stale thread states. Even if this
|
|
executes Python code, we should be safe since it executes
|
|
in the current thread, not one of the stale threads. */
|
|
PyThreadState *p, *next;
|
|
for (p = list; p; p = next) {
|
|
next = p->next;
|
|
PyThreadState_Clear(p);
|
|
free_threadstate((_PyThreadStateImpl *)p);
|
|
}
|
|
}
|
|
|
|
|
|
//----------
|
|
// accessors
|
|
//----------
|
|
|
|
/* An extension mechanism to store arbitrary additional per-thread state.
|
|
PyThreadState_GetDict() returns a dictionary that can be used to hold such
|
|
state; the caller should pick a unique key and store its state there. If
|
|
PyThreadState_GetDict() returns NULL, an exception has *not* been raised
|
|
and the caller should assume no per-thread state is available. */
|
|
|
|
PyObject *
|
|
_PyThreadState_GetDict(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
if (tstate->dict == NULL) {
|
|
tstate->dict = PyDict_New();
|
|
if (tstate->dict == NULL) {
|
|
_PyErr_Clear(tstate);
|
|
}
|
|
}
|
|
return tstate->dict;
|
|
}
|
|
|
|
|
|
PyObject *
|
|
PyThreadState_GetDict(void)
|
|
{
|
|
PyThreadState *tstate = current_fast_get();
|
|
if (tstate == NULL) {
|
|
return NULL;
|
|
}
|
|
return _PyThreadState_GetDict(tstate);
|
|
}
|
|
|
|
|
|
PyInterpreterState *
|
|
PyThreadState_GetInterpreter(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
return tstate->interp;
|
|
}
|
|
|
|
|
|
PyFrameObject*
|
|
PyThreadState_GetFrame(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
_PyInterpreterFrame *f = _PyThreadState_GetFrame(tstate);
|
|
if (f == NULL) {
|
|
return NULL;
|
|
}
|
|
PyFrameObject *frame = _PyFrame_GetFrameObject(f);
|
|
if (frame == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
return (PyFrameObject*)Py_XNewRef(frame);
|
|
}
|
|
|
|
|
|
uint64_t
|
|
PyThreadState_GetID(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
return tstate->id;
|
|
}
|
|
|
|
|
|
static inline void
|
|
tstate_activate(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
// XXX assert(tstate_is_alive(tstate));
|
|
assert(tstate_is_bound(tstate));
|
|
assert(!tstate->_status.active);
|
|
|
|
assert(!tstate->_status.bound_gilstate ||
|
|
tstate == gilstate_tss_get((tstate->interp->runtime)));
|
|
if (!tstate->_status.bound_gilstate) {
|
|
bind_gilstate_tstate(tstate);
|
|
}
|
|
|
|
tstate->_status.active = 1;
|
|
}
|
|
|
|
static inline void
|
|
tstate_deactivate(PyThreadState *tstate)
|
|
{
|
|
assert(tstate != NULL);
|
|
// XXX assert(tstate_is_alive(tstate));
|
|
assert(tstate_is_bound(tstate));
|
|
assert(tstate->_status.active);
|
|
|
|
tstate->_status.active = 0;
|
|
|
|
// We do not unbind the gilstate tstate here.
|
|
// It will still be used in PyGILState_Ensure().
|
|
}
|
|
|
|
static int
|
|
tstate_try_attach(PyThreadState *tstate)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
int expected = _Py_THREAD_DETACHED;
|
|
return _Py_atomic_compare_exchange_int(&tstate->state,
|
|
&expected,
|
|
_Py_THREAD_ATTACHED);
|
|
#else
|
|
assert(tstate->state == _Py_THREAD_DETACHED);
|
|
tstate->state = _Py_THREAD_ATTACHED;
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
tstate_set_detached(PyThreadState *tstate)
|
|
{
|
|
assert(tstate->state == _Py_THREAD_ATTACHED);
|
|
#ifdef Py_GIL_DISABLED
|
|
_Py_atomic_store_int(&tstate->state, _Py_THREAD_DETACHED);
|
|
#else
|
|
tstate->state = _Py_THREAD_DETACHED;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
tstate_wait_attach(PyThreadState *tstate)
|
|
{
|
|
do {
|
|
int expected = _Py_THREAD_SUSPENDED;
|
|
|
|
// Wait until we're switched out of SUSPENDED to DETACHED.
|
|
_PyParkingLot_Park(&tstate->state, &expected, sizeof(tstate->state),
|
|
/*timeout=*/-1, NULL, /*detach=*/0);
|
|
|
|
// Once we're back in DETACHED we can re-attach
|
|
} while (!tstate_try_attach(tstate));
|
|
}
|
|
|
|
void
|
|
_PyThreadState_Attach(PyThreadState *tstate)
|
|
{
|
|
#if defined(Py_DEBUG)
|
|
// This is called from PyEval_RestoreThread(). Similar
|
|
// to it, we need to ensure errno doesn't change.
|
|
int err = errno;
|
|
#endif
|
|
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
if (current_fast_get() != NULL) {
|
|
Py_FatalError("non-NULL old thread state");
|
|
}
|
|
|
|
_PyEval_AcquireLock(tstate);
|
|
|
|
// XXX assert(tstate_is_alive(tstate));
|
|
current_fast_set(&_PyRuntime, tstate);
|
|
tstate_activate(tstate);
|
|
|
|
if (!tstate_try_attach(tstate)) {
|
|
tstate_wait_attach(tstate);
|
|
}
|
|
|
|
// Resume previous critical section. This acquires the lock(s) from the
|
|
// top-most critical section.
|
|
if (tstate->critical_section != 0) {
|
|
_PyCriticalSection_Resume(tstate);
|
|
}
|
|
|
|
#if defined(Py_DEBUG)
|
|
errno = err;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
detach_thread(PyThreadState *tstate, int detached_state)
|
|
{
|
|
// XXX assert(tstate_is_alive(tstate) && tstate_is_bound(tstate));
|
|
assert(tstate->state == _Py_THREAD_ATTACHED);
|
|
assert(tstate == current_fast_get());
|
|
if (tstate->critical_section != 0) {
|
|
_PyCriticalSection_SuspendAll(tstate);
|
|
}
|
|
tstate_deactivate(tstate);
|
|
tstate_set_detached(tstate);
|
|
current_fast_clear(&_PyRuntime);
|
|
_PyEval_ReleaseLock(tstate->interp, tstate);
|
|
}
|
|
|
|
void
|
|
_PyThreadState_Detach(PyThreadState *tstate)
|
|
{
|
|
detach_thread(tstate, _Py_THREAD_DETACHED);
|
|
}
|
|
|
|
void
|
|
_PyThreadState_Suspend(PyThreadState *tstate)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
|
|
assert(tstate->state == _Py_THREAD_ATTACHED);
|
|
|
|
struct _stoptheworld_state *stw = NULL;
|
|
HEAD_LOCK(runtime);
|
|
if (runtime->stoptheworld.requested) {
|
|
stw = &runtime->stoptheworld;
|
|
}
|
|
else if (tstate->interp->stoptheworld.requested) {
|
|
stw = &tstate->interp->stoptheworld;
|
|
}
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
if (stw == NULL) {
|
|
// Switch directly to "detached" if there is no active stop-the-world
|
|
// request.
|
|
detach_thread(tstate, _Py_THREAD_DETACHED);
|
|
return;
|
|
}
|
|
|
|
// Switch to "suspended" state.
|
|
detach_thread(tstate, _Py_THREAD_SUSPENDED);
|
|
|
|
// Decrease the count of remaining threads needing to park.
|
|
HEAD_LOCK(runtime);
|
|
decrement_stoptheworld_countdown(stw);
|
|
HEAD_UNLOCK(runtime);
|
|
}
|
|
|
|
// Decrease stop-the-world counter of remaining number of threads that need to
|
|
// pause. If we are the final thread to pause, notify the requesting thread.
|
|
static void
|
|
decrement_stoptheworld_countdown(struct _stoptheworld_state *stw)
|
|
{
|
|
assert(stw->thread_countdown > 0);
|
|
if (--stw->thread_countdown == 0) {
|
|
_PyEvent_Notify(&stw->stop_event);
|
|
}
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
// Interpreter for _Py_FOR_EACH_THREAD(). For global stop-the-world events,
|
|
// we start with the first interpreter and then iterate over all interpreters.
|
|
// For per-interpreter stop-the-world events, we only operate on the one
|
|
// interpreter.
|
|
static PyInterpreterState *
|
|
interp_for_stop_the_world(struct _stoptheworld_state *stw)
|
|
{
|
|
return (stw->is_global
|
|
? PyInterpreterState_Head()
|
|
: _Py_CONTAINER_OF(stw, PyInterpreterState, stoptheworld));
|
|
}
|
|
|
|
// Loops over threads for a stop-the-world event.
|
|
// For global: all threads in all interpreters
|
|
// For per-interpreter: all threads in the interpreter
|
|
#define _Py_FOR_EACH_THREAD(stw, i, t) \
|
|
for (i = interp_for_stop_the_world((stw)); \
|
|
i != NULL; i = ((stw->is_global) ? i->next : NULL)) \
|
|
for (t = i->threads.head; t; t = t->next)
|
|
|
|
|
|
// Try to transition threads atomically from the "detached" state to the
|
|
// "gc stopped" state. Returns true if all threads are in the "gc stopped"
|
|
static bool
|
|
park_detached_threads(struct _stoptheworld_state *stw)
|
|
{
|
|
int num_parked = 0;
|
|
PyInterpreterState *i;
|
|
PyThreadState *t;
|
|
_Py_FOR_EACH_THREAD(stw, i, t) {
|
|
int state = _Py_atomic_load_int_relaxed(&t->state);
|
|
if (state == _Py_THREAD_DETACHED) {
|
|
// Atomically transition to "suspended" if in "detached" state.
|
|
if (_Py_atomic_compare_exchange_int(&t->state,
|
|
&state, _Py_THREAD_SUSPENDED)) {
|
|
num_parked++;
|
|
}
|
|
}
|
|
else if (state == _Py_THREAD_ATTACHED && t != stw->requester) {
|
|
// TODO: set this per-thread, rather than per-interpreter.
|
|
_Py_set_eval_breaker_bit(t->interp, _PY_EVAL_PLEASE_STOP_BIT, 1);
|
|
}
|
|
}
|
|
stw->thread_countdown -= num_parked;
|
|
assert(stw->thread_countdown >= 0);
|
|
return num_parked > 0 && stw->thread_countdown == 0;
|
|
}
|
|
|
|
static void
|
|
stop_the_world(struct _stoptheworld_state *stw)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
|
|
PyMutex_Lock(&stw->mutex);
|
|
if (stw->is_global) {
|
|
_PyRWMutex_Lock(&runtime->stoptheworld_mutex);
|
|
}
|
|
else {
|
|
_PyRWMutex_RLock(&runtime->stoptheworld_mutex);
|
|
}
|
|
|
|
HEAD_LOCK(runtime);
|
|
stw->requested = 1;
|
|
stw->thread_countdown = 0;
|
|
stw->stop_event = (PyEvent){0}; // zero-initialize (unset)
|
|
stw->requester = _PyThreadState_GET(); // may be NULL
|
|
|
|
PyInterpreterState *i;
|
|
PyThreadState *t;
|
|
_Py_FOR_EACH_THREAD(stw, i, t) {
|
|
if (t != stw->requester) {
|
|
// Count all the other threads (we don't wait on ourself).
|
|
stw->thread_countdown++;
|
|
}
|
|
}
|
|
|
|
if (stw->thread_countdown == 0) {
|
|
HEAD_UNLOCK(runtime);
|
|
stw->world_stopped = 1;
|
|
return;
|
|
}
|
|
|
|
for (;;) {
|
|
// Switch threads that are detached to the GC stopped state
|
|
bool stopped_all_threads = park_detached_threads(stw);
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
if (stopped_all_threads) {
|
|
break;
|
|
}
|
|
|
|
_PyTime_t wait_ns = 1000*1000; // 1ms (arbitrary, may need tuning)
|
|
if (PyEvent_WaitTimed(&stw->stop_event, wait_ns)) {
|
|
assert(stw->thread_countdown == 0);
|
|
break;
|
|
}
|
|
|
|
HEAD_LOCK(runtime);
|
|
}
|
|
stw->world_stopped = 1;
|
|
}
|
|
|
|
static void
|
|
start_the_world(struct _stoptheworld_state *stw)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
assert(PyMutex_IsLocked(&stw->mutex));
|
|
|
|
HEAD_LOCK(runtime);
|
|
stw->requested = 0;
|
|
stw->world_stopped = 0;
|
|
// Switch threads back to the detached state.
|
|
PyInterpreterState *i;
|
|
PyThreadState *t;
|
|
_Py_FOR_EACH_THREAD(stw, i, t) {
|
|
if (t != stw->requester) {
|
|
assert(t->state == _Py_THREAD_SUSPENDED);
|
|
_Py_atomic_store_int(&t->state, _Py_THREAD_DETACHED);
|
|
_PyParkingLot_UnparkAll(&t->state);
|
|
}
|
|
}
|
|
stw->requester = NULL;
|
|
HEAD_UNLOCK(runtime);
|
|
if (stw->is_global) {
|
|
_PyRWMutex_Unlock(&runtime->stoptheworld_mutex);
|
|
}
|
|
else {
|
|
_PyRWMutex_RUnlock(&runtime->stoptheworld_mutex);
|
|
}
|
|
PyMutex_Unlock(&stw->mutex);
|
|
}
|
|
#endif // Py_GIL_DISABLED
|
|
|
|
void
|
|
_PyEval_StopTheWorldAll(_PyRuntimeState *runtime)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
stop_the_world(&runtime->stoptheworld);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
_PyEval_StartTheWorldAll(_PyRuntimeState *runtime)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
start_the_world(&runtime->stoptheworld);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
_PyEval_StopTheWorld(PyInterpreterState *interp)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
stop_the_world(&interp->stoptheworld);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
_PyEval_StartTheWorld(PyInterpreterState *interp)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
start_the_world(&interp->stoptheworld);
|
|
#endif
|
|
}
|
|
|
|
//----------
|
|
// other API
|
|
//----------
|
|
|
|
/* Asynchronously raise an exception in a thread.
|
|
Requested by Just van Rossum and Alex Martelli.
|
|
To prevent naive misuse, you must write your own extension
|
|
to call this, or use ctypes. Must be called with the GIL held.
|
|
Returns the number of tstates modified (normally 1, but 0 if `id` didn't
|
|
match any known thread id). Can be called with exc=NULL to clear an
|
|
existing async exception. This raises no exceptions. */
|
|
|
|
// XXX Move this to Python/ceval_gil.c?
|
|
// XXX Deprecate this.
|
|
int
|
|
PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
/* Although the GIL is held, a few C API functions can be called
|
|
* without the GIL held, and in particular some that create and
|
|
* destroy thread and interpreter states. Those can mutate the
|
|
* list of thread states we're traversing, so to prevent that we lock
|
|
* head_mutex for the duration.
|
|
*/
|
|
HEAD_LOCK(runtime);
|
|
for (PyThreadState *tstate = interp->threads.head; tstate != NULL; tstate = tstate->next) {
|
|
if (tstate->thread_id != id) {
|
|
continue;
|
|
}
|
|
|
|
/* Tricky: we need to decref the current value
|
|
* (if any) in tstate->async_exc, but that can in turn
|
|
* allow arbitrary Python code to run, including
|
|
* perhaps calls to this function. To prevent
|
|
* deadlock, we need to release head_mutex before
|
|
* the decref.
|
|
*/
|
|
PyObject *old_exc = tstate->async_exc;
|
|
tstate->async_exc = Py_XNewRef(exc);
|
|
HEAD_UNLOCK(runtime);
|
|
|
|
Py_XDECREF(old_exc);
|
|
_PyEval_SignalAsyncExc(tstate->interp);
|
|
return 1;
|
|
}
|
|
HEAD_UNLOCK(runtime);
|
|
return 0;
|
|
}
|
|
|
|
|
|
//---------------------------------
|
|
// API for the current thread state
|
|
//---------------------------------
|
|
|
|
PyThreadState *
|
|
PyThreadState_GetUnchecked(void)
|
|
{
|
|
return current_fast_get();
|
|
}
|
|
|
|
|
|
PyThreadState *
|
|
PyThreadState_Get(void)
|
|
{
|
|
PyThreadState *tstate = current_fast_get();
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
return tstate;
|
|
}
|
|
|
|
PyThreadState *
|
|
_PyThreadState_Swap(_PyRuntimeState *runtime, PyThreadState *newts)
|
|
{
|
|
PyThreadState *oldts = current_fast_get();
|
|
if (oldts != NULL) {
|
|
_PyThreadState_Detach(oldts);
|
|
}
|
|
if (newts != NULL) {
|
|
_PyThreadState_Attach(newts);
|
|
}
|
|
return oldts;
|
|
}
|
|
|
|
PyThreadState *
|
|
PyThreadState_Swap(PyThreadState *newts)
|
|
{
|
|
return _PyThreadState_Swap(&_PyRuntime, newts);
|
|
}
|
|
|
|
|
|
void
|
|
_PyThreadState_Bind(PyThreadState *tstate)
|
|
{
|
|
// gh-104690: If Python is being finalized and PyInterpreterState_Delete()
|
|
// was called, tstate becomes a dangling pointer.
|
|
assert(_PyThreadState_CheckConsistency(tstate));
|
|
|
|
bind_tstate(tstate);
|
|
// This makes sure there's a gilstate tstate bound
|
|
// as soon as possible.
|
|
if (gilstate_tss_get(tstate->interp->runtime) == NULL) {
|
|
bind_gilstate_tstate(tstate);
|
|
}
|
|
}
|
|
|
|
#if defined(Py_GIL_DISABLED) && !defined(Py_LIMITED_API)
|
|
uintptr_t
|
|
_Py_GetThreadLocal_Addr(void)
|
|
{
|
|
#ifdef HAVE_THREAD_LOCAL
|
|
// gh-112535: Use the address of the thread-local PyThreadState variable as
|
|
// a unique identifier for the current thread. Each thread has a unique
|
|
// _Py_tss_tstate variable with a unique address.
|
|
return (uintptr_t)&_Py_tss_tstate;
|
|
#else
|
|
# error "no supported thread-local variable storage classifier"
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/***********************************/
|
|
/* routines for advanced debuggers */
|
|
/***********************************/
|
|
|
|
// (requested by David Beazley)
|
|
// Don't use unless you know what you are doing!
|
|
|
|
PyInterpreterState *
|
|
PyInterpreterState_Head(void)
|
|
{
|
|
return _PyRuntime.interpreters.head;
|
|
}
|
|
|
|
PyInterpreterState *
|
|
PyInterpreterState_Main(void)
|
|
{
|
|
return _PyInterpreterState_Main();
|
|
}
|
|
|
|
PyInterpreterState *
|
|
PyInterpreterState_Next(PyInterpreterState *interp) {
|
|
return interp->next;
|
|
}
|
|
|
|
PyThreadState *
|
|
PyInterpreterState_ThreadHead(PyInterpreterState *interp) {
|
|
return interp->threads.head;
|
|
}
|
|
|
|
PyThreadState *
|
|
PyThreadState_Next(PyThreadState *tstate) {
|
|
return tstate->next;
|
|
}
|
|
|
|
|
|
/********************************************/
|
|
/* reporting execution state of all threads */
|
|
/********************************************/
|
|
|
|
/* The implementation of sys._current_frames(). This is intended to be
|
|
called with the GIL held, as it will be when called via
|
|
sys._current_frames(). It's possible it would work fine even without
|
|
the GIL held, but haven't thought enough about that.
|
|
*/
|
|
PyObject *
|
|
_PyThread_CurrentFrames(void)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
PyThreadState *tstate = current_fast_get();
|
|
if (_PySys_Audit(tstate, "sys._current_frames", NULL) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *result = PyDict_New();
|
|
if (result == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* for i in all interpreters:
|
|
* for t in all of i's thread states:
|
|
* if t's frame isn't NULL, map t's id to its frame
|
|
* Because these lists can mutate even when the GIL is held, we
|
|
* need to grab head_mutex for the duration.
|
|
*/
|
|
HEAD_LOCK(runtime);
|
|
PyInterpreterState *i;
|
|
for (i = runtime->interpreters.head; i != NULL; i = i->next) {
|
|
PyThreadState *t;
|
|
for (t = i->threads.head; t != NULL; t = t->next) {
|
|
_PyInterpreterFrame *frame = t->current_frame;
|
|
frame = _PyFrame_GetFirstComplete(frame);
|
|
if (frame == NULL) {
|
|
continue;
|
|
}
|
|
PyObject *id = PyLong_FromUnsignedLong(t->thread_id);
|
|
if (id == NULL) {
|
|
goto fail;
|
|
}
|
|
PyObject *frameobj = (PyObject *)_PyFrame_GetFrameObject(frame);
|
|
if (frameobj == NULL) {
|
|
Py_DECREF(id);
|
|
goto fail;
|
|
}
|
|
int stat = PyDict_SetItem(result, id, frameobj);
|
|
Py_DECREF(id);
|
|
if (stat < 0) {
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
goto done;
|
|
|
|
fail:
|
|
Py_CLEAR(result);
|
|
|
|
done:
|
|
HEAD_UNLOCK(runtime);
|
|
return result;
|
|
}
|
|
|
|
/* The implementation of sys._current_exceptions(). This is intended to be
|
|
called with the GIL held, as it will be when called via
|
|
sys._current_exceptions(). It's possible it would work fine even without
|
|
the GIL held, but haven't thought enough about that.
|
|
*/
|
|
PyObject *
|
|
_PyThread_CurrentExceptions(void)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
PyThreadState *tstate = current_fast_get();
|
|
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
|
|
if (_PySys_Audit(tstate, "sys._current_exceptions", NULL) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *result = PyDict_New();
|
|
if (result == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* for i in all interpreters:
|
|
* for t in all of i's thread states:
|
|
* if t's frame isn't NULL, map t's id to its frame
|
|
* Because these lists can mutate even when the GIL is held, we
|
|
* need to grab head_mutex for the duration.
|
|
*/
|
|
HEAD_LOCK(runtime);
|
|
PyInterpreterState *i;
|
|
for (i = runtime->interpreters.head; i != NULL; i = i->next) {
|
|
PyThreadState *t;
|
|
for (t = i->threads.head; t != NULL; t = t->next) {
|
|
_PyErr_StackItem *err_info = _PyErr_GetTopmostException(t);
|
|
if (err_info == NULL) {
|
|
continue;
|
|
}
|
|
PyObject *id = PyLong_FromUnsignedLong(t->thread_id);
|
|
if (id == NULL) {
|
|
goto fail;
|
|
}
|
|
PyObject *exc = err_info->exc_value;
|
|
assert(exc == NULL ||
|
|
exc == Py_None ||
|
|
PyExceptionInstance_Check(exc));
|
|
|
|
int stat = PyDict_SetItem(result, id, exc == NULL ? Py_None : exc);
|
|
Py_DECREF(id);
|
|
if (stat < 0) {
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
goto done;
|
|
|
|
fail:
|
|
Py_CLEAR(result);
|
|
|
|
done:
|
|
HEAD_UNLOCK(runtime);
|
|
return result;
|
|
}
|
|
|
|
|
|
/***********************************/
|
|
/* Python "auto thread state" API. */
|
|
/***********************************/
|
|
|
|
/* Internal initialization/finalization functions called by
|
|
Py_Initialize/Py_FinalizeEx
|
|
*/
|
|
PyStatus
|
|
_PyGILState_Init(PyInterpreterState *interp)
|
|
{
|
|
if (!_Py_IsMainInterpreter(interp)) {
|
|
/* Currently, PyGILState is shared by all interpreters. The main
|
|
* interpreter is responsible to initialize it. */
|
|
return _PyStatus_OK();
|
|
}
|
|
_PyRuntimeState *runtime = interp->runtime;
|
|
assert(gilstate_tss_get(runtime) == NULL);
|
|
assert(runtime->gilstate.autoInterpreterState == NULL);
|
|
runtime->gilstate.autoInterpreterState = interp;
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
void
|
|
_PyGILState_Fini(PyInterpreterState *interp)
|
|
{
|
|
if (!_Py_IsMainInterpreter(interp)) {
|
|
/* Currently, PyGILState is shared by all interpreters. The main
|
|
* interpreter is responsible to initialize it. */
|
|
return;
|
|
}
|
|
interp->runtime->gilstate.autoInterpreterState = NULL;
|
|
}
|
|
|
|
|
|
// XXX Drop this.
|
|
void
|
|
_PyGILState_SetTstate(PyThreadState *tstate)
|
|
{
|
|
/* must init with valid states */
|
|
assert(tstate != NULL);
|
|
assert(tstate->interp != NULL);
|
|
|
|
if (!_Py_IsMainInterpreter(tstate->interp)) {
|
|
/* Currently, PyGILState is shared by all interpreters. The main
|
|
* interpreter is responsible to initialize it. */
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
_PyRuntimeState *runtime = tstate->interp->runtime;
|
|
|
|
assert(runtime->gilstate.autoInterpreterState == tstate->interp);
|
|
assert(gilstate_tss_get(runtime) == tstate);
|
|
assert(tstate->gilstate_counter == 1);
|
|
#endif
|
|
}
|
|
|
|
PyInterpreterState *
|
|
_PyGILState_GetInterpreterStateUnsafe(void)
|
|
{
|
|
return _PyRuntime.gilstate.autoInterpreterState;
|
|
}
|
|
|
|
/* The public functions */
|
|
|
|
PyThreadState *
|
|
PyGILState_GetThisThreadState(void)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
if (!gilstate_tss_initialized(runtime)) {
|
|
return NULL;
|
|
}
|
|
return gilstate_tss_get(runtime);
|
|
}
|
|
|
|
int
|
|
PyGILState_Check(void)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
if (!runtime->gilstate.check_enabled) {
|
|
return 1;
|
|
}
|
|
|
|
if (!gilstate_tss_initialized(runtime)) {
|
|
return 1;
|
|
}
|
|
|
|
PyThreadState *tstate = current_fast_get();
|
|
if (tstate == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
#ifdef MS_WINDOWS
|
|
int err = GetLastError();
|
|
#endif
|
|
|
|
PyThreadState *tcur = gilstate_tss_get(runtime);
|
|
|
|
#ifdef MS_WINDOWS
|
|
SetLastError(err);
|
|
#endif
|
|
|
|
return (tstate == tcur);
|
|
}
|
|
|
|
PyGILState_STATE
|
|
PyGILState_Ensure(void)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
|
|
/* Note that we do not auto-init Python here - apart from
|
|
potential races with 2 threads auto-initializing, pep-311
|
|
spells out other issues. Embedders are expected to have
|
|
called Py_Initialize(). */
|
|
|
|
/* Ensure that _PyEval_InitThreads() and _PyGILState_Init() have been
|
|
called by Py_Initialize() */
|
|
assert(_PyEval_ThreadsInitialized());
|
|
assert(gilstate_tss_initialized(runtime));
|
|
assert(runtime->gilstate.autoInterpreterState != NULL);
|
|
|
|
PyThreadState *tcur = gilstate_tss_get(runtime);
|
|
int has_gil;
|
|
if (tcur == NULL) {
|
|
/* Create a new Python thread state for this thread */
|
|
// XXX Use PyInterpreterState_EnsureThreadState()?
|
|
tcur = new_threadstate(runtime->gilstate.autoInterpreterState,
|
|
_PyThreadState_WHENCE_GILSTATE);
|
|
if (tcur == NULL) {
|
|
Py_FatalError("Couldn't create thread-state for new thread");
|
|
}
|
|
bind_tstate(tcur);
|
|
bind_gilstate_tstate(tcur);
|
|
|
|
/* This is our thread state! We'll need to delete it in the
|
|
matching call to PyGILState_Release(). */
|
|
assert(tcur->gilstate_counter == 1);
|
|
tcur->gilstate_counter = 0;
|
|
has_gil = 0; /* new thread state is never current */
|
|
}
|
|
else {
|
|
has_gil = holds_gil(tcur);
|
|
}
|
|
|
|
if (!has_gil) {
|
|
PyEval_RestoreThread(tcur);
|
|
}
|
|
|
|
/* Update our counter in the thread-state - no need for locks:
|
|
- tcur will remain valid as we hold the GIL.
|
|
- the counter is safe as we are the only thread "allowed"
|
|
to modify this value
|
|
*/
|
|
++tcur->gilstate_counter;
|
|
|
|
return has_gil ? PyGILState_LOCKED : PyGILState_UNLOCKED;
|
|
}
|
|
|
|
void
|
|
PyGILState_Release(PyGILState_STATE oldstate)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
PyThreadState *tstate = gilstate_tss_get(runtime);
|
|
if (tstate == NULL) {
|
|
Py_FatalError("auto-releasing thread-state, "
|
|
"but no thread-state for this thread");
|
|
}
|
|
|
|
/* We must hold the GIL and have our thread state current */
|
|
/* XXX - remove the check - the assert should be fine,
|
|
but while this is very new (April 2003), the extra check
|
|
by release-only users can't hurt.
|
|
*/
|
|
if (!holds_gil(tstate)) {
|
|
_Py_FatalErrorFormat(__func__,
|
|
"thread state %p must be current when releasing",
|
|
tstate);
|
|
}
|
|
assert(holds_gil(tstate));
|
|
--tstate->gilstate_counter;
|
|
assert(tstate->gilstate_counter >= 0); /* illegal counter value */
|
|
|
|
/* If we're going to destroy this thread-state, we must
|
|
* clear it while the GIL is held, as destructors may run.
|
|
*/
|
|
if (tstate->gilstate_counter == 0) {
|
|
/* can't have been locked when we created it */
|
|
assert(oldstate == PyGILState_UNLOCKED);
|
|
// XXX Unbind tstate here.
|
|
PyThreadState_Clear(tstate);
|
|
/* Delete the thread-state. Note this releases the GIL too!
|
|
* It's vital that the GIL be held here, to avoid shutdown
|
|
* races; see bugs 225673 and 1061968 (that nasty bug has a
|
|
* habit of coming back).
|
|
*/
|
|
assert(current_fast_get() == tstate);
|
|
_PyThreadState_DeleteCurrent(tstate);
|
|
}
|
|
/* Release the lock if necessary */
|
|
else if (oldstate == PyGILState_UNLOCKED) {
|
|
PyEval_SaveThread();
|
|
}
|
|
}
|
|
|
|
|
|
/*************/
|
|
/* Other API */
|
|
/*************/
|
|
|
|
_PyFrameEvalFunction
|
|
_PyInterpreterState_GetEvalFrameFunc(PyInterpreterState *interp)
|
|
{
|
|
if (interp->eval_frame == NULL) {
|
|
return _PyEval_EvalFrameDefault;
|
|
}
|
|
return interp->eval_frame;
|
|
}
|
|
|
|
|
|
void
|
|
_PyInterpreterState_SetEvalFrameFunc(PyInterpreterState *interp,
|
|
_PyFrameEvalFunction eval_frame)
|
|
{
|
|
if (eval_frame == _PyEval_EvalFrameDefault) {
|
|
eval_frame = NULL;
|
|
}
|
|
if (eval_frame == interp->eval_frame) {
|
|
return;
|
|
}
|
|
if (eval_frame != NULL) {
|
|
_Py_Executors_InvalidateAll(interp);
|
|
}
|
|
RARE_EVENT_INC(set_eval_frame_func);
|
|
interp->eval_frame = eval_frame;
|
|
}
|
|
|
|
|
|
const PyConfig*
|
|
_PyInterpreterState_GetConfig(PyInterpreterState *interp)
|
|
{
|
|
return &interp->config;
|
|
}
|
|
|
|
|
|
int
|
|
_PyInterpreterState_GetConfigCopy(PyConfig *config)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
PyStatus status = _PyConfig_Copy(config, &interp->config);
|
|
if (PyStatus_Exception(status)) {
|
|
_PyErr_SetFromPyStatus(status);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
const PyConfig*
|
|
_Py_GetConfig(void)
|
|
{
|
|
assert(PyGILState_Check());
|
|
PyThreadState *tstate = current_fast_get();
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
return _PyInterpreterState_GetConfig(tstate->interp);
|
|
}
|
|
|
|
|
|
int
|
|
_PyInterpreterState_HasFeature(PyInterpreterState *interp, unsigned long feature)
|
|
{
|
|
return ((interp->feature_flags & feature) != 0);
|
|
}
|
|
|
|
|
|
#define MINIMUM_OVERHEAD 1000
|
|
|
|
static PyObject **
|
|
push_chunk(PyThreadState *tstate, int size)
|
|
{
|
|
int allocate_size = DATA_STACK_CHUNK_SIZE;
|
|
while (allocate_size < (int)sizeof(PyObject*)*(size + MINIMUM_OVERHEAD)) {
|
|
allocate_size *= 2;
|
|
}
|
|
_PyStackChunk *new = allocate_chunk(allocate_size, tstate->datastack_chunk);
|
|
if (new == NULL) {
|
|
return NULL;
|
|
}
|
|
if (tstate->datastack_chunk) {
|
|
tstate->datastack_chunk->top = tstate->datastack_top -
|
|
&tstate->datastack_chunk->data[0];
|
|
}
|
|
tstate->datastack_chunk = new;
|
|
tstate->datastack_limit = (PyObject **)(((char *)new) + allocate_size);
|
|
// When new is the "root" chunk (i.e. new->previous == NULL), we can keep
|
|
// _PyThreadState_PopFrame from freeing it later by "skipping" over the
|
|
// first element:
|
|
PyObject **res = &new->data[new->previous == NULL];
|
|
tstate->datastack_top = res + size;
|
|
return res;
|
|
}
|
|
|
|
_PyInterpreterFrame *
|
|
_PyThreadState_PushFrame(PyThreadState *tstate, size_t size)
|
|
{
|
|
assert(size < INT_MAX/sizeof(PyObject *));
|
|
if (_PyThreadState_HasStackSpace(tstate, (int)size)) {
|
|
_PyInterpreterFrame *res = (_PyInterpreterFrame *)tstate->datastack_top;
|
|
tstate->datastack_top += size;
|
|
return res;
|
|
}
|
|
return (_PyInterpreterFrame *)push_chunk(tstate, (int)size);
|
|
}
|
|
|
|
void
|
|
_PyThreadState_PopFrame(PyThreadState *tstate, _PyInterpreterFrame * frame)
|
|
{
|
|
assert(tstate->datastack_chunk);
|
|
PyObject **base = (PyObject **)frame;
|
|
if (base == &tstate->datastack_chunk->data[0]) {
|
|
_PyStackChunk *chunk = tstate->datastack_chunk;
|
|
_PyStackChunk *previous = chunk->previous;
|
|
// push_chunk ensures that the root chunk is never popped:
|
|
assert(previous);
|
|
tstate->datastack_top = &previous->data[previous->top];
|
|
tstate->datastack_chunk = previous;
|
|
_PyObject_VirtualFree(chunk, chunk->size);
|
|
tstate->datastack_limit = (PyObject **)(((char *)previous) + previous->size);
|
|
}
|
|
else {
|
|
assert(tstate->datastack_top);
|
|
assert(tstate->datastack_top >= base);
|
|
tstate->datastack_top = base;
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef NDEBUG
|
|
// Check that a Python thread state valid. In practice, this function is used
|
|
// on a Python debug build to check if 'tstate' is a dangling pointer, if the
|
|
// PyThreadState memory has been freed.
|
|
//
|
|
// Usage:
|
|
//
|
|
// assert(_PyThreadState_CheckConsistency(tstate));
|
|
int
|
|
_PyThreadState_CheckConsistency(PyThreadState *tstate)
|
|
{
|
|
assert(!_PyMem_IsPtrFreed(tstate));
|
|
assert(!_PyMem_IsPtrFreed(tstate->interp));
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
// Check if a Python thread must exit immediately, rather than taking the GIL
|
|
// if Py_Finalize() has been called.
|
|
//
|
|
// When this function is called by a daemon thread after Py_Finalize() has been
|
|
// called, the GIL does no longer exist.
|
|
//
|
|
// tstate can be a dangling pointer (point to freed memory): only tstate value
|
|
// is used, the pointer is not deferenced.
|
|
//
|
|
// tstate must be non-NULL.
|
|
int
|
|
_PyThreadState_MustExit(PyThreadState *tstate)
|
|
{
|
|
/* bpo-39877: Access _PyRuntime directly rather than using
|
|
tstate->interp->runtime to support calls from Python daemon threads.
|
|
After Py_Finalize() has been called, tstate can be a dangling pointer:
|
|
point to PyThreadState freed memory. */
|
|
unsigned long finalizing_id = _PyRuntimeState_GetFinalizingID(&_PyRuntime);
|
|
PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime);
|
|
if (finalizing == NULL) {
|
|
// XXX This isn't completely safe from daemon thraeds,
|
|
// since tstate might be a dangling pointer.
|
|
finalizing = _PyInterpreterState_GetFinalizing(tstate->interp);
|
|
finalizing_id = _PyInterpreterState_GetFinalizingID(tstate->interp);
|
|
}
|
|
// XXX else check &_PyRuntime._main_interpreter._initial_thread
|
|
if (finalizing == NULL) {
|
|
return 0;
|
|
}
|
|
else if (finalizing == tstate) {
|
|
return 0;
|
|
}
|
|
else if (finalizing_id == PyThread_get_thread_ident()) {
|
|
/* gh-109793: we must have switched interpreters. */
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/********************/
|
|
/* mimalloc support */
|
|
/********************/
|
|
|
|
static void
|
|
tstate_mimalloc_bind(PyThreadState *tstate)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
struct _mimalloc_thread_state *mts = &((_PyThreadStateImpl*)tstate)->mimalloc;
|
|
|
|
// Initialize the mimalloc thread state. This must be called from the
|
|
// same thread that will use the thread state. The "mem" heap doubles as
|
|
// the "backing" heap.
|
|
mi_tld_t *tld = &mts->tld;
|
|
_mi_tld_init(tld, &mts->heaps[_Py_MIMALLOC_HEAP_MEM]);
|
|
|
|
// Exiting threads push any remaining in-use segments to the abandoned
|
|
// pool to be re-claimed later by other threads. We use per-interpreter
|
|
// pools to keep Python objects from different interpreters separate.
|
|
tld->segments.abandoned = &tstate->interp->mimalloc.abandoned_pool;
|
|
|
|
// Initialize each heap
|
|
for (uint8_t i = 0; i < _Py_MIMALLOC_HEAP_COUNT; i++) {
|
|
_mi_heap_init_ex(&mts->heaps[i], tld, _mi_arena_id_none(), false, i);
|
|
}
|
|
|
|
// By default, object allocations use _Py_MIMALLOC_HEAP_OBJECT.
|
|
// _PyObject_GC_New() and similar functions temporarily override this to
|
|
// use one of the GC heaps.
|
|
mts->current_object_heap = &mts->heaps[_Py_MIMALLOC_HEAP_OBJECT];
|
|
#endif
|
|
}
|
|
|
|
void
|
|
_PyThreadState_ClearMimallocHeaps(PyThreadState *tstate)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
if (!tstate->_status.bound) {
|
|
// The mimalloc heaps are only initialized when the thread is bound.
|
|
return;
|
|
}
|
|
|
|
_PyThreadStateImpl *tstate_impl = (_PyThreadStateImpl *)tstate;
|
|
for (Py_ssize_t i = 0; i < _Py_MIMALLOC_HEAP_COUNT; i++) {
|
|
// Abandon all segments in use by this thread. This pushes them to
|
|
// a shared pool to later be reclaimed by other threads. It's important
|
|
// to do this before the thread state is destroyed so that objects
|
|
// remain visible to the GC.
|
|
_mi_heap_collect_abandon(&tstate_impl->mimalloc.heaps[i]);
|
|
}
|
|
#endif
|
|
}
|