cpython/Python/pystate.c

2847 lines
82 KiB
C

/* Thread and interpreter state structures and their interfaces */
#include "Python.h"
#include "pycore_ceval.h"
#include "pycore_code.h" // stats
#include "pycore_critical_section.h" // _PyCriticalSection_Resume()
#include "pycore_dtoa.h" // _dtoa_state_INIT()
#include "pycore_emscripten_trampoline.h" // _Py_EmscriptenTrampoline_Init()
#include "pycore_frame.h"
#include "pycore_initconfig.h" // _PyStatus_OK()
#include "pycore_object.h" // _PyType_InitCache()
#include "pycore_object_stack.h" // _PyObjectStackChunk_ClearFreeList()
#include "pycore_parking_lot.h" // _PyParkingLot_AfterFork()
#include "pycore_pyerrors.h" // _PyErr_Clear()
#include "pycore_pylifecycle.h" // _PyAST_Fini()
#include "pycore_pymem.h" // _PyMem_SetDefaultAllocator()
#include "pycore_pystate.h"
#include "pycore_runtime_init.h" // _PyRuntimeState_INIT
#include "pycore_sysmodule.h" // _PySys_Audit()
#include "pycore_obmalloc.h" // _PyMem_obmalloc_state_on_heap()
/* --------------------------------------------------------------------------
CAUTION
Always use PyMem_RawMalloc() and PyMem_RawFree() directly in this file. A
number of these functions are advertised as safe to call when the GIL isn't
held, and in a debug build Python redirects (e.g.) PyMem_NEW (etc) to Python's
debugging obmalloc functions. Those aren't thread-safe (they rely on the GIL
to avoid the expense of doing their own locking).
-------------------------------------------------------------------------- */
#ifdef HAVE_DLOPEN
# ifdef HAVE_DLFCN_H
# include <dlfcn.h>
# endif
# if !HAVE_DECL_RTLD_LAZY
# define RTLD_LAZY 1
# endif
#endif
/****************************************/
/* helpers for the current thread state */
/****************************************/
// API for the current thread state is further down.
/* "current" means one of:
- bound to the current OS thread
- holds the GIL
*/
//-------------------------------------------------
// a highly efficient lookup for the current thread
//-------------------------------------------------
/*
The stored thread state is set by PyThreadState_Swap().
For each of these functions, the GIL must be held by the current thread.
*/
#ifdef HAVE_THREAD_LOCAL
_Py_thread_local PyThreadState *_Py_tss_tstate = NULL;
#endif
static inline PyThreadState *
current_fast_get(void)
{
#ifdef HAVE_THREAD_LOCAL
return _Py_tss_tstate;
#else
// XXX Fall back to the PyThread_tss_*() API.
# error "no supported thread-local variable storage classifier"
#endif
}
static inline void
current_fast_set(_PyRuntimeState *Py_UNUSED(runtime), PyThreadState *tstate)
{
assert(tstate != NULL);
#ifdef HAVE_THREAD_LOCAL
_Py_tss_tstate = tstate;
#else
// XXX Fall back to the PyThread_tss_*() API.
# error "no supported thread-local variable storage classifier"
#endif
}
static inline void
current_fast_clear(_PyRuntimeState *Py_UNUSED(runtime))
{
#ifdef HAVE_THREAD_LOCAL
_Py_tss_tstate = NULL;
#else
// XXX Fall back to the PyThread_tss_*() API.
# error "no supported thread-local variable storage classifier"
#endif
}
#define tstate_verify_not_active(tstate) \
if (tstate == current_fast_get()) { \
_Py_FatalErrorFormat(__func__, "tstate %p is still current", tstate); \
}
PyThreadState *
_PyThreadState_GetCurrent(void)
{
return current_fast_get();
}
//------------------------------------------------
// the thread state bound to the current OS thread
//------------------------------------------------
static inline int
tstate_tss_initialized(Py_tss_t *key)
{
return PyThread_tss_is_created(key);
}
static inline int
tstate_tss_init(Py_tss_t *key)
{
assert(!tstate_tss_initialized(key));
return PyThread_tss_create(key);
}
static inline void
tstate_tss_fini(Py_tss_t *key)
{
assert(tstate_tss_initialized(key));
PyThread_tss_delete(key);
}
static inline PyThreadState *
tstate_tss_get(Py_tss_t *key)
{
assert(tstate_tss_initialized(key));
return (PyThreadState *)PyThread_tss_get(key);
}
static inline int
tstate_tss_set(Py_tss_t *key, PyThreadState *tstate)
{
assert(tstate != NULL);
assert(tstate_tss_initialized(key));
return PyThread_tss_set(key, (void *)tstate);
}
static inline int
tstate_tss_clear(Py_tss_t *key)
{
assert(tstate_tss_initialized(key));
return PyThread_tss_set(key, (void *)NULL);
}
#ifdef HAVE_FORK
/* Reset the TSS key - called by PyOS_AfterFork_Child().
* This should not be necessary, but some - buggy - pthread implementations
* don't reset TSS upon fork(), see issue #10517.
*/
static PyStatus
tstate_tss_reinit(Py_tss_t *key)
{
if (!tstate_tss_initialized(key)) {
return _PyStatus_OK();
}
PyThreadState *tstate = tstate_tss_get(key);
tstate_tss_fini(key);
if (tstate_tss_init(key) != 0) {
return _PyStatus_NO_MEMORY();
}
/* If the thread had an associated auto thread state, reassociate it with
* the new key. */
if (tstate && tstate_tss_set(key, tstate) != 0) {
return _PyStatus_ERR("failed to re-set autoTSSkey");
}
return _PyStatus_OK();
}
#endif
/*
The stored thread state is set by bind_tstate() (AKA PyThreadState_Bind().
The GIL does no need to be held for these.
*/
#define gilstate_tss_initialized(runtime) \
tstate_tss_initialized(&(runtime)->autoTSSkey)
#define gilstate_tss_init(runtime) \
tstate_tss_init(&(runtime)->autoTSSkey)
#define gilstate_tss_fini(runtime) \
tstate_tss_fini(&(runtime)->autoTSSkey)
#define gilstate_tss_get(runtime) \
tstate_tss_get(&(runtime)->autoTSSkey)
#define _gilstate_tss_set(runtime, tstate) \
tstate_tss_set(&(runtime)->autoTSSkey, tstate)
#define _gilstate_tss_clear(runtime) \
tstate_tss_clear(&(runtime)->autoTSSkey)
#define gilstate_tss_reinit(runtime) \
tstate_tss_reinit(&(runtime)->autoTSSkey)
static inline void
gilstate_tss_set(_PyRuntimeState *runtime, PyThreadState *tstate)
{
assert(tstate != NULL && tstate->interp->runtime == runtime);
if (_gilstate_tss_set(runtime, tstate) != 0) {
Py_FatalError("failed to set current tstate (TSS)");
}
}
static inline void
gilstate_tss_clear(_PyRuntimeState *runtime)
{
if (_gilstate_tss_clear(runtime) != 0) {
Py_FatalError("failed to clear current tstate (TSS)");
}
}
#ifndef NDEBUG
static inline int tstate_is_alive(PyThreadState *tstate);
static inline int
tstate_is_bound(PyThreadState *tstate)
{
return tstate->_status.bound && !tstate->_status.unbound;
}
#endif // !NDEBUG
static void bind_gilstate_tstate(PyThreadState *);
static void unbind_gilstate_tstate(PyThreadState *);
static void tstate_mimalloc_bind(PyThreadState *);
static void
bind_tstate(PyThreadState *tstate)
{
assert(tstate != NULL);
assert(tstate_is_alive(tstate) && !tstate->_status.bound);
assert(!tstate->_status.unbound); // just in case
assert(!tstate->_status.bound_gilstate);
assert(tstate != gilstate_tss_get(tstate->interp->runtime));
assert(!tstate->_status.active);
assert(tstate->thread_id == 0);
assert(tstate->native_thread_id == 0);
// Currently we don't necessarily store the thread state
// in thread-local storage (e.g. per-interpreter).
tstate->thread_id = PyThread_get_thread_ident();
#ifdef PY_HAVE_THREAD_NATIVE_ID
tstate->native_thread_id = PyThread_get_thread_native_id();
#endif
// mimalloc state needs to be initialized from the active thread.
tstate_mimalloc_bind(tstate);
tstate->_status.bound = 1;
}
static void
unbind_tstate(PyThreadState *tstate)
{
assert(tstate != NULL);
assert(tstate_is_bound(tstate));
#ifndef HAVE_PTHREAD_STUBS
assert(tstate->thread_id > 0);
#endif
#ifdef PY_HAVE_THREAD_NATIVE_ID
assert(tstate->native_thread_id > 0);
#endif
// We leave thread_id and native_thread_id alone
// since they can be useful for debugging.
// Check the `_status` field to know if these values
// are still valid.
// We leave tstate->_status.bound set to 1
// to indicate it was previously bound.
tstate->_status.unbound = 1;
}
/* Stick the thread state for this thread in thread specific storage.
When a thread state is created for a thread by some mechanism
other than PyGILState_Ensure(), it's important that the GILState
machinery knows about it so it doesn't try to create another
thread state for the thread.
(This is a better fix for SF bug #1010677 than the first one attempted.)
The only situation where you can legitimately have more than one
thread state for an OS level thread is when there are multiple
interpreters.
Before 3.12, the PyGILState_*() APIs didn't work with multiple
interpreters (see bpo-10915 and bpo-15751), so this function used
to set TSS only once. Thus, the first thread state created for that
given OS level thread would "win", which seemed reasonable behaviour.
*/
static void
bind_gilstate_tstate(PyThreadState *tstate)
{
assert(tstate != NULL);
assert(tstate_is_alive(tstate));
assert(tstate_is_bound(tstate));
// XXX assert(!tstate->_status.active);
assert(!tstate->_status.bound_gilstate);
_PyRuntimeState *runtime = tstate->interp->runtime;
PyThreadState *tcur = gilstate_tss_get(runtime);
assert(tstate != tcur);
if (tcur != NULL) {
tcur->_status.bound_gilstate = 0;
}
gilstate_tss_set(runtime, tstate);
tstate->_status.bound_gilstate = 1;
}
static void
unbind_gilstate_tstate(PyThreadState *tstate)
{
assert(tstate != NULL);
// XXX assert(tstate_is_alive(tstate));
assert(tstate_is_bound(tstate));
// XXX assert(!tstate->_status.active);
assert(tstate->_status.bound_gilstate);
assert(tstate == gilstate_tss_get(tstate->interp->runtime));
gilstate_tss_clear(tstate->interp->runtime);
tstate->_status.bound_gilstate = 0;
}
//----------------------------------------------
// the thread state that currently holds the GIL
//----------------------------------------------
/* This is not exported, as it is not reliable! It can only
ever be compared to the state for the *current* thread.
* If not equal, then it doesn't matter that the actual
value may change immediately after comparison, as it can't
possibly change to the current thread's state.
* If equal, then the current thread holds the lock, so the value can't
change until we yield the lock.
*/
static int
holds_gil(PyThreadState *tstate)
{
// XXX Fall back to tstate->interp->runtime->ceval.gil.last_holder
// (and tstate->interp->runtime->ceval.gil.locked).
assert(tstate != NULL);
/* Must be the tstate for this thread */
assert(tstate == gilstate_tss_get(tstate->interp->runtime));
return tstate == current_fast_get();
}
/****************************/
/* the global runtime state */
/****************************/
//----------
// lifecycle
//----------
/* Suppress deprecation warning for PyBytesObject.ob_shash */
_Py_COMP_DIAG_PUSH
_Py_COMP_DIAG_IGNORE_DEPR_DECLS
/* We use "initial" if the runtime gets re-used
(e.g. Py_Finalize() followed by Py_Initialize().
Note that we initialize "initial" relative to _PyRuntime,
to ensure pre-initialized pointers point to the active
runtime state (and not "initial"). */
static const _PyRuntimeState initial = _PyRuntimeState_INIT(_PyRuntime);
_Py_COMP_DIAG_POP
#define LOCKS_INIT(runtime) \
{ \
&(runtime)->interpreters.mutex, \
&(runtime)->xi.registry.mutex, \
&(runtime)->unicode_state.ids.mutex, \
&(runtime)->imports.extensions.mutex, \
&(runtime)->ceval.pending_mainthread.mutex, \
&(runtime)->atexit.mutex, \
&(runtime)->audit_hooks.mutex, \
&(runtime)->allocators.mutex, \
}
static void
init_runtime(_PyRuntimeState *runtime,
void *open_code_hook, void *open_code_userdata,
_Py_AuditHookEntry *audit_hook_head,
Py_ssize_t unicode_next_index)
{
assert(!runtime->preinitializing);
assert(!runtime->preinitialized);
assert(!runtime->core_initialized);
assert(!runtime->initialized);
assert(!runtime->_initialized);
runtime->open_code_hook = open_code_hook;
runtime->open_code_userdata = open_code_userdata;
runtime->audit_hooks.head = audit_hook_head;
PyPreConfig_InitPythonConfig(&runtime->preconfig);
// Set it to the ID of the main thread of the main interpreter.
runtime->main_thread = PyThread_get_thread_ident();
runtime->unicode_state.ids.next_index = unicode_next_index;
#if defined(__EMSCRIPTEN__) && defined(PY_CALL_TRAMPOLINE)
_Py_EmscriptenTrampoline_Init(runtime);
#endif
runtime->_initialized = 1;
}
PyStatus
_PyRuntimeState_Init(_PyRuntimeState *runtime)
{
/* We preserve the hook across init, because there is
currently no public API to set it between runtime
initialization and interpreter initialization. */
void *open_code_hook = runtime->open_code_hook;
void *open_code_userdata = runtime->open_code_userdata;
_Py_AuditHookEntry *audit_hook_head = runtime->audit_hooks.head;
// bpo-42882: Preserve next_index value if Py_Initialize()/Py_Finalize()
// is called multiple times.
Py_ssize_t unicode_next_index = runtime->unicode_state.ids.next_index;
if (runtime->_initialized) {
// Py_Initialize() must be running again.
// Reset to _PyRuntimeState_INIT.
memcpy(runtime, &initial, sizeof(*runtime));
assert(!runtime->_initialized);
}
if (gilstate_tss_init(runtime) != 0) {
_PyRuntimeState_Fini(runtime);
return _PyStatus_NO_MEMORY();
}
if (PyThread_tss_create(&runtime->trashTSSkey) != 0) {
_PyRuntimeState_Fini(runtime);
return _PyStatus_NO_MEMORY();
}
init_runtime(runtime, open_code_hook, open_code_userdata, audit_hook_head,
unicode_next_index);
return _PyStatus_OK();
}
void
_PyRuntimeState_Fini(_PyRuntimeState *runtime)
{
#ifdef Py_REF_DEBUG
/* The count is cleared by _Py_FinalizeRefTotal(). */
assert(runtime->object_state.interpreter_leaks == 0);
#endif
if (gilstate_tss_initialized(runtime)) {
gilstate_tss_fini(runtime);
}
if (PyThread_tss_is_created(&runtime->trashTSSkey)) {
PyThread_tss_delete(&runtime->trashTSSkey);
}
}
#ifdef HAVE_FORK
/* This function is called from PyOS_AfterFork_Child to ensure that
newly created child processes do not share locks with the parent. */
PyStatus
_PyRuntimeState_ReInitThreads(_PyRuntimeState *runtime)
{
// This was initially set in _PyRuntimeState_Init().
runtime->main_thread = PyThread_get_thread_ident();
// Clears the parking lot. Any waiting threads are dead. This must be
// called before releasing any locks that use the parking lot.
_PyParkingLot_AfterFork();
// Re-initialize global locks
PyMutex *locks[] = LOCKS_INIT(runtime);
for (size_t i = 0; i < Py_ARRAY_LENGTH(locks); i++) {
_PyMutex_at_fork_reinit(locks[i]);
}
/* bpo-42540: id_mutex is freed by _PyInterpreterState_Delete, which does
* not force the default allocator. */
if (_PyThread_at_fork_reinit(&runtime->interpreters.main->id_mutex) < 0) {
return _PyStatus_ERR("Failed to reinitialize runtime locks");
}
PyStatus status = gilstate_tss_reinit(runtime);
if (_PyStatus_EXCEPTION(status)) {
return status;
}
if (PyThread_tss_is_created(&runtime->trashTSSkey)) {
PyThread_tss_delete(&runtime->trashTSSkey);
}
if (PyThread_tss_create(&runtime->trashTSSkey) != 0) {
return _PyStatus_NO_MEMORY();
}
_PyThread_AfterFork(&runtime->threads);
return _PyStatus_OK();
}
#endif
/*************************************/
/* the per-interpreter runtime state */
/*************************************/
//----------
// lifecycle
//----------
/* Calling this indicates that the runtime is ready to create interpreters. */
PyStatus
_PyInterpreterState_Enable(_PyRuntimeState *runtime)
{
struct pyinterpreters *interpreters = &runtime->interpreters;
interpreters->next_id = 0;
return _PyStatus_OK();
}
static PyInterpreterState *
alloc_interpreter(void)
{
return PyMem_RawCalloc(1, sizeof(PyInterpreterState));
}
static void
free_interpreter(PyInterpreterState *interp)
{
// The main interpreter is statically allocated so
// should not be freed.
if (interp != &_PyRuntime._main_interpreter) {
if (_PyMem_obmalloc_state_on_heap(interp)) {
// interpreter has its own obmalloc state, free it
PyMem_RawFree(interp->obmalloc);
interp->obmalloc = NULL;
}
PyMem_RawFree(interp);
}
}
/* Get the interpreter state to a minimal consistent state.
Further init happens in pylifecycle.c before it can be used.
All fields not initialized here are expected to be zeroed out,
e.g. by PyMem_RawCalloc() or memset(), or otherwise pre-initialized.
The runtime state is not manipulated. Instead it is assumed that
the interpreter is getting added to the runtime.
Note that the main interpreter was statically initialized as part
of the runtime and most state is already set properly. That leaves
a small number of fields to initialize dynamically, as well as some
that are initialized lazily.
For subinterpreters we memcpy() the main interpreter in
PyInterpreterState_New(), leaving it in the same mostly-initialized
state. The only difference is that the interpreter has some
self-referential state that is statically initializexd to the
main interpreter. We fix those fields here, in addition
to the other dynamically initialized fields.
*/
static PyStatus
init_interpreter(PyInterpreterState *interp,
_PyRuntimeState *runtime, int64_t id,
PyInterpreterState *next)
{
if (interp->_initialized) {
return _PyStatus_ERR("interpreter already initialized");
}
assert(runtime != NULL);
interp->runtime = runtime;
assert(id > 0 || (id == 0 && interp == runtime->interpreters.main));
interp->id = id;
assert(runtime->interpreters.head == interp);
assert(next != NULL || (interp == runtime->interpreters.main));
interp->next = next;
PyStatus status = _PyObject_InitState(interp);
if (_PyStatus_EXCEPTION(status)) {
return status;
}
_PyEval_InitState(interp);
_PyGC_InitState(&interp->gc);
PyConfig_InitPythonConfig(&interp->config);
_PyType_InitCache(interp);
for (int i = 0; i < _PY_MONITORING_UNGROUPED_EVENTS; i++) {
interp->monitors.tools[i] = 0;
}
for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) {
for (int e = 0; e < _PY_MONITORING_EVENTS; e++) {
interp->monitoring_callables[t][e] = NULL;
}
}
interp->sys_profile_initialized = false;
interp->sys_trace_initialized = false;
interp->optimizer = &_PyOptimizer_Default;
interp->optimizer_backedge_threshold = _PyOptimizer_Default.backedge_threshold;
interp->optimizer_resume_threshold = _PyOptimizer_Default.backedge_threshold;
interp->next_func_version = 1;
interp->executor_list_head = NULL;
if (interp != &runtime->_main_interpreter) {
/* Fix the self-referential, statically initialized fields. */
interp->dtoa = (struct _dtoa_state)_dtoa_state_INIT(interp);
}
interp->_initialized = 1;
return _PyStatus_OK();
}
PyStatus
_PyInterpreterState_New(PyThreadState *tstate, PyInterpreterState **pinterp)
{
*pinterp = NULL;
// Don't get runtime from tstate since tstate can be NULL
_PyRuntimeState *runtime = &_PyRuntime;
// tstate is NULL when pycore_create_interpreter() calls
// _PyInterpreterState_New() to create the main interpreter.
if (tstate != NULL) {
if (_PySys_Audit(tstate, "cpython.PyInterpreterState_New", NULL) < 0) {
return _PyStatus_ERR("sys.audit failed");
}
}
/* We completely serialize creation of multiple interpreters, since
it simplifies things here and blocking concurrent calls isn't a problem.
Regardless, we must fully block subinterpreter creation until
after the main interpreter is created. */
HEAD_LOCK(runtime);
struct pyinterpreters *interpreters = &runtime->interpreters;
int64_t id = interpreters->next_id;
interpreters->next_id += 1;
// Allocate the interpreter and add it to the runtime state.
PyInterpreterState *interp;
PyStatus status;
PyInterpreterState *old_head = interpreters->head;
if (old_head == NULL) {
// We are creating the main interpreter.
assert(interpreters->main == NULL);
assert(id == 0);
interp = &runtime->_main_interpreter;
assert(interp->id == 0);
assert(interp->next == NULL);
interpreters->main = interp;
}
else {
assert(interpreters->main != NULL);
assert(id != 0);
interp = alloc_interpreter();
if (interp == NULL) {
status = _PyStatus_NO_MEMORY();
goto error;
}
// Set to _PyInterpreterState_INIT.
memcpy(interp, &initial._main_interpreter, sizeof(*interp));
if (id < 0) {
/* overflow or Py_Initialize() not called yet! */
status = _PyStatus_ERR("failed to get an interpreter ID");
goto error;
}
}
interpreters->head = interp;
status = init_interpreter(interp, runtime,
id, old_head);
if (_PyStatus_EXCEPTION(status)) {
goto error;
}
HEAD_UNLOCK(runtime);
assert(interp != NULL);
*pinterp = interp;
return _PyStatus_OK();
error:
HEAD_UNLOCK(runtime);
if (interp != NULL) {
free_interpreter(interp);
}
return status;
}
PyInterpreterState *
PyInterpreterState_New(void)
{
// tstate can be NULL
PyThreadState *tstate = current_fast_get();
PyInterpreterState *interp;
PyStatus status = _PyInterpreterState_New(tstate, &interp);
if (_PyStatus_EXCEPTION(status)) {
Py_ExitStatusException(status);
}
assert(interp != NULL);
return interp;
}
static void
interpreter_clear(PyInterpreterState *interp, PyThreadState *tstate)
{
assert(interp != NULL);
assert(tstate != NULL);
_PyRuntimeState *runtime = interp->runtime;
/* XXX Conditions we need to enforce:
* the GIL must be held by the current thread
* tstate must be the "current" thread state (current_fast_get())
* tstate->interp must be interp
* for the main interpreter, tstate must be the main thread
*/
// XXX Ideally, we would not rely on any thread state in this function
// (and we would drop the "tstate" argument).
if (_PySys_Audit(tstate, "cpython.PyInterpreterState_Clear", NULL) < 0) {
_PyErr_Clear(tstate);
}
// Clear the current/main thread state last.
HEAD_LOCK(runtime);
PyThreadState *p = interp->threads.head;
HEAD_UNLOCK(runtime);
while (p != NULL) {
// See https://github.com/python/cpython/issues/102126
// Must be called without HEAD_LOCK held as it can deadlock
// if any finalizer tries to acquire that lock.
PyThreadState_Clear(p);
HEAD_LOCK(runtime);
p = p->next;
HEAD_UNLOCK(runtime);
}
if (tstate->interp == interp) {
/* We fix tstate->_status below when we for sure aren't using it
(e.g. no longer need the GIL). */
// XXX Eliminate the need to do this.
tstate->_status.cleared = 0;
}
Py_CLEAR(interp->optimizer);
interp->optimizer = &_PyOptimizer_Default;
interp->optimizer_backedge_threshold = _PyOptimizer_Default.backedge_threshold;
interp->optimizer_resume_threshold = _PyOptimizer_Default.backedge_threshold;
/* It is possible that any of the objects below have a finalizer
that runs Python code or otherwise relies on a thread state
or even the interpreter state. For now we trust that isn't
a problem.
*/
// XXX Make sure we properly deal with problematic finalizers.
Py_CLEAR(interp->audit_hooks);
// At this time, all the threads should be cleared so we don't need
// atomic operations for eval_breaker
interp->ceval.eval_breaker = 0;
for (int i = 0; i < _PY_MONITORING_UNGROUPED_EVENTS; i++) {
interp->monitors.tools[i] = 0;
}
for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) {
for (int e = 0; e < _PY_MONITORING_EVENTS; e++) {
Py_CLEAR(interp->monitoring_callables[t][e]);
}
}
interp->sys_profile_initialized = false;
interp->sys_trace_initialized = false;
for (int t = 0; t < PY_MONITORING_TOOL_IDS; t++) {
Py_CLEAR(interp->monitoring_tool_names[t]);
}
PyConfig_Clear(&interp->config);
Py_CLEAR(interp->codec_search_path);
Py_CLEAR(interp->codec_search_cache);
Py_CLEAR(interp->codec_error_registry);
assert(interp->imports.modules == NULL);
assert(interp->imports.modules_by_index == NULL);
assert(interp->imports.importlib == NULL);
assert(interp->imports.import_func == NULL);
Py_CLEAR(interp->sysdict_copy);
Py_CLEAR(interp->builtins_copy);
Py_CLEAR(interp->dict);
#ifdef HAVE_FORK
Py_CLEAR(interp->before_forkers);
Py_CLEAR(interp->after_forkers_parent);
Py_CLEAR(interp->after_forkers_child);
#endif
_PyAST_Fini(interp);
_PyWarnings_Fini(interp);
_PyAtExit_Fini(interp);
// All Python types must be destroyed before the last GC collection. Python
// types create a reference cycle to themselves in their in their
// PyTypeObject.tp_mro member (the tuple contains the type).
/* Last garbage collection on this interpreter */
_PyGC_CollectNoFail(tstate);
_PyGC_Fini(interp);
/* We don't clear sysdict and builtins until the end of this function.
Because clearing other attributes can execute arbitrary Python code
which requires sysdict and builtins. */
PyDict_Clear(interp->sysdict);
PyDict_Clear(interp->builtins);
Py_CLEAR(interp->sysdict);
Py_CLEAR(interp->builtins);
if (tstate->interp == interp) {
/* We are now safe to fix tstate->_status.cleared. */
// XXX Do this (much) earlier?
tstate->_status.cleared = 1;
}
for (int i=0; i < DICT_MAX_WATCHERS; i++) {
interp->dict_state.watchers[i] = NULL;
}
for (int i=0; i < TYPE_MAX_WATCHERS; i++) {
interp->type_watchers[i] = NULL;
}
for (int i=0; i < FUNC_MAX_WATCHERS; i++) {
interp->func_watchers[i] = NULL;
}
interp->active_func_watchers = 0;
for (int i=0; i < CODE_MAX_WATCHERS; i++) {
interp->code_watchers[i] = NULL;
}
interp->active_code_watchers = 0;
// XXX Once we have one allocator per interpreter (i.e.
// per-interpreter GC) we must ensure that all of the interpreter's
// objects have been cleaned up at the point.
}
void
PyInterpreterState_Clear(PyInterpreterState *interp)
{
// Use the current Python thread state to call audit hooks and to collect
// garbage. It can be different than the current Python thread state
// of 'interp'.
PyThreadState *current_tstate = current_fast_get();
_PyImport_ClearCore(interp);
interpreter_clear(interp, current_tstate);
}
void
_PyInterpreterState_Clear(PyThreadState *tstate)
{
_PyImport_ClearCore(tstate->interp);
interpreter_clear(tstate->interp, tstate);
}
static inline void tstate_deactivate(PyThreadState *tstate);
static void tstate_set_detached(PyThreadState *tstate);
static void zapthreads(PyInterpreterState *interp);
void
PyInterpreterState_Delete(PyInterpreterState *interp)
{
_PyRuntimeState *runtime = interp->runtime;
struct pyinterpreters *interpreters = &runtime->interpreters;
// XXX Clearing the "current" thread state should happen before
// we start finalizing the interpreter (or the current thread state).
PyThreadState *tcur = current_fast_get();
if (tcur != NULL && interp == tcur->interp) {
/* Unset current thread. After this, many C API calls become crashy. */
_PyThreadState_Detach(tcur);
}
zapthreads(interp);
// XXX These two calls should be done at the end of clear_interpreter(),
// but currently some objects get decref'ed after that.
#ifdef Py_REF_DEBUG
_PyInterpreterState_FinalizeRefTotal(interp);
#endif
_PyInterpreterState_FinalizeAllocatedBlocks(interp);
HEAD_LOCK(runtime);
PyInterpreterState **p;
for (p = &interpreters->head; ; p = &(*p)->next) {
if (*p == NULL) {
Py_FatalError("NULL interpreter");
}
if (*p == interp) {
break;
}
}
if (interp->threads.head != NULL) {
Py_FatalError("remaining threads");
}
*p = interp->next;
if (interpreters->main == interp) {
interpreters->main = NULL;
if (interpreters->head != NULL) {
Py_FatalError("remaining subinterpreters");
}
}
HEAD_UNLOCK(runtime);
if (interp->id_mutex != NULL) {
PyThread_free_lock(interp->id_mutex);
}
_PyObject_FiniState(interp);
free_interpreter(interp);
}
#ifdef HAVE_FORK
/*
* Delete all interpreter states except the main interpreter. If there
* is a current interpreter state, it *must* be the main interpreter.
*/
PyStatus
_PyInterpreterState_DeleteExceptMain(_PyRuntimeState *runtime)
{
struct pyinterpreters *interpreters = &runtime->interpreters;
PyThreadState *tstate = _PyThreadState_Swap(runtime, NULL);
if (tstate != NULL && tstate->interp != interpreters->main) {
return _PyStatus_ERR("not main interpreter");
}
HEAD_LOCK(runtime);
PyInterpreterState *interp = interpreters->head;
interpreters->head = NULL;
while (interp != NULL) {
if (interp == interpreters->main) {
interpreters->main->next = NULL;
interpreters->head = interp;
interp = interp->next;
continue;
}
// XXX Won't this fail since PyInterpreterState_Clear() requires
// the "current" tstate to be set?
PyInterpreterState_Clear(interp); // XXX must activate?
zapthreads(interp);
if (interp->id_mutex != NULL) {
PyThread_free_lock(interp->id_mutex);
}
PyInterpreterState *prev_interp = interp;
interp = interp->next;
free_interpreter(prev_interp);
}
HEAD_UNLOCK(runtime);
if (interpreters->head == NULL) {
return _PyStatus_ERR("missing main interpreter");
}
_PyThreadState_Swap(runtime, tstate);
return _PyStatus_OK();
}
#endif
int
_PyInterpreterState_SetRunningMain(PyInterpreterState *interp)
{
if (_PyInterpreterState_FailIfRunningMain(interp) < 0) {
return -1;
}
PyThreadState *tstate = current_fast_get();
_Py_EnsureTstateNotNULL(tstate);
if (tstate->interp != interp) {
PyErr_SetString(PyExc_RuntimeError,
"current tstate has wrong interpreter");
return -1;
}
interp->threads.main = tstate;
return 0;
}
void
_PyInterpreterState_SetNotRunningMain(PyInterpreterState *interp)
{
PyThreadState *tstate = interp->threads.main;
assert(tstate == current_fast_get());
if (tstate->on_delete != NULL) {
// The threading module was imported for the first time in this
// thread, so it was set as threading._main_thread. (See gh-75698.)
// The thread has finished running the Python program so we mark
// the thread object as finished.
assert(tstate->_whence != _PyThreadState_WHENCE_THREADING);
tstate->on_delete(tstate->on_delete_data);
tstate->on_delete = NULL;
tstate->on_delete_data = NULL;
}
interp->threads.main = NULL;
}
int
_PyInterpreterState_IsRunningMain(PyInterpreterState *interp)
{
return (interp->threads.main != NULL);
}
int
_PyInterpreterState_FailIfRunningMain(PyInterpreterState *interp)
{
if (interp->threads.main != NULL) {
PyErr_SetString(PyExc_RuntimeError,
"interpreter already running");
return -1;
}
return 0;
}
//----------
// accessors
//----------
int64_t
PyInterpreterState_GetID(PyInterpreterState *interp)
{
if (interp == NULL) {
PyErr_SetString(PyExc_RuntimeError, "no interpreter provided");
return -1;
}
return interp->id;
}
int
_PyInterpreterState_IDInitref(PyInterpreterState *interp)
{
if (interp->id_mutex != NULL) {
return 0;
}
interp->id_mutex = PyThread_allocate_lock();
if (interp->id_mutex == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"failed to create init interpreter ID mutex");
return -1;
}
interp->id_refcount = 0;
return 0;
}
int
_PyInterpreterState_IDIncref(PyInterpreterState *interp)
{
if (_PyInterpreterState_IDInitref(interp) < 0) {
return -1;
}
PyThread_acquire_lock(interp->id_mutex, WAIT_LOCK);
interp->id_refcount += 1;
PyThread_release_lock(interp->id_mutex);
return 0;
}
void
_PyInterpreterState_IDDecref(PyInterpreterState *interp)
{
assert(interp->id_mutex != NULL);
_PyRuntimeState *runtime = interp->runtime;
PyThread_acquire_lock(interp->id_mutex, WAIT_LOCK);
assert(interp->id_refcount != 0);
interp->id_refcount -= 1;
int64_t refcount = interp->id_refcount;
PyThread_release_lock(interp->id_mutex);
if (refcount == 0 && interp->requires_idref) {
PyThreadState *tstate = _PyThreadState_New(interp,
_PyThreadState_WHENCE_INTERP);
_PyThreadState_Bind(tstate);
// XXX Possible GILState issues?
PyThreadState *save_tstate = _PyThreadState_Swap(runtime, tstate);
Py_EndInterpreter(tstate);
_PyThreadState_Swap(runtime, save_tstate);
}
}
int
_PyInterpreterState_RequiresIDRef(PyInterpreterState *interp)
{
return interp->requires_idref;
}
void
_PyInterpreterState_RequireIDRef(PyInterpreterState *interp, int required)
{
interp->requires_idref = required ? 1 : 0;
}
PyObject *
PyUnstable_InterpreterState_GetMainModule(PyInterpreterState *interp)
{
PyObject *modules = _PyImport_GetModules(interp);
if (modules == NULL) {
PyErr_SetString(PyExc_RuntimeError, "interpreter not initialized");
return NULL;
}
return PyMapping_GetItemString(modules, "__main__");
}
PyObject *
PyInterpreterState_GetDict(PyInterpreterState *interp)
{
if (interp->dict == NULL) {
interp->dict = PyDict_New();
if (interp->dict == NULL) {
PyErr_Clear();
}
}
/* Returning NULL means no per-interpreter dict is available. */
return interp->dict;
}
//-----------------------------
// look up an interpreter state
//-----------------------------
/* Return the interpreter associated with the current OS thread.
The GIL must be held.
*/
PyInterpreterState*
PyInterpreterState_Get(void)
{
PyThreadState *tstate = current_fast_get();
_Py_EnsureTstateNotNULL(tstate);
PyInterpreterState *interp = tstate->interp;
if (interp == NULL) {
Py_FatalError("no current interpreter");
}
return interp;
}
static PyInterpreterState *
interp_look_up_id(_PyRuntimeState *runtime, int64_t requested_id)
{
PyInterpreterState *interp = runtime->interpreters.head;
while (interp != NULL) {
int64_t id = PyInterpreterState_GetID(interp);
if (id < 0) {
return NULL;
}
if (requested_id == id) {
return interp;
}
interp = PyInterpreterState_Next(interp);
}
return NULL;
}
/* Return the interpreter state with the given ID.
Fail with RuntimeError if the interpreter is not found. */
PyInterpreterState *
_PyInterpreterState_LookUpID(int64_t requested_id)
{
PyInterpreterState *interp = NULL;
if (requested_id >= 0) {
_PyRuntimeState *runtime = &_PyRuntime;
HEAD_LOCK(runtime);
interp = interp_look_up_id(runtime, requested_id);
HEAD_UNLOCK(runtime);
}
if (interp == NULL && !PyErr_Occurred()) {
PyErr_Format(PyExc_InterpreterNotFoundError,
"unrecognized interpreter ID %lld", requested_id);
}
return interp;
}
/********************************/
/* the per-thread runtime state */
/********************************/
#ifndef NDEBUG
static inline int
tstate_is_alive(PyThreadState *tstate)
{
return (tstate->_status.initialized &&
!tstate->_status.finalized &&
!tstate->_status.cleared &&
!tstate->_status.finalizing);
}
#endif
//----------
// lifecycle
//----------
/* Minimum size of data stack chunk */
#define DATA_STACK_CHUNK_SIZE (16*1024)
static _PyStackChunk*
allocate_chunk(int size_in_bytes, _PyStackChunk* previous)
{
assert(size_in_bytes % sizeof(PyObject **) == 0);
_PyStackChunk *res = _PyObject_VirtualAlloc(size_in_bytes);
if (res == NULL) {
return NULL;
}
res->previous = previous;
res->size = size_in_bytes;
res->top = 0;
return res;
}
static _PyThreadStateImpl *
alloc_threadstate(void)
{
return PyMem_RawCalloc(1, sizeof(_PyThreadStateImpl));
}
static void
free_threadstate(_PyThreadStateImpl *tstate)
{
// The initial thread state of the interpreter is allocated
// as part of the interpreter state so should not be freed.
if (tstate == &tstate->base.interp->_initial_thread) {
// Restore to _PyThreadState_INIT.
memcpy(tstate,
&initial._main_interpreter._initial_thread,
sizeof(*tstate));
}
else {
PyMem_RawFree(tstate);
}
}
/* Get the thread state to a minimal consistent state.
Further init happens in pylifecycle.c before it can be used.
All fields not initialized here are expected to be zeroed out,
e.g. by PyMem_RawCalloc() or memset(), or otherwise pre-initialized.
The interpreter state is not manipulated. Instead it is assumed that
the thread is getting added to the interpreter.
*/
static void
init_threadstate(_PyThreadStateImpl *_tstate,
PyInterpreterState *interp, uint64_t id, int whence)
{
PyThreadState *tstate = (PyThreadState *)_tstate;
if (tstate->_status.initialized) {
Py_FatalError("thread state already initialized");
}
assert(interp != NULL);
tstate->interp = interp;
// next/prev are set in add_threadstate().
assert(tstate->next == NULL);
assert(tstate->prev == NULL);
assert(tstate->_whence == _PyThreadState_WHENCE_NOTSET);
assert(whence >= 0 && whence <= _PyThreadState_WHENCE_EXEC);
tstate->_whence = whence;
assert(id > 0);
tstate->id = id;
// thread_id and native_thread_id are set in bind_tstate().
tstate->py_recursion_limit = interp->ceval.recursion_limit,
tstate->py_recursion_remaining = interp->ceval.recursion_limit,
tstate->c_recursion_remaining = Py_C_RECURSION_LIMIT;
tstate->exc_info = &tstate->exc_state;
// PyGILState_Release must not try to delete this thread state.
// This is cleared when PyGILState_Ensure() creates the thread state.
tstate->gilstate_counter = 1;
tstate->current_frame = NULL;
tstate->datastack_chunk = NULL;
tstate->datastack_top = NULL;
tstate->datastack_limit = NULL;
tstate->what_event = -1;
if (interp->stoptheworld.requested || _PyRuntime.stoptheworld.requested) {
// Start in the suspended state if there is an ongoing stop-the-world.
tstate->state = _Py_THREAD_SUSPENDED;
}
tstate->_status.initialized = 1;
}
static void
add_threadstate(PyInterpreterState *interp, PyThreadState *tstate,
PyThreadState *next)
{
assert(interp->threads.head != tstate);
if (next != NULL) {
assert(next->prev == NULL || next->prev == tstate);
next->prev = tstate;
}
tstate->next = next;
assert(tstate->prev == NULL);
interp->threads.head = tstate;
}
static PyThreadState *
new_threadstate(PyInterpreterState *interp, int whence)
{
_PyThreadStateImpl *tstate;
_PyRuntimeState *runtime = interp->runtime;
// We don't need to allocate a thread state for the main interpreter
// (the common case), but doing it later for the other case revealed a
// reentrancy problem (deadlock). So for now we always allocate before
// taking the interpreters lock. See GH-96071.
_PyThreadStateImpl *new_tstate = alloc_threadstate();
int used_newtstate;
if (new_tstate == NULL) {
return NULL;
}
/* We serialize concurrent creation to protect global state. */
HEAD_LOCK(runtime);
interp->threads.next_unique_id += 1;
uint64_t id = interp->threads.next_unique_id;
// Allocate the thread state and add it to the interpreter.
PyThreadState *old_head = interp->threads.head;
if (old_head == NULL) {
// It's the interpreter's initial thread state.
used_newtstate = 0;
tstate = &interp->_initial_thread;
}
// XXX Re-use interp->_initial_thread if not in use?
else {
// Every valid interpreter must have at least one thread.
assert(id > 1);
assert(old_head->prev == NULL);
used_newtstate = 1;
tstate = new_tstate;
// Set to _PyThreadState_INIT.
memcpy(tstate,
&initial._main_interpreter._initial_thread,
sizeof(*tstate));
}
init_threadstate(tstate, interp, id, whence);
add_threadstate(interp, (PyThreadState *)tstate, old_head);
HEAD_UNLOCK(runtime);
if (!used_newtstate) {
// Must be called with lock unlocked to avoid re-entrancy deadlock.
PyMem_RawFree(new_tstate);
}
return (PyThreadState *)tstate;
}
PyThreadState *
PyThreadState_New(PyInterpreterState *interp)
{
PyThreadState *tstate = new_threadstate(interp,
_PyThreadState_WHENCE_UNKNOWN);
if (tstate) {
bind_tstate(tstate);
// This makes sure there's a gilstate tstate bound
// as soon as possible.
if (gilstate_tss_get(tstate->interp->runtime) == NULL) {
bind_gilstate_tstate(tstate);
}
}
return tstate;
}
// This must be followed by a call to _PyThreadState_Bind();
PyThreadState *
_PyThreadState_New(PyInterpreterState *interp, int whence)
{
return new_threadstate(interp, whence);
}
// We keep this for stable ABI compabibility.
PyAPI_FUNC(PyThreadState*)
_PyThreadState_Prealloc(PyInterpreterState *interp)
{
return _PyThreadState_New(interp, _PyThreadState_WHENCE_UNKNOWN);
}
// We keep this around for (accidental) stable ABI compatibility.
// Realistically, no extensions are using it.
PyAPI_FUNC(void)
_PyThreadState_Init(PyThreadState *tstate)
{
Py_FatalError("_PyThreadState_Init() is for internal use only");
}
static void
clear_datastack(PyThreadState *tstate)
{
_PyStackChunk *chunk = tstate->datastack_chunk;
tstate->datastack_chunk = NULL;
while (chunk != NULL) {
_PyStackChunk *prev = chunk->previous;
_PyObject_VirtualFree(chunk, chunk->size);
chunk = prev;
}
}
void
_Py_ClearFreeLists(_PyFreeListState *state, int is_finalization)
{
// In the free-threaded build, freelists are per-PyThreadState and cleared in PyThreadState_Clear()
// In the default build, freelists are per-interpreter and cleared in finalize_interp_types()
_PyFloat_ClearFreeList(state, is_finalization);
_PyTuple_ClearFreeList(state, is_finalization);
_PyList_ClearFreeList(state, is_finalization);
_PyDict_ClearFreeList(state, is_finalization);
_PyContext_ClearFreeList(state, is_finalization);
_PyAsyncGen_ClearFreeLists(state, is_finalization);
_PyObjectStackChunk_ClearFreeList(state, is_finalization);
}
void
PyThreadState_Clear(PyThreadState *tstate)
{
assert(tstate->_status.initialized && !tstate->_status.cleared);
assert(current_fast_get()->interp == tstate->interp);
// XXX assert(!tstate->_status.bound || tstate->_status.unbound);
tstate->_status.finalizing = 1; // just in case
/* XXX Conditions we need to enforce:
* the GIL must be held by the current thread
* current_fast_get()->interp must match tstate->interp
* for the main interpreter, current_fast_get() must be the main thread
*/
int verbose = _PyInterpreterState_GetConfig(tstate->interp)->verbose;
if (verbose && tstate->current_frame != NULL) {
/* bpo-20526: After the main thread calls
_PyInterpreterState_SetFinalizing() in Py_FinalizeEx()
(or in Py_EndInterpreter() for subinterpreters),
threads must exit when trying to take the GIL.
If a thread exit in the middle of _PyEval_EvalFrameDefault(),
tstate->frame is not reset to its previous value.
It is more likely with daemon threads, but it can happen
with regular threads if threading._shutdown() fails
(ex: interrupted by CTRL+C). */
fprintf(stderr,
"PyThreadState_Clear: warning: thread still has a frame\n");
}
/* At this point tstate shouldn't be used any more,
neither to run Python code nor for other uses.
This is tricky when current_fast_get() == tstate, in the same way
as noted in interpreter_clear() above. The below finalizers
can possibly run Python code or otherwise use the partially
cleared thread state. For now we trust that isn't a problem
in practice.
*/
// XXX Deal with the possibility of problematic finalizers.
/* Don't clear tstate->pyframe: it is a borrowed reference */
Py_CLEAR(tstate->dict);
Py_CLEAR(tstate->async_exc);
Py_CLEAR(tstate->current_exception);
Py_CLEAR(tstate->exc_state.exc_value);
/* The stack of exception states should contain just this thread. */
if (verbose && tstate->exc_info != &tstate->exc_state) {
fprintf(stderr,
"PyThreadState_Clear: warning: thread still has a generator\n");
}
if (tstate->c_profilefunc != NULL) {
tstate->interp->sys_profiling_threads--;
tstate->c_profilefunc = NULL;
}
if (tstate->c_tracefunc != NULL) {
tstate->interp->sys_tracing_threads--;
tstate->c_tracefunc = NULL;
}
Py_CLEAR(tstate->c_profileobj);
Py_CLEAR(tstate->c_traceobj);
Py_CLEAR(tstate->async_gen_firstiter);
Py_CLEAR(tstate->async_gen_finalizer);
Py_CLEAR(tstate->context);
if (tstate->on_delete != NULL) {
// For the "main" thread of each interpreter, this is meant
// to be done in _PyInterpreterState_SetNotRunningMain().
// That leaves threads created by the threading module,
// and any threads killed by forking.
// However, we also accommodate "main" threads that still
// don't call _PyInterpreterState_SetNotRunningMain() yet.
tstate->on_delete(tstate->on_delete_data);
}
#ifdef Py_GIL_DISABLED
// Each thread should clear own freelists in free-threading builds.
_PyFreeListState *freelist_state = &((_PyThreadStateImpl*)tstate)->freelist_state;
_Py_ClearFreeLists(freelist_state, 1);
_PySlice_ClearCache(freelist_state);
#endif
_PyThreadState_ClearMimallocHeaps(tstate);
tstate->_status.cleared = 1;
// XXX Call _PyThreadStateSwap(runtime, NULL) here if "current".
// XXX Do it as early in the function as possible.
}
static void
decrement_stoptheworld_countdown(struct _stoptheworld_state *stw);
/* Common code for PyThreadState_Delete() and PyThreadState_DeleteCurrent() */
static void
tstate_delete_common(PyThreadState *tstate)
{
assert(tstate->_status.cleared && !tstate->_status.finalized);
assert(tstate->state != _Py_THREAD_ATTACHED);
PyInterpreterState *interp = tstate->interp;
if (interp == NULL) {
Py_FatalError("NULL interpreter");
}
_PyRuntimeState *runtime = interp->runtime;
HEAD_LOCK(runtime);
if (tstate->prev) {
tstate->prev->next = tstate->next;
}
else {
interp->threads.head = tstate->next;
}
if (tstate->next) {
tstate->next->prev = tstate->prev;
}
if (tstate->state != _Py_THREAD_SUSPENDED) {
// Any ongoing stop-the-world request should not wait for us because
// our thread is getting deleted.
if (interp->stoptheworld.requested) {
decrement_stoptheworld_countdown(&interp->stoptheworld);
}
if (runtime->stoptheworld.requested) {
decrement_stoptheworld_countdown(&runtime->stoptheworld);
}
}
HEAD_UNLOCK(runtime);
// XXX Unbind in PyThreadState_Clear(), or earlier
// (and assert not-equal here)?
if (tstate->_status.bound_gilstate) {
unbind_gilstate_tstate(tstate);
}
unbind_tstate(tstate);
// XXX Move to PyThreadState_Clear()?
clear_datastack(tstate);
tstate->_status.finalized = 1;
}
static void
zapthreads(PyInterpreterState *interp)
{
PyThreadState *tstate;
/* No need to lock the mutex here because this should only happen
when the threads are all really dead (XXX famous last words). */
while ((tstate = interp->threads.head) != NULL) {
tstate_verify_not_active(tstate);
tstate_delete_common(tstate);
free_threadstate((_PyThreadStateImpl *)tstate);
}
}
void
PyThreadState_Delete(PyThreadState *tstate)
{
_Py_EnsureTstateNotNULL(tstate);
tstate_verify_not_active(tstate);
tstate_delete_common(tstate);
free_threadstate((_PyThreadStateImpl *)tstate);
}
void
_PyThreadState_DeleteCurrent(PyThreadState *tstate)
{
_Py_EnsureTstateNotNULL(tstate);
tstate_set_detached(tstate);
tstate_delete_common(tstate);
current_fast_clear(tstate->interp->runtime);
_PyEval_ReleaseLock(tstate->interp, NULL);
free_threadstate((_PyThreadStateImpl *)tstate);
}
void
PyThreadState_DeleteCurrent(void)
{
PyThreadState *tstate = current_fast_get();
_PyThreadState_DeleteCurrent(tstate);
}
/*
* Delete all thread states except the one passed as argument.
* Note that, if there is a current thread state, it *must* be the one
* passed as argument. Also, this won't touch any other interpreters
* than the current one, since we don't know which thread state should
* be kept in those other interpreters.
*/
void
_PyThreadState_DeleteExcept(PyThreadState *tstate)
{
assert(tstate != NULL);
PyInterpreterState *interp = tstate->interp;
_PyRuntimeState *runtime = interp->runtime;
HEAD_LOCK(runtime);
/* Remove all thread states, except tstate, from the linked list of
thread states. This will allow calling PyThreadState_Clear()
without holding the lock. */
PyThreadState *list = interp->threads.head;
if (list == tstate) {
list = tstate->next;
}
if (tstate->prev) {
tstate->prev->next = tstate->next;
}
if (tstate->next) {
tstate->next->prev = tstate->prev;
}
tstate->prev = tstate->next = NULL;
interp->threads.head = tstate;
HEAD_UNLOCK(runtime);
/* Clear and deallocate all stale thread states. Even if this
executes Python code, we should be safe since it executes
in the current thread, not one of the stale threads. */
PyThreadState *p, *next;
for (p = list; p; p = next) {
next = p->next;
PyThreadState_Clear(p);
free_threadstate((_PyThreadStateImpl *)p);
}
}
//----------
// accessors
//----------
/* An extension mechanism to store arbitrary additional per-thread state.
PyThreadState_GetDict() returns a dictionary that can be used to hold such
state; the caller should pick a unique key and store its state there. If
PyThreadState_GetDict() returns NULL, an exception has *not* been raised
and the caller should assume no per-thread state is available. */
PyObject *
_PyThreadState_GetDict(PyThreadState *tstate)
{
assert(tstate != NULL);
if (tstate->dict == NULL) {
tstate->dict = PyDict_New();
if (tstate->dict == NULL) {
_PyErr_Clear(tstate);
}
}
return tstate->dict;
}
PyObject *
PyThreadState_GetDict(void)
{
PyThreadState *tstate = current_fast_get();
if (tstate == NULL) {
return NULL;
}
return _PyThreadState_GetDict(tstate);
}
PyInterpreterState *
PyThreadState_GetInterpreter(PyThreadState *tstate)
{
assert(tstate != NULL);
return tstate->interp;
}
PyFrameObject*
PyThreadState_GetFrame(PyThreadState *tstate)
{
assert(tstate != NULL);
_PyInterpreterFrame *f = _PyThreadState_GetFrame(tstate);
if (f == NULL) {
return NULL;
}
PyFrameObject *frame = _PyFrame_GetFrameObject(f);
if (frame == NULL) {
PyErr_Clear();
}
return (PyFrameObject*)Py_XNewRef(frame);
}
uint64_t
PyThreadState_GetID(PyThreadState *tstate)
{
assert(tstate != NULL);
return tstate->id;
}
static inline void
tstate_activate(PyThreadState *tstate)
{
assert(tstate != NULL);
// XXX assert(tstate_is_alive(tstate));
assert(tstate_is_bound(tstate));
assert(!tstate->_status.active);
assert(!tstate->_status.bound_gilstate ||
tstate == gilstate_tss_get((tstate->interp->runtime)));
if (!tstate->_status.bound_gilstate) {
bind_gilstate_tstate(tstate);
}
tstate->_status.active = 1;
}
static inline void
tstate_deactivate(PyThreadState *tstate)
{
assert(tstate != NULL);
// XXX assert(tstate_is_alive(tstate));
assert(tstate_is_bound(tstate));
assert(tstate->_status.active);
tstate->_status.active = 0;
// We do not unbind the gilstate tstate here.
// It will still be used in PyGILState_Ensure().
}
static int
tstate_try_attach(PyThreadState *tstate)
{
#ifdef Py_GIL_DISABLED
int expected = _Py_THREAD_DETACHED;
return _Py_atomic_compare_exchange_int(&tstate->state,
&expected,
_Py_THREAD_ATTACHED);
#else
assert(tstate->state == _Py_THREAD_DETACHED);
tstate->state = _Py_THREAD_ATTACHED;
return 1;
#endif
}
static void
tstate_set_detached(PyThreadState *tstate)
{
assert(tstate->state == _Py_THREAD_ATTACHED);
#ifdef Py_GIL_DISABLED
_Py_atomic_store_int(&tstate->state, _Py_THREAD_DETACHED);
#else
tstate->state = _Py_THREAD_DETACHED;
#endif
}
static void
tstate_wait_attach(PyThreadState *tstate)
{
do {
int expected = _Py_THREAD_SUSPENDED;
// Wait until we're switched out of SUSPENDED to DETACHED.
_PyParkingLot_Park(&tstate->state, &expected, sizeof(tstate->state),
/*timeout=*/-1, NULL, /*detach=*/0);
// Once we're back in DETACHED we can re-attach
} while (!tstate_try_attach(tstate));
}
void
_PyThreadState_Attach(PyThreadState *tstate)
{
#if defined(Py_DEBUG)
// This is called from PyEval_RestoreThread(). Similar
// to it, we need to ensure errno doesn't change.
int err = errno;
#endif
_Py_EnsureTstateNotNULL(tstate);
if (current_fast_get() != NULL) {
Py_FatalError("non-NULL old thread state");
}
_PyEval_AcquireLock(tstate);
// XXX assert(tstate_is_alive(tstate));
current_fast_set(&_PyRuntime, tstate);
tstate_activate(tstate);
if (!tstate_try_attach(tstate)) {
tstate_wait_attach(tstate);
}
// Resume previous critical section. This acquires the lock(s) from the
// top-most critical section.
if (tstate->critical_section != 0) {
_PyCriticalSection_Resume(tstate);
}
#if defined(Py_DEBUG)
errno = err;
#endif
}
static void
detach_thread(PyThreadState *tstate, int detached_state)
{
// XXX assert(tstate_is_alive(tstate) && tstate_is_bound(tstate));
assert(tstate->state == _Py_THREAD_ATTACHED);
assert(tstate == current_fast_get());
if (tstate->critical_section != 0) {
_PyCriticalSection_SuspendAll(tstate);
}
tstate_deactivate(tstate);
tstate_set_detached(tstate);
current_fast_clear(&_PyRuntime);
_PyEval_ReleaseLock(tstate->interp, tstate);
}
void
_PyThreadState_Detach(PyThreadState *tstate)
{
detach_thread(tstate, _Py_THREAD_DETACHED);
}
void
_PyThreadState_Suspend(PyThreadState *tstate)
{
_PyRuntimeState *runtime = &_PyRuntime;
assert(tstate->state == _Py_THREAD_ATTACHED);
struct _stoptheworld_state *stw = NULL;
HEAD_LOCK(runtime);
if (runtime->stoptheworld.requested) {
stw = &runtime->stoptheworld;
}
else if (tstate->interp->stoptheworld.requested) {
stw = &tstate->interp->stoptheworld;
}
HEAD_UNLOCK(runtime);
if (stw == NULL) {
// Switch directly to "detached" if there is no active stop-the-world
// request.
detach_thread(tstate, _Py_THREAD_DETACHED);
return;
}
// Switch to "suspended" state.
detach_thread(tstate, _Py_THREAD_SUSPENDED);
// Decrease the count of remaining threads needing to park.
HEAD_LOCK(runtime);
decrement_stoptheworld_countdown(stw);
HEAD_UNLOCK(runtime);
}
// Decrease stop-the-world counter of remaining number of threads that need to
// pause. If we are the final thread to pause, notify the requesting thread.
static void
decrement_stoptheworld_countdown(struct _stoptheworld_state *stw)
{
assert(stw->thread_countdown > 0);
if (--stw->thread_countdown == 0) {
_PyEvent_Notify(&stw->stop_event);
}
}
#ifdef Py_GIL_DISABLED
// Interpreter for _Py_FOR_EACH_THREAD(). For global stop-the-world events,
// we start with the first interpreter and then iterate over all interpreters.
// For per-interpreter stop-the-world events, we only operate on the one
// interpreter.
static PyInterpreterState *
interp_for_stop_the_world(struct _stoptheworld_state *stw)
{
return (stw->is_global
? PyInterpreterState_Head()
: _Py_CONTAINER_OF(stw, PyInterpreterState, stoptheworld));
}
// Loops over threads for a stop-the-world event.
// For global: all threads in all interpreters
// For per-interpreter: all threads in the interpreter
#define _Py_FOR_EACH_THREAD(stw, i, t) \
for (i = interp_for_stop_the_world((stw)); \
i != NULL; i = ((stw->is_global) ? i->next : NULL)) \
for (t = i->threads.head; t; t = t->next)
// Try to transition threads atomically from the "detached" state to the
// "gc stopped" state. Returns true if all threads are in the "gc stopped"
static bool
park_detached_threads(struct _stoptheworld_state *stw)
{
int num_parked = 0;
PyInterpreterState *i;
PyThreadState *t;
_Py_FOR_EACH_THREAD(stw, i, t) {
int state = _Py_atomic_load_int_relaxed(&t->state);
if (state == _Py_THREAD_DETACHED) {
// Atomically transition to "suspended" if in "detached" state.
if (_Py_atomic_compare_exchange_int(&t->state,
&state, _Py_THREAD_SUSPENDED)) {
num_parked++;
}
}
else if (state == _Py_THREAD_ATTACHED && t != stw->requester) {
// TODO: set this per-thread, rather than per-interpreter.
_Py_set_eval_breaker_bit(t->interp, _PY_EVAL_PLEASE_STOP_BIT, 1);
}
}
stw->thread_countdown -= num_parked;
assert(stw->thread_countdown >= 0);
return num_parked > 0 && stw->thread_countdown == 0;
}
static void
stop_the_world(struct _stoptheworld_state *stw)
{
_PyRuntimeState *runtime = &_PyRuntime;
PyMutex_Lock(&stw->mutex);
if (stw->is_global) {
_PyRWMutex_Lock(&runtime->stoptheworld_mutex);
}
else {
_PyRWMutex_RLock(&runtime->stoptheworld_mutex);
}
HEAD_LOCK(runtime);
stw->requested = 1;
stw->thread_countdown = 0;
stw->stop_event = (PyEvent){0}; // zero-initialize (unset)
stw->requester = _PyThreadState_GET(); // may be NULL
PyInterpreterState *i;
PyThreadState *t;
_Py_FOR_EACH_THREAD(stw, i, t) {
if (t != stw->requester) {
// Count all the other threads (we don't wait on ourself).
stw->thread_countdown++;
}
}
if (stw->thread_countdown == 0) {
HEAD_UNLOCK(runtime);
stw->world_stopped = 1;
return;
}
for (;;) {
// Switch threads that are detached to the GC stopped state
bool stopped_all_threads = park_detached_threads(stw);
HEAD_UNLOCK(runtime);
if (stopped_all_threads) {
break;
}
_PyTime_t wait_ns = 1000*1000; // 1ms (arbitrary, may need tuning)
if (PyEvent_WaitTimed(&stw->stop_event, wait_ns)) {
assert(stw->thread_countdown == 0);
break;
}
HEAD_LOCK(runtime);
}
stw->world_stopped = 1;
}
static void
start_the_world(struct _stoptheworld_state *stw)
{
_PyRuntimeState *runtime = &_PyRuntime;
assert(PyMutex_IsLocked(&stw->mutex));
HEAD_LOCK(runtime);
stw->requested = 0;
stw->world_stopped = 0;
// Switch threads back to the detached state.
PyInterpreterState *i;
PyThreadState *t;
_Py_FOR_EACH_THREAD(stw, i, t) {
if (t != stw->requester) {
assert(t->state == _Py_THREAD_SUSPENDED);
_Py_atomic_store_int(&t->state, _Py_THREAD_DETACHED);
_PyParkingLot_UnparkAll(&t->state);
}
}
stw->requester = NULL;
HEAD_UNLOCK(runtime);
if (stw->is_global) {
_PyRWMutex_Unlock(&runtime->stoptheworld_mutex);
}
else {
_PyRWMutex_RUnlock(&runtime->stoptheworld_mutex);
}
PyMutex_Unlock(&stw->mutex);
}
#endif // Py_GIL_DISABLED
void
_PyEval_StopTheWorldAll(_PyRuntimeState *runtime)
{
#ifdef Py_GIL_DISABLED
stop_the_world(&runtime->stoptheworld);
#endif
}
void
_PyEval_StartTheWorldAll(_PyRuntimeState *runtime)
{
#ifdef Py_GIL_DISABLED
start_the_world(&runtime->stoptheworld);
#endif
}
void
_PyEval_StopTheWorld(PyInterpreterState *interp)
{
#ifdef Py_GIL_DISABLED
stop_the_world(&interp->stoptheworld);
#endif
}
void
_PyEval_StartTheWorld(PyInterpreterState *interp)
{
#ifdef Py_GIL_DISABLED
start_the_world(&interp->stoptheworld);
#endif
}
//----------
// other API
//----------
/* Asynchronously raise an exception in a thread.
Requested by Just van Rossum and Alex Martelli.
To prevent naive misuse, you must write your own extension
to call this, or use ctypes. Must be called with the GIL held.
Returns the number of tstates modified (normally 1, but 0 if `id` didn't
match any known thread id). Can be called with exc=NULL to clear an
existing async exception. This raises no exceptions. */
// XXX Move this to Python/ceval_gil.c?
// XXX Deprecate this.
int
PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)
{
_PyRuntimeState *runtime = &_PyRuntime;
PyInterpreterState *interp = _PyInterpreterState_GET();
/* Although the GIL is held, a few C API functions can be called
* without the GIL held, and in particular some that create and
* destroy thread and interpreter states. Those can mutate the
* list of thread states we're traversing, so to prevent that we lock
* head_mutex for the duration.
*/
HEAD_LOCK(runtime);
for (PyThreadState *tstate = interp->threads.head; tstate != NULL; tstate = tstate->next) {
if (tstate->thread_id != id) {
continue;
}
/* Tricky: we need to decref the current value
* (if any) in tstate->async_exc, but that can in turn
* allow arbitrary Python code to run, including
* perhaps calls to this function. To prevent
* deadlock, we need to release head_mutex before
* the decref.
*/
PyObject *old_exc = tstate->async_exc;
tstate->async_exc = Py_XNewRef(exc);
HEAD_UNLOCK(runtime);
Py_XDECREF(old_exc);
_PyEval_SignalAsyncExc(tstate->interp);
return 1;
}
HEAD_UNLOCK(runtime);
return 0;
}
//---------------------------------
// API for the current thread state
//---------------------------------
PyThreadState *
PyThreadState_GetUnchecked(void)
{
return current_fast_get();
}
PyThreadState *
PyThreadState_Get(void)
{
PyThreadState *tstate = current_fast_get();
_Py_EnsureTstateNotNULL(tstate);
return tstate;
}
PyThreadState *
_PyThreadState_Swap(_PyRuntimeState *runtime, PyThreadState *newts)
{
PyThreadState *oldts = current_fast_get();
if (oldts != NULL) {
_PyThreadState_Detach(oldts);
}
if (newts != NULL) {
_PyThreadState_Attach(newts);
}
return oldts;
}
PyThreadState *
PyThreadState_Swap(PyThreadState *newts)
{
return _PyThreadState_Swap(&_PyRuntime, newts);
}
void
_PyThreadState_Bind(PyThreadState *tstate)
{
// gh-104690: If Python is being finalized and PyInterpreterState_Delete()
// was called, tstate becomes a dangling pointer.
assert(_PyThreadState_CheckConsistency(tstate));
bind_tstate(tstate);
// This makes sure there's a gilstate tstate bound
// as soon as possible.
if (gilstate_tss_get(tstate->interp->runtime) == NULL) {
bind_gilstate_tstate(tstate);
}
}
#if defined(Py_GIL_DISABLED) && !defined(Py_LIMITED_API)
uintptr_t
_Py_GetThreadLocal_Addr(void)
{
#ifdef HAVE_THREAD_LOCAL
// gh-112535: Use the address of the thread-local PyThreadState variable as
// a unique identifier for the current thread. Each thread has a unique
// _Py_tss_tstate variable with a unique address.
return (uintptr_t)&_Py_tss_tstate;
#else
# error "no supported thread-local variable storage classifier"
#endif
}
#endif
/***********************************/
/* routines for advanced debuggers */
/***********************************/
// (requested by David Beazley)
// Don't use unless you know what you are doing!
PyInterpreterState *
PyInterpreterState_Head(void)
{
return _PyRuntime.interpreters.head;
}
PyInterpreterState *
PyInterpreterState_Main(void)
{
return _PyInterpreterState_Main();
}
PyInterpreterState *
PyInterpreterState_Next(PyInterpreterState *interp) {
return interp->next;
}
PyThreadState *
PyInterpreterState_ThreadHead(PyInterpreterState *interp) {
return interp->threads.head;
}
PyThreadState *
PyThreadState_Next(PyThreadState *tstate) {
return tstate->next;
}
/********************************************/
/* reporting execution state of all threads */
/********************************************/
/* The implementation of sys._current_frames(). This is intended to be
called with the GIL held, as it will be when called via
sys._current_frames(). It's possible it would work fine even without
the GIL held, but haven't thought enough about that.
*/
PyObject *
_PyThread_CurrentFrames(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
PyThreadState *tstate = current_fast_get();
if (_PySys_Audit(tstate, "sys._current_frames", NULL) < 0) {
return NULL;
}
PyObject *result = PyDict_New();
if (result == NULL) {
return NULL;
}
/* for i in all interpreters:
* for t in all of i's thread states:
* if t's frame isn't NULL, map t's id to its frame
* Because these lists can mutate even when the GIL is held, we
* need to grab head_mutex for the duration.
*/
HEAD_LOCK(runtime);
PyInterpreterState *i;
for (i = runtime->interpreters.head; i != NULL; i = i->next) {
PyThreadState *t;
for (t = i->threads.head; t != NULL; t = t->next) {
_PyInterpreterFrame *frame = t->current_frame;
frame = _PyFrame_GetFirstComplete(frame);
if (frame == NULL) {
continue;
}
PyObject *id = PyLong_FromUnsignedLong(t->thread_id);
if (id == NULL) {
goto fail;
}
PyObject *frameobj = (PyObject *)_PyFrame_GetFrameObject(frame);
if (frameobj == NULL) {
Py_DECREF(id);
goto fail;
}
int stat = PyDict_SetItem(result, id, frameobj);
Py_DECREF(id);
if (stat < 0) {
goto fail;
}
}
}
goto done;
fail:
Py_CLEAR(result);
done:
HEAD_UNLOCK(runtime);
return result;
}
/* The implementation of sys._current_exceptions(). This is intended to be
called with the GIL held, as it will be when called via
sys._current_exceptions(). It's possible it would work fine even without
the GIL held, but haven't thought enough about that.
*/
PyObject *
_PyThread_CurrentExceptions(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
PyThreadState *tstate = current_fast_get();
_Py_EnsureTstateNotNULL(tstate);
if (_PySys_Audit(tstate, "sys._current_exceptions", NULL) < 0) {
return NULL;
}
PyObject *result = PyDict_New();
if (result == NULL) {
return NULL;
}
/* for i in all interpreters:
* for t in all of i's thread states:
* if t's frame isn't NULL, map t's id to its frame
* Because these lists can mutate even when the GIL is held, we
* need to grab head_mutex for the duration.
*/
HEAD_LOCK(runtime);
PyInterpreterState *i;
for (i = runtime->interpreters.head; i != NULL; i = i->next) {
PyThreadState *t;
for (t = i->threads.head; t != NULL; t = t->next) {
_PyErr_StackItem *err_info = _PyErr_GetTopmostException(t);
if (err_info == NULL) {
continue;
}
PyObject *id = PyLong_FromUnsignedLong(t->thread_id);
if (id == NULL) {
goto fail;
}
PyObject *exc = err_info->exc_value;
assert(exc == NULL ||
exc == Py_None ||
PyExceptionInstance_Check(exc));
int stat = PyDict_SetItem(result, id, exc == NULL ? Py_None : exc);
Py_DECREF(id);
if (stat < 0) {
goto fail;
}
}
}
goto done;
fail:
Py_CLEAR(result);
done:
HEAD_UNLOCK(runtime);
return result;
}
/***********************************/
/* Python "auto thread state" API. */
/***********************************/
/* Internal initialization/finalization functions called by
Py_Initialize/Py_FinalizeEx
*/
PyStatus
_PyGILState_Init(PyInterpreterState *interp)
{
if (!_Py_IsMainInterpreter(interp)) {
/* Currently, PyGILState is shared by all interpreters. The main
* interpreter is responsible to initialize it. */
return _PyStatus_OK();
}
_PyRuntimeState *runtime = interp->runtime;
assert(gilstate_tss_get(runtime) == NULL);
assert(runtime->gilstate.autoInterpreterState == NULL);
runtime->gilstate.autoInterpreterState = interp;
return _PyStatus_OK();
}
void
_PyGILState_Fini(PyInterpreterState *interp)
{
if (!_Py_IsMainInterpreter(interp)) {
/* Currently, PyGILState is shared by all interpreters. The main
* interpreter is responsible to initialize it. */
return;
}
interp->runtime->gilstate.autoInterpreterState = NULL;
}
// XXX Drop this.
void
_PyGILState_SetTstate(PyThreadState *tstate)
{
/* must init with valid states */
assert(tstate != NULL);
assert(tstate->interp != NULL);
if (!_Py_IsMainInterpreter(tstate->interp)) {
/* Currently, PyGILState is shared by all interpreters. The main
* interpreter is responsible to initialize it. */
return;
}
#ifndef NDEBUG
_PyRuntimeState *runtime = tstate->interp->runtime;
assert(runtime->gilstate.autoInterpreterState == tstate->interp);
assert(gilstate_tss_get(runtime) == tstate);
assert(tstate->gilstate_counter == 1);
#endif
}
PyInterpreterState *
_PyGILState_GetInterpreterStateUnsafe(void)
{
return _PyRuntime.gilstate.autoInterpreterState;
}
/* The public functions */
PyThreadState *
PyGILState_GetThisThreadState(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
if (!gilstate_tss_initialized(runtime)) {
return NULL;
}
return gilstate_tss_get(runtime);
}
int
PyGILState_Check(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
if (!runtime->gilstate.check_enabled) {
return 1;
}
if (!gilstate_tss_initialized(runtime)) {
return 1;
}
PyThreadState *tstate = current_fast_get();
if (tstate == NULL) {
return 0;
}
#ifdef MS_WINDOWS
int err = GetLastError();
#endif
PyThreadState *tcur = gilstate_tss_get(runtime);
#ifdef MS_WINDOWS
SetLastError(err);
#endif
return (tstate == tcur);
}
PyGILState_STATE
PyGILState_Ensure(void)
{
_PyRuntimeState *runtime = &_PyRuntime;
/* Note that we do not auto-init Python here - apart from
potential races with 2 threads auto-initializing, pep-311
spells out other issues. Embedders are expected to have
called Py_Initialize(). */
/* Ensure that _PyEval_InitThreads() and _PyGILState_Init() have been
called by Py_Initialize() */
assert(_PyEval_ThreadsInitialized());
assert(gilstate_tss_initialized(runtime));
assert(runtime->gilstate.autoInterpreterState != NULL);
PyThreadState *tcur = gilstate_tss_get(runtime);
int has_gil;
if (tcur == NULL) {
/* Create a new Python thread state for this thread */
// XXX Use PyInterpreterState_EnsureThreadState()?
tcur = new_threadstate(runtime->gilstate.autoInterpreterState,
_PyThreadState_WHENCE_GILSTATE);
if (tcur == NULL) {
Py_FatalError("Couldn't create thread-state for new thread");
}
bind_tstate(tcur);
bind_gilstate_tstate(tcur);
/* This is our thread state! We'll need to delete it in the
matching call to PyGILState_Release(). */
assert(tcur->gilstate_counter == 1);
tcur->gilstate_counter = 0;
has_gil = 0; /* new thread state is never current */
}
else {
has_gil = holds_gil(tcur);
}
if (!has_gil) {
PyEval_RestoreThread(tcur);
}
/* Update our counter in the thread-state - no need for locks:
- tcur will remain valid as we hold the GIL.
- the counter is safe as we are the only thread "allowed"
to modify this value
*/
++tcur->gilstate_counter;
return has_gil ? PyGILState_LOCKED : PyGILState_UNLOCKED;
}
void
PyGILState_Release(PyGILState_STATE oldstate)
{
_PyRuntimeState *runtime = &_PyRuntime;
PyThreadState *tstate = gilstate_tss_get(runtime);
if (tstate == NULL) {
Py_FatalError("auto-releasing thread-state, "
"but no thread-state for this thread");
}
/* We must hold the GIL and have our thread state current */
/* XXX - remove the check - the assert should be fine,
but while this is very new (April 2003), the extra check
by release-only users can't hurt.
*/
if (!holds_gil(tstate)) {
_Py_FatalErrorFormat(__func__,
"thread state %p must be current when releasing",
tstate);
}
assert(holds_gil(tstate));
--tstate->gilstate_counter;
assert(tstate->gilstate_counter >= 0); /* illegal counter value */
/* If we're going to destroy this thread-state, we must
* clear it while the GIL is held, as destructors may run.
*/
if (tstate->gilstate_counter == 0) {
/* can't have been locked when we created it */
assert(oldstate == PyGILState_UNLOCKED);
// XXX Unbind tstate here.
PyThreadState_Clear(tstate);
/* Delete the thread-state. Note this releases the GIL too!
* It's vital that the GIL be held here, to avoid shutdown
* races; see bugs 225673 and 1061968 (that nasty bug has a
* habit of coming back).
*/
assert(current_fast_get() == tstate);
_PyThreadState_DeleteCurrent(tstate);
}
/* Release the lock if necessary */
else if (oldstate == PyGILState_UNLOCKED) {
PyEval_SaveThread();
}
}
/*************/
/* Other API */
/*************/
_PyFrameEvalFunction
_PyInterpreterState_GetEvalFrameFunc(PyInterpreterState *interp)
{
if (interp->eval_frame == NULL) {
return _PyEval_EvalFrameDefault;
}
return interp->eval_frame;
}
void
_PyInterpreterState_SetEvalFrameFunc(PyInterpreterState *interp,
_PyFrameEvalFunction eval_frame)
{
if (eval_frame == _PyEval_EvalFrameDefault) {
eval_frame = NULL;
}
if (eval_frame == interp->eval_frame) {
return;
}
if (eval_frame != NULL) {
_Py_Executors_InvalidateAll(interp);
}
RARE_EVENT_INC(set_eval_frame_func);
interp->eval_frame = eval_frame;
}
const PyConfig*
_PyInterpreterState_GetConfig(PyInterpreterState *interp)
{
return &interp->config;
}
int
_PyInterpreterState_GetConfigCopy(PyConfig *config)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
PyStatus status = _PyConfig_Copy(config, &interp->config);
if (PyStatus_Exception(status)) {
_PyErr_SetFromPyStatus(status);
return -1;
}
return 0;
}
const PyConfig*
_Py_GetConfig(void)
{
assert(PyGILState_Check());
PyThreadState *tstate = current_fast_get();
_Py_EnsureTstateNotNULL(tstate);
return _PyInterpreterState_GetConfig(tstate->interp);
}
int
_PyInterpreterState_HasFeature(PyInterpreterState *interp, unsigned long feature)
{
return ((interp->feature_flags & feature) != 0);
}
#define MINIMUM_OVERHEAD 1000
static PyObject **
push_chunk(PyThreadState *tstate, int size)
{
int allocate_size = DATA_STACK_CHUNK_SIZE;
while (allocate_size < (int)sizeof(PyObject*)*(size + MINIMUM_OVERHEAD)) {
allocate_size *= 2;
}
_PyStackChunk *new = allocate_chunk(allocate_size, tstate->datastack_chunk);
if (new == NULL) {
return NULL;
}
if (tstate->datastack_chunk) {
tstate->datastack_chunk->top = tstate->datastack_top -
&tstate->datastack_chunk->data[0];
}
tstate->datastack_chunk = new;
tstate->datastack_limit = (PyObject **)(((char *)new) + allocate_size);
// When new is the "root" chunk (i.e. new->previous == NULL), we can keep
// _PyThreadState_PopFrame from freeing it later by "skipping" over the
// first element:
PyObject **res = &new->data[new->previous == NULL];
tstate->datastack_top = res + size;
return res;
}
_PyInterpreterFrame *
_PyThreadState_PushFrame(PyThreadState *tstate, size_t size)
{
assert(size < INT_MAX/sizeof(PyObject *));
if (_PyThreadState_HasStackSpace(tstate, (int)size)) {
_PyInterpreterFrame *res = (_PyInterpreterFrame *)tstate->datastack_top;
tstate->datastack_top += size;
return res;
}
return (_PyInterpreterFrame *)push_chunk(tstate, (int)size);
}
void
_PyThreadState_PopFrame(PyThreadState *tstate, _PyInterpreterFrame * frame)
{
assert(tstate->datastack_chunk);
PyObject **base = (PyObject **)frame;
if (base == &tstate->datastack_chunk->data[0]) {
_PyStackChunk *chunk = tstate->datastack_chunk;
_PyStackChunk *previous = chunk->previous;
// push_chunk ensures that the root chunk is never popped:
assert(previous);
tstate->datastack_top = &previous->data[previous->top];
tstate->datastack_chunk = previous;
_PyObject_VirtualFree(chunk, chunk->size);
tstate->datastack_limit = (PyObject **)(((char *)previous) + previous->size);
}
else {
assert(tstate->datastack_top);
assert(tstate->datastack_top >= base);
tstate->datastack_top = base;
}
}
#ifndef NDEBUG
// Check that a Python thread state valid. In practice, this function is used
// on a Python debug build to check if 'tstate' is a dangling pointer, if the
// PyThreadState memory has been freed.
//
// Usage:
//
// assert(_PyThreadState_CheckConsistency(tstate));
int
_PyThreadState_CheckConsistency(PyThreadState *tstate)
{
assert(!_PyMem_IsPtrFreed(tstate));
assert(!_PyMem_IsPtrFreed(tstate->interp));
return 1;
}
#endif
// Check if a Python thread must exit immediately, rather than taking the GIL
// if Py_Finalize() has been called.
//
// When this function is called by a daemon thread after Py_Finalize() has been
// called, the GIL does no longer exist.
//
// tstate can be a dangling pointer (point to freed memory): only tstate value
// is used, the pointer is not deferenced.
//
// tstate must be non-NULL.
int
_PyThreadState_MustExit(PyThreadState *tstate)
{
/* bpo-39877: Access _PyRuntime directly rather than using
tstate->interp->runtime to support calls from Python daemon threads.
After Py_Finalize() has been called, tstate can be a dangling pointer:
point to PyThreadState freed memory. */
unsigned long finalizing_id = _PyRuntimeState_GetFinalizingID(&_PyRuntime);
PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime);
if (finalizing == NULL) {
// XXX This isn't completely safe from daemon thraeds,
// since tstate might be a dangling pointer.
finalizing = _PyInterpreterState_GetFinalizing(tstate->interp);
finalizing_id = _PyInterpreterState_GetFinalizingID(tstate->interp);
}
// XXX else check &_PyRuntime._main_interpreter._initial_thread
if (finalizing == NULL) {
return 0;
}
else if (finalizing == tstate) {
return 0;
}
else if (finalizing_id == PyThread_get_thread_ident()) {
/* gh-109793: we must have switched interpreters. */
return 0;
}
return 1;
}
/********************/
/* mimalloc support */
/********************/
static void
tstate_mimalloc_bind(PyThreadState *tstate)
{
#ifdef Py_GIL_DISABLED
struct _mimalloc_thread_state *mts = &((_PyThreadStateImpl*)tstate)->mimalloc;
// Initialize the mimalloc thread state. This must be called from the
// same thread that will use the thread state. The "mem" heap doubles as
// the "backing" heap.
mi_tld_t *tld = &mts->tld;
_mi_tld_init(tld, &mts->heaps[_Py_MIMALLOC_HEAP_MEM]);
// Exiting threads push any remaining in-use segments to the abandoned
// pool to be re-claimed later by other threads. We use per-interpreter
// pools to keep Python objects from different interpreters separate.
tld->segments.abandoned = &tstate->interp->mimalloc.abandoned_pool;
// Initialize each heap
for (uint8_t i = 0; i < _Py_MIMALLOC_HEAP_COUNT; i++) {
_mi_heap_init_ex(&mts->heaps[i], tld, _mi_arena_id_none(), false, i);
}
// By default, object allocations use _Py_MIMALLOC_HEAP_OBJECT.
// _PyObject_GC_New() and similar functions temporarily override this to
// use one of the GC heaps.
mts->current_object_heap = &mts->heaps[_Py_MIMALLOC_HEAP_OBJECT];
#endif
}
void
_PyThreadState_ClearMimallocHeaps(PyThreadState *tstate)
{
#ifdef Py_GIL_DISABLED
if (!tstate->_status.bound) {
// The mimalloc heaps are only initialized when the thread is bound.
return;
}
_PyThreadStateImpl *tstate_impl = (_PyThreadStateImpl *)tstate;
for (Py_ssize_t i = 0; i < _Py_MIMALLOC_HEAP_COUNT; i++) {
// Abandon all segments in use by this thread. This pushes them to
// a shared pool to later be reclaimed by other threads. It's important
// to do this before the thread state is destroyed so that objects
// remain visible to the GC.
_mi_heap_collect_abandon(&tstate_impl->mimalloc.heaps[i]);
}
#endif
}