mirror of https://github.com/python/cpython
499 lines
13 KiB
C
499 lines
13 KiB
C
/* Math module -- standard C math library functions, pi and e */
|
|
|
|
#include "Python.h"
|
|
#include "longintrepr.h" /* just for SHIFT */
|
|
|
|
#ifndef _MSC_VER
|
|
#ifndef __STDC__
|
|
extern double fmod (double, double);
|
|
extern double frexp (double, int *);
|
|
extern double ldexp (double, int);
|
|
extern double modf (double, double *);
|
|
#endif /* __STDC__ */
|
|
#endif /* _MSC_VER */
|
|
|
|
#ifdef _OSF_SOURCE
|
|
/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
|
|
extern double copysign(double, double);
|
|
#endif
|
|
|
|
/* Call is_error when errno != 0, and where x is the result libm
|
|
* returned. is_error will usually set up an exception and return
|
|
* true (1), but may return false (0) without setting up an exception.
|
|
*/
|
|
static int
|
|
is_error(double x)
|
|
{
|
|
int result = 1; /* presumption of guilt */
|
|
assert(errno); /* non-zero errno is a precondition for calling */
|
|
if (errno == EDOM)
|
|
PyErr_SetString(PyExc_ValueError, "math domain error");
|
|
|
|
else if (errno == ERANGE) {
|
|
/* ANSI C generally requires libm functions to set ERANGE
|
|
* on overflow, but also generally *allows* them to set
|
|
* ERANGE on underflow too. There's no consistency about
|
|
* the latter across platforms.
|
|
* Alas, C99 never requires that errno be set.
|
|
* Here we suppress the underflow errors (libm functions
|
|
* should return a zero on underflow, and +- HUGE_VAL on
|
|
* overflow, so testing the result for zero suffices to
|
|
* distinguish the cases).
|
|
*/
|
|
if (x)
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"math range error");
|
|
else
|
|
result = 0;
|
|
}
|
|
else
|
|
/* Unexpected math error */
|
|
PyErr_SetFromErrno(PyExc_ValueError);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
math_1_to_whatever(PyObject *arg, double (*func) (double),
|
|
PyObject *(*from_double_func) (double))
|
|
{
|
|
double x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
errno = 0;
|
|
PyFPE_START_PROTECT("in math_1", return 0)
|
|
x = (*func)(x);
|
|
PyFPE_END_PROTECT(x)
|
|
Py_SET_ERRNO_ON_MATH_ERROR(x);
|
|
if (errno && is_error(x))
|
|
return NULL;
|
|
else
|
|
return (*from_double_func)(x);
|
|
}
|
|
|
|
static PyObject *
|
|
math_1(PyObject *arg, double (*func) (double))
|
|
{
|
|
return math_1_to_whatever(arg, func, PyFloat_FromDouble);
|
|
}
|
|
|
|
static PyObject *
|
|
math_1_to_int(PyObject *arg, double (*func) (double))
|
|
{
|
|
return math_1_to_whatever(arg, func, PyLong_FromDouble);
|
|
}
|
|
|
|
static PyObject *
|
|
math_2(PyObject *args, double (*func) (double, double), char *funcname)
|
|
{
|
|
PyObject *ox, *oy;
|
|
double x, y;
|
|
if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
|
|
return NULL;
|
|
x = PyFloat_AsDouble(ox);
|
|
y = PyFloat_AsDouble(oy);
|
|
if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
|
|
return NULL;
|
|
errno = 0;
|
|
PyFPE_START_PROTECT("in math_2", return 0)
|
|
x = (*func)(x, y);
|
|
PyFPE_END_PROTECT(x)
|
|
Py_SET_ERRNO_ON_MATH_ERROR(x);
|
|
if (errno && is_error(x))
|
|
return NULL;
|
|
else
|
|
return PyFloat_FromDouble(x);
|
|
}
|
|
|
|
#define FUNC1(funcname, func, docstring) \
|
|
static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
|
|
return math_1(args, func); \
|
|
}\
|
|
PyDoc_STRVAR(math_##funcname##_doc, docstring);
|
|
|
|
#define FUNC2(funcname, func, docstring) \
|
|
static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
|
|
return math_2(args, func, #funcname); \
|
|
}\
|
|
PyDoc_STRVAR(math_##funcname##_doc, docstring);
|
|
|
|
FUNC1(acos, acos,
|
|
"acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
|
|
FUNC1(asin, asin,
|
|
"asin(x)\n\nReturn the arc sine (measured in radians) of x.")
|
|
FUNC1(atan, atan,
|
|
"atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
|
|
FUNC2(atan2, atan2,
|
|
"atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
|
|
"Unlike atan(y/x), the signs of both x and y are considered.")
|
|
|
|
static PyObject * math_ceil(PyObject *self, PyObject *number) {
|
|
static PyObject *ceil_str = NULL;
|
|
PyObject *method;
|
|
|
|
if (ceil_str == NULL) {
|
|
ceil_str = PyUnicode_InternFromString("__ceil__");
|
|
if (ceil_str == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
method = _PyType_Lookup(Py_TYPE(number), ceil_str);
|
|
if (method == NULL)
|
|
return math_1_to_int(number, ceil);
|
|
else
|
|
return PyObject_CallFunction(method, "O", number);
|
|
}
|
|
|
|
PyDoc_STRVAR(math_ceil_doc,
|
|
"ceil(x)\n\nReturn the ceiling of x as an int.\n"
|
|
"This is the smallest integral value >= x.");
|
|
|
|
FUNC1(cos, cos,
|
|
"cos(x)\n\nReturn the cosine of x (measured in radians).")
|
|
FUNC1(cosh, cosh,
|
|
"cosh(x)\n\nReturn the hyperbolic cosine of x.")
|
|
|
|
#ifdef MS_WINDOWS
|
|
# define copysign _copysign
|
|
# define HAVE_COPYSIGN 1
|
|
#endif
|
|
#ifdef HAVE_COPYSIGN
|
|
FUNC2(copysign, copysign,
|
|
"copysign(x,y)\n\nReturn x with the sign of y.");
|
|
#endif
|
|
|
|
FUNC1(exp, exp,
|
|
"exp(x)\n\nReturn e raised to the power of x.")
|
|
FUNC1(fabs, fabs,
|
|
"fabs(x)\n\nReturn the absolute value of the float x.")
|
|
|
|
static PyObject * math_floor(PyObject *self, PyObject *number) {
|
|
static PyObject *floor_str = NULL;
|
|
PyObject *method;
|
|
|
|
if (floor_str == NULL) {
|
|
floor_str = PyUnicode_InternFromString("__floor__");
|
|
if (floor_str == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
method = _PyType_Lookup(Py_TYPE(number), floor_str);
|
|
if (method == NULL)
|
|
return math_1_to_int(number, floor);
|
|
else
|
|
return PyObject_CallFunction(method, "O", number);
|
|
}
|
|
|
|
PyDoc_STRVAR(math_floor_doc,
|
|
"floor(x)\n\nReturn the floor of x as an int.\n"
|
|
"This is the largest integral value <= x.");
|
|
|
|
FUNC2(fmod, fmod,
|
|
"fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
|
|
" x % y may differ.")
|
|
FUNC2(hypot, hypot,
|
|
"hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).")
|
|
FUNC2(pow, pow,
|
|
"pow(x,y)\n\nReturn x**y (x to the power of y).")
|
|
FUNC1(sin, sin,
|
|
"sin(x)\n\nReturn the sine of x (measured in radians).")
|
|
FUNC1(sinh, sinh,
|
|
"sinh(x)\n\nReturn the hyperbolic sine of x.")
|
|
FUNC1(sqrt, sqrt,
|
|
"sqrt(x)\n\nReturn the square root of x.")
|
|
FUNC1(tan, tan,
|
|
"tan(x)\n\nReturn the tangent of x (measured in radians).")
|
|
FUNC1(tanh, tanh,
|
|
"tanh(x)\n\nReturn the hyperbolic tangent of x.")
|
|
|
|
static PyObject *
|
|
math_trunc(PyObject *self, PyObject *number)
|
|
{
|
|
static PyObject *trunc_str = NULL;
|
|
PyObject *trunc;
|
|
|
|
if (Py_TYPE(number)->tp_dict == NULL) {
|
|
if (PyType_Ready(Py_TYPE(number)) < 0)
|
|
return NULL;
|
|
}
|
|
|
|
if (trunc_str == NULL) {
|
|
trunc_str = PyUnicode_InternFromString("__trunc__");
|
|
if (trunc_str == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
trunc = _PyType_Lookup(Py_TYPE(number), trunc_str);
|
|
if (trunc == NULL) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"type %.100s doesn't define __trunc__ method",
|
|
Py_TYPE(number)->tp_name);
|
|
return NULL;
|
|
}
|
|
return PyObject_CallFunctionObjArgs(trunc, number, NULL);
|
|
}
|
|
|
|
PyDoc_STRVAR(math_trunc_doc,
|
|
"trunc(x:Real) -> Integral\n"
|
|
"\n"
|
|
"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
|
|
|
|
static PyObject *
|
|
math_frexp(PyObject *self, PyObject *arg)
|
|
{
|
|
int i;
|
|
double x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
errno = 0;
|
|
x = frexp(x, &i);
|
|
Py_SET_ERRNO_ON_MATH_ERROR(x);
|
|
if (errno && is_error(x))
|
|
return NULL;
|
|
else
|
|
return Py_BuildValue("(di)", x, i);
|
|
}
|
|
|
|
PyDoc_STRVAR(math_frexp_doc,
|
|
"frexp(x)\n"
|
|
"\n"
|
|
"Return the mantissa and exponent of x, as pair (m, e).\n"
|
|
"m is a float and e is an int, such that x = m * 2.**e.\n"
|
|
"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
|
|
|
|
static PyObject *
|
|
math_ldexp(PyObject *self, PyObject *args)
|
|
{
|
|
double x;
|
|
int exp;
|
|
if (! PyArg_ParseTuple(args, "di:ldexp", &x, &exp))
|
|
return NULL;
|
|
errno = 0;
|
|
PyFPE_START_PROTECT("ldexp", return 0)
|
|
x = ldexp(x, exp);
|
|
PyFPE_END_PROTECT(x)
|
|
Py_SET_ERRNO_ON_MATH_ERROR(x);
|
|
if (errno && is_error(x))
|
|
return NULL;
|
|
else
|
|
return PyFloat_FromDouble(x);
|
|
}
|
|
|
|
PyDoc_STRVAR(math_ldexp_doc,
|
|
"ldexp(x, i) -> x * (2**i)");
|
|
|
|
static PyObject *
|
|
math_modf(PyObject *self, PyObject *arg)
|
|
{
|
|
double y, x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
errno = 0;
|
|
x = modf(x, &y);
|
|
Py_SET_ERRNO_ON_MATH_ERROR(x);
|
|
if (errno && is_error(x))
|
|
return NULL;
|
|
else
|
|
return Py_BuildValue("(dd)", x, y);
|
|
}
|
|
|
|
PyDoc_STRVAR(math_modf_doc,
|
|
"modf(x)\n"
|
|
"\n"
|
|
"Return the fractional and integer parts of x. Both results carry the sign\n"
|
|
"of x. The integer part is returned as a real.");
|
|
|
|
/* A decent logarithm is easy to compute even for huge longs, but libm can't
|
|
do that by itself -- loghelper can. func is log or log10, and name is
|
|
"log" or "log10". Note that overflow isn't possible: a long can contain
|
|
no more than INT_MAX * SHIFT bits, so has value certainly less than
|
|
2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
|
|
small enough to fit in an IEEE single. log and log10 are even smaller.
|
|
*/
|
|
|
|
static PyObject*
|
|
loghelper(PyObject* arg, double (*func)(double), char *funcname)
|
|
{
|
|
/* If it is long, do it ourselves. */
|
|
if (PyLong_Check(arg)) {
|
|
double x;
|
|
int e;
|
|
x = _PyLong_AsScaledDouble(arg, &e);
|
|
if (x <= 0.0) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"math domain error");
|
|
return NULL;
|
|
}
|
|
/* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
|
|
log(x) + log(2) * e * PyLong_SHIFT.
|
|
CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
|
|
so force use of double. */
|
|
x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
|
|
return PyFloat_FromDouble(x);
|
|
}
|
|
|
|
/* Else let libm handle it by itself. */
|
|
return math_1(arg, func);
|
|
}
|
|
|
|
static PyObject *
|
|
math_log(PyObject *self, PyObject *args)
|
|
{
|
|
PyObject *arg;
|
|
PyObject *base = NULL;
|
|
PyObject *num, *den;
|
|
PyObject *ans;
|
|
|
|
if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
|
|
return NULL;
|
|
|
|
num = loghelper(arg, log, "log");
|
|
if (num == NULL || base == NULL)
|
|
return num;
|
|
|
|
den = loghelper(base, log, "log");
|
|
if (den == NULL) {
|
|
Py_DECREF(num);
|
|
return NULL;
|
|
}
|
|
|
|
ans = PyNumber_TrueDivide(num, den);
|
|
Py_DECREF(num);
|
|
Py_DECREF(den);
|
|
return ans;
|
|
}
|
|
|
|
PyDoc_STRVAR(math_log_doc,
|
|
"log(x[, base]) -> the logarithm of x to the given base.\n\
|
|
If the base not specified, returns the natural logarithm (base e) of x.");
|
|
|
|
static PyObject *
|
|
math_log10(PyObject *self, PyObject *arg)
|
|
{
|
|
return loghelper(arg, log10, "log10");
|
|
}
|
|
|
|
PyDoc_STRVAR(math_log10_doc,
|
|
"log10(x) -> the base 10 logarithm of x.");
|
|
|
|
static const double degToRad = Py_MATH_PI / 180.0;
|
|
static const double radToDeg = 180.0 / Py_MATH_PI;
|
|
|
|
static PyObject *
|
|
math_degrees(PyObject *self, PyObject *arg)
|
|
{
|
|
double x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
return PyFloat_FromDouble(x * radToDeg);
|
|
}
|
|
|
|
PyDoc_STRVAR(math_degrees_doc,
|
|
"degrees(x) -> converts angle x from radians to degrees");
|
|
|
|
static PyObject *
|
|
math_radians(PyObject *self, PyObject *arg)
|
|
{
|
|
double x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
return PyFloat_FromDouble(x * degToRad);
|
|
}
|
|
|
|
PyDoc_STRVAR(math_radians_doc,
|
|
"radians(x) -> converts angle x from degrees to radians");
|
|
|
|
static PyObject *
|
|
math_isnan(PyObject *self, PyObject *arg)
|
|
{
|
|
double x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
return PyBool_FromLong((long)Py_IS_NAN(x));
|
|
}
|
|
|
|
PyDoc_STRVAR(math_isnan_doc,
|
|
"isnan(x) -> bool\n\
|
|
Checks if float x is not a number (NaN)");
|
|
|
|
static PyObject *
|
|
math_isinf(PyObject *self, PyObject *arg)
|
|
{
|
|
double x = PyFloat_AsDouble(arg);
|
|
if (x == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
return PyBool_FromLong((long)Py_IS_INFINITY(x));
|
|
}
|
|
|
|
PyDoc_STRVAR(math_isinf_doc,
|
|
"isinf(x) -> bool\n\
|
|
Checks if float x is infinite (positive or negative)");
|
|
|
|
|
|
static PyMethodDef math_methods[] = {
|
|
{"acos", math_acos, METH_O, math_acos_doc},
|
|
{"asin", math_asin, METH_O, math_asin_doc},
|
|
{"atan", math_atan, METH_O, math_atan_doc},
|
|
{"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
|
|
{"ceil", math_ceil, METH_O, math_ceil_doc},
|
|
#ifdef HAVE_COPYSIGN
|
|
{"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
|
|
#endif
|
|
{"cos", math_cos, METH_O, math_cos_doc},
|
|
{"cosh", math_cosh, METH_O, math_cosh_doc},
|
|
{"degrees", math_degrees, METH_O, math_degrees_doc},
|
|
{"exp", math_exp, METH_O, math_exp_doc},
|
|
{"fabs", math_fabs, METH_O, math_fabs_doc},
|
|
{"floor", math_floor, METH_O, math_floor_doc},
|
|
{"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
|
|
{"frexp", math_frexp, METH_O, math_frexp_doc},
|
|
{"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
|
|
{"isinf", math_isinf, METH_O, math_isinf_doc},
|
|
{"isnan", math_isnan, METH_O, math_isnan_doc},
|
|
{"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
|
|
{"log", math_log, METH_VARARGS, math_log_doc},
|
|
{"log10", math_log10, METH_O, math_log10_doc},
|
|
{"modf", math_modf, METH_O, math_modf_doc},
|
|
{"pow", math_pow, METH_VARARGS, math_pow_doc},
|
|
{"radians", math_radians, METH_O, math_radians_doc},
|
|
{"sin", math_sin, METH_O, math_sin_doc},
|
|
{"sinh", math_sinh, METH_O, math_sinh_doc},
|
|
{"sqrt", math_sqrt, METH_O, math_sqrt_doc},
|
|
{"tan", math_tan, METH_O, math_tan_doc},
|
|
{"tanh", math_tanh, METH_O, math_tanh_doc},
|
|
{"trunc", math_trunc, METH_O, math_trunc_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
|
|
PyDoc_STRVAR(module_doc,
|
|
"This module is always available. It provides access to the\n"
|
|
"mathematical functions defined by the C standard.");
|
|
|
|
PyMODINIT_FUNC
|
|
initmath(void)
|
|
{
|
|
PyObject *m, *d, *v;
|
|
|
|
m = Py_InitModule3("math", math_methods, module_doc);
|
|
if (m == NULL)
|
|
goto finally;
|
|
d = PyModule_GetDict(m);
|
|
if (d == NULL)
|
|
goto finally;
|
|
|
|
if (!(v = PyFloat_FromDouble(Py_MATH_PI)))
|
|
goto finally;
|
|
if (PyDict_SetItemString(d, "pi", v) < 0)
|
|
goto finally;
|
|
Py_DECREF(v);
|
|
|
|
if (!(v = PyFloat_FromDouble(Py_MATH_E)))
|
|
goto finally;
|
|
if (PyDict_SetItemString(d, "e", v) < 0)
|
|
goto finally;
|
|
Py_DECREF(v);
|
|
|
|
finally:
|
|
return;
|
|
}
|