mirror of https://github.com/python/cpython
281 lines
7.9 KiB
C
281 lines
7.9 KiB
C
/* Bisection algorithms. Drop in replacement for bisect.py
|
|
|
|
Converted to C by Dmitry Vasiliev (dima at hlabs.spb.ru).
|
|
*/
|
|
|
|
#define PY_SSIZE_T_CLEAN
|
|
#include "Python.h"
|
|
|
|
_Py_IDENTIFIER(insert);
|
|
|
|
static inline Py_ssize_t
|
|
internal_bisect_right(PyObject *list, PyObject *item, Py_ssize_t lo, Py_ssize_t hi)
|
|
{
|
|
PyObject *litem;
|
|
Py_ssize_t mid;
|
|
int res;
|
|
|
|
if (lo < 0) {
|
|
PyErr_SetString(PyExc_ValueError, "lo must be non-negative");
|
|
return -1;
|
|
}
|
|
if (hi == -1) {
|
|
hi = PySequence_Size(list);
|
|
if (hi < 0)
|
|
return -1;
|
|
}
|
|
while (lo < hi) {
|
|
/* The (size_t)cast ensures that the addition and subsequent division
|
|
are performed as unsigned operations, avoiding difficulties from
|
|
signed overflow. (See issue 13496.) */
|
|
mid = ((size_t)lo + hi) / 2;
|
|
litem = PySequence_GetItem(list, mid);
|
|
if (litem == NULL)
|
|
return -1;
|
|
res = PyObject_RichCompareBool(item, litem, Py_LT);
|
|
Py_DECREF(litem);
|
|
if (res < 0)
|
|
return -1;
|
|
if (res)
|
|
hi = mid;
|
|
else
|
|
lo = mid + 1;
|
|
}
|
|
return lo;
|
|
}
|
|
|
|
static PyObject *
|
|
bisect_right(PyObject *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *list, *item;
|
|
Py_ssize_t lo = 0;
|
|
Py_ssize_t hi = -1;
|
|
Py_ssize_t index;
|
|
static char *keywords[] = {"a", "x", "lo", "hi", NULL};
|
|
|
|
if (kw == NULL && PyTuple_GET_SIZE(args) == 2) {
|
|
list = PyTuple_GET_ITEM(args, 0);
|
|
item = PyTuple_GET_ITEM(args, 1);
|
|
}
|
|
else {
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|nn:bisect_right",
|
|
keywords, &list, &item, &lo, &hi))
|
|
return NULL;
|
|
}
|
|
index = internal_bisect_right(list, item, lo, hi);
|
|
if (index < 0)
|
|
return NULL;
|
|
return PyLong_FromSsize_t(index);
|
|
}
|
|
|
|
PyDoc_STRVAR(bisect_right_doc,
|
|
"bisect_right(a, x[, lo[, hi]]) -> index\n\
|
|
\n\
|
|
Return the index where to insert item x in list a, assuming a is sorted.\n\
|
|
\n\
|
|
The return value i is such that all e in a[:i] have e <= x, and all e in\n\
|
|
a[i:] have e > x. So if x already appears in the list, i points just\n\
|
|
beyond the rightmost x already there\n\
|
|
\n\
|
|
Optional args lo (default 0) and hi (default len(a)) bound the\n\
|
|
slice of a to be searched.\n");
|
|
|
|
static PyObject *
|
|
insort_right(PyObject *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *list, *item, *result;
|
|
Py_ssize_t lo = 0;
|
|
Py_ssize_t hi = -1;
|
|
Py_ssize_t index;
|
|
static char *keywords[] = {"a", "x", "lo", "hi", NULL};
|
|
|
|
if (kw == NULL && PyTuple_GET_SIZE(args) == 2) {
|
|
list = PyTuple_GET_ITEM(args, 0);
|
|
item = PyTuple_GET_ITEM(args, 1);
|
|
}
|
|
else {
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|nn:insort_right",
|
|
keywords, &list, &item, &lo, &hi))
|
|
return NULL;
|
|
}
|
|
index = internal_bisect_right(list, item, lo, hi);
|
|
if (index < 0)
|
|
return NULL;
|
|
if (PyList_CheckExact(list)) {
|
|
if (PyList_Insert(list, index, item) < 0)
|
|
return NULL;
|
|
}
|
|
else {
|
|
result = _PyObject_CallMethodId(list, &PyId_insert, "nO", index, item);
|
|
if (result == NULL)
|
|
return NULL;
|
|
Py_DECREF(result);
|
|
}
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(insort_right_doc,
|
|
"insort_right(a, x[, lo[, hi]])\n\
|
|
\n\
|
|
Insert item x in list a, and keep it sorted assuming a is sorted.\n\
|
|
\n\
|
|
If x is already in a, insert it to the right of the rightmost x.\n\
|
|
\n\
|
|
Optional args lo (default 0) and hi (default len(a)) bound the\n\
|
|
slice of a to be searched.\n");
|
|
|
|
static inline Py_ssize_t
|
|
internal_bisect_left(PyObject *list, PyObject *item, Py_ssize_t lo, Py_ssize_t hi)
|
|
{
|
|
PyObject *litem;
|
|
Py_ssize_t mid;
|
|
int res;
|
|
|
|
if (lo < 0) {
|
|
PyErr_SetString(PyExc_ValueError, "lo must be non-negative");
|
|
return -1;
|
|
}
|
|
if (hi == -1) {
|
|
hi = PySequence_Size(list);
|
|
if (hi < 0)
|
|
return -1;
|
|
}
|
|
while (lo < hi) {
|
|
/* The (size_t)cast ensures that the addition and subsequent division
|
|
are performed as unsigned operations, avoiding difficulties from
|
|
signed overflow. (See issue 13496.) */
|
|
mid = ((size_t)lo + hi) / 2;
|
|
litem = PySequence_GetItem(list, mid);
|
|
if (litem == NULL)
|
|
return -1;
|
|
res = PyObject_RichCompareBool(litem, item, Py_LT);
|
|
Py_DECREF(litem);
|
|
if (res < 0)
|
|
return -1;
|
|
if (res)
|
|
lo = mid + 1;
|
|
else
|
|
hi = mid;
|
|
}
|
|
return lo;
|
|
}
|
|
|
|
static PyObject *
|
|
bisect_left(PyObject *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *list, *item;
|
|
Py_ssize_t lo = 0;
|
|
Py_ssize_t hi = -1;
|
|
Py_ssize_t index;
|
|
static char *keywords[] = {"a", "x", "lo", "hi", NULL};
|
|
|
|
if (kw == NULL && PyTuple_GET_SIZE(args) == 2) {
|
|
list = PyTuple_GET_ITEM(args, 0);
|
|
item = PyTuple_GET_ITEM(args, 1);
|
|
}
|
|
else {
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|nn:bisect_left",
|
|
keywords, &list, &item, &lo, &hi))
|
|
return NULL;
|
|
}
|
|
index = internal_bisect_left(list, item, lo, hi);
|
|
if (index < 0)
|
|
return NULL;
|
|
return PyLong_FromSsize_t(index);
|
|
}
|
|
|
|
PyDoc_STRVAR(bisect_left_doc,
|
|
"bisect_left(a, x[, lo[, hi]]) -> index\n\
|
|
\n\
|
|
Return the index where to insert item x in list a, assuming a is sorted.\n\
|
|
\n\
|
|
The return value i is such that all e in a[:i] have e < x, and all e in\n\
|
|
a[i:] have e >= x. So if x already appears in the list, i points just\n\
|
|
before the leftmost x already there.\n\
|
|
\n\
|
|
Optional args lo (default 0) and hi (default len(a)) bound the\n\
|
|
slice of a to be searched.\n");
|
|
|
|
static PyObject *
|
|
insort_left(PyObject *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *list, *item, *result;
|
|
Py_ssize_t lo = 0;
|
|
Py_ssize_t hi = -1;
|
|
Py_ssize_t index;
|
|
static char *keywords[] = {"a", "x", "lo", "hi", NULL};
|
|
|
|
if (kw == NULL && PyTuple_GET_SIZE(args) == 2) {
|
|
list = PyTuple_GET_ITEM(args, 0);
|
|
item = PyTuple_GET_ITEM(args, 1);
|
|
} else {
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "OO|nn:insort_left",
|
|
keywords, &list, &item, &lo, &hi))
|
|
return NULL;
|
|
}
|
|
index = internal_bisect_left(list, item, lo, hi);
|
|
if (index < 0)
|
|
return NULL;
|
|
if (PyList_CheckExact(list)) {
|
|
if (PyList_Insert(list, index, item) < 0)
|
|
return NULL;
|
|
} else {
|
|
result = _PyObject_CallMethodId(list, &PyId_insert, "nO", index, item);
|
|
if (result == NULL)
|
|
return NULL;
|
|
Py_DECREF(result);
|
|
}
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(insort_left_doc,
|
|
"insort_left(a, x[, lo[, hi]])\n\
|
|
\n\
|
|
Insert item x in list a, and keep it sorted assuming a is sorted.\n\
|
|
\n\
|
|
If x is already in a, insert it to the left of the leftmost x.\n\
|
|
\n\
|
|
Optional args lo (default 0) and hi (default len(a)) bound the\n\
|
|
slice of a to be searched.\n");
|
|
|
|
static PyMethodDef bisect_methods[] = {
|
|
{"bisect_right", (PyCFunction)bisect_right,
|
|
METH_VARARGS|METH_KEYWORDS, bisect_right_doc},
|
|
{"insort_right", (PyCFunction)insort_right,
|
|
METH_VARARGS|METH_KEYWORDS, insort_right_doc},
|
|
{"bisect_left", (PyCFunction)bisect_left,
|
|
METH_VARARGS|METH_KEYWORDS, bisect_left_doc},
|
|
{"insort_left", (PyCFunction)insort_left,
|
|
METH_VARARGS|METH_KEYWORDS, insort_left_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyDoc_STRVAR(module_doc,
|
|
"Bisection algorithms.\n\
|
|
\n\
|
|
This module provides support for maintaining a list in sorted order without\n\
|
|
having to sort the list after each insertion. For long lists of items with\n\
|
|
expensive comparison operations, this can be an improvement over the more\n\
|
|
common approach.\n");
|
|
|
|
|
|
static struct PyModuleDef _bisectmodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"_bisect",
|
|
module_doc,
|
|
-1,
|
|
bisect_methods,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit__bisect(void)
|
|
{
|
|
return PyModule_Create(&_bisectmodule);
|
|
}
|