mirror of https://github.com/python/cpython
299 lines
14 KiB
C
299 lines
14 KiB
C
/* ----------------------------------------------------------------------------
|
|
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
|
|
This is free software; you can redistribute it and/or modify it under the
|
|
terms of the MIT license. A copy of the license can be found in the file
|
|
"LICENSE" at the root of this distribution.
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
#include "mimalloc.h"
|
|
#include "mimalloc/internal.h"
|
|
#include "mimalloc/prim.h" // mi_prim_get_default_heap
|
|
|
|
#include <string.h> // memset
|
|
|
|
// ------------------------------------------------------
|
|
// Aligned Allocation
|
|
// ------------------------------------------------------
|
|
|
|
// Fallback primitive aligned allocation -- split out for better codegen
|
|
static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
|
|
{
|
|
mi_assert_internal(size <= PTRDIFF_MAX);
|
|
mi_assert_internal(alignment != 0 && _mi_is_power_of_two(alignment));
|
|
|
|
const uintptr_t align_mask = alignment - 1; // for any x, `(x & align_mask) == (x % alignment)`
|
|
const size_t padsize = size + MI_PADDING_SIZE;
|
|
|
|
// use regular allocation if it is guaranteed to fit the alignment constraints
|
|
if (offset==0 && alignment<=padsize && padsize<=MI_MAX_ALIGN_GUARANTEE && (padsize&align_mask)==0) {
|
|
void* p = _mi_heap_malloc_zero(heap, size, zero);
|
|
mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0);
|
|
return p;
|
|
}
|
|
|
|
void* p;
|
|
size_t oversize;
|
|
if mi_unlikely(alignment > MI_ALIGNMENT_MAX) {
|
|
// use OS allocation for very large alignment and allocate inside a huge page (dedicated segment with 1 page)
|
|
// This can support alignments >= MI_SEGMENT_SIZE by ensuring the object can be aligned at a point in the
|
|
// first (and single) page such that the segment info is `MI_SEGMENT_SIZE` bytes before it (so it can be found by aligning the pointer down)
|
|
if mi_unlikely(offset != 0) {
|
|
// todo: cannot support offset alignment for very large alignments yet
|
|
#if MI_DEBUG > 0
|
|
_mi_error_message(EOVERFLOW, "aligned allocation with a very large alignment cannot be used with an alignment offset (size %zu, alignment %zu, offset %zu)\n", size, alignment, offset);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
oversize = (size <= MI_SMALL_SIZE_MAX ? MI_SMALL_SIZE_MAX + 1 /* ensure we use generic malloc path */ : size);
|
|
p = _mi_heap_malloc_zero_ex(heap, oversize, false, alignment); // the page block size should be large enough to align in the single huge page block
|
|
// zero afterwards as only the area from the aligned_p may be committed!
|
|
if (p == NULL) return NULL;
|
|
}
|
|
else {
|
|
// otherwise over-allocate
|
|
oversize = size + alignment - 1;
|
|
p = _mi_heap_malloc_zero(heap, oversize, zero);
|
|
if (p == NULL) return NULL;
|
|
}
|
|
|
|
// .. and align within the allocation
|
|
const uintptr_t poffset = ((uintptr_t)p + offset) & align_mask;
|
|
const uintptr_t adjust = (poffset == 0 ? 0 : alignment - poffset);
|
|
mi_assert_internal(adjust < alignment);
|
|
void* aligned_p = (void*)((uintptr_t)p + adjust);
|
|
if (aligned_p != p) {
|
|
mi_page_t* page = _mi_ptr_page(p);
|
|
mi_page_set_has_aligned(page, true);
|
|
_mi_padding_shrink(page, (mi_block_t*)p, adjust + size);
|
|
}
|
|
// todo: expand padding if overallocated ?
|
|
|
|
mi_assert_internal(mi_page_usable_block_size(_mi_ptr_page(p)) >= adjust + size);
|
|
mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p), _mi_ptr_page(aligned_p), aligned_p));
|
|
mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0);
|
|
mi_assert_internal(mi_usable_size(aligned_p)>=size);
|
|
mi_assert_internal(mi_usable_size(p) == mi_usable_size(aligned_p)+adjust);
|
|
|
|
// now zero the block if needed
|
|
if (alignment > MI_ALIGNMENT_MAX) {
|
|
// for the tracker, on huge aligned allocations only from the start of the large block is defined
|
|
mi_track_mem_undefined(aligned_p, size);
|
|
if (zero) {
|
|
_mi_memzero_aligned(aligned_p, mi_usable_size(aligned_p));
|
|
}
|
|
}
|
|
|
|
if (p != aligned_p) {
|
|
mi_track_align(p,aligned_p,adjust,mi_usable_size(aligned_p));
|
|
}
|
|
return aligned_p;
|
|
}
|
|
|
|
// Primitive aligned allocation
|
|
static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
|
|
{
|
|
// note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size.
|
|
if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) { // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>)
|
|
#if MI_DEBUG > 0
|
|
_mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
if mi_unlikely(size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
|
|
#if MI_DEBUG > 0
|
|
_mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)`
|
|
const size_t padsize = size + MI_PADDING_SIZE; // note: cannot overflow due to earlier size > PTRDIFF_MAX check
|
|
|
|
// try first if there happens to be a small block available with just the right alignment
|
|
if mi_likely(padsize <= MI_SMALL_SIZE_MAX && alignment <= padsize) {
|
|
mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize);
|
|
const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0;
|
|
if mi_likely(page->free != NULL && is_aligned)
|
|
{
|
|
#if MI_STAT>1
|
|
mi_heap_stat_increase(heap, malloc, size);
|
|
#endif
|
|
void* p = _mi_page_malloc(heap, page, padsize, zero); // TODO: inline _mi_page_malloc
|
|
mi_assert_internal(p != NULL);
|
|
mi_assert_internal(((uintptr_t)p + offset) % alignment == 0);
|
|
mi_track_malloc(p,size,zero);
|
|
return p;
|
|
}
|
|
}
|
|
// fallback
|
|
return mi_heap_malloc_zero_aligned_at_fallback(heap, size, alignment, offset, zero);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------
|
|
// Optimized mi_heap_malloc_aligned / mi_malloc_aligned
|
|
// ------------------------------------------------------
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
|
|
if mi_unlikely(alignment == 0 || !_mi_is_power_of_two(alignment)) return NULL;
|
|
#if !MI_PADDING
|
|
// without padding, any small sized allocation is naturally aligned (see also `_mi_segment_page_start`)
|
|
if mi_likely(_mi_is_power_of_two(size) && size >= alignment && size <= MI_SMALL_SIZE_MAX)
|
|
#else
|
|
// with padding, we can only guarantee this for fixed alignments
|
|
if mi_likely((alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2)))
|
|
&& size <= MI_SMALL_SIZE_MAX)
|
|
#endif
|
|
{
|
|
// fast path for common alignment and size
|
|
return mi_heap_malloc_small(heap, size);
|
|
}
|
|
else {
|
|
return mi_heap_malloc_aligned_at(heap, size, alignment, 0);
|
|
}
|
|
}
|
|
|
|
// ensure a definition is emitted
|
|
#if defined(__cplusplus)
|
|
static void* _mi_heap_malloc_aligned = (void*)&mi_heap_malloc_aligned;
|
|
#endif
|
|
|
|
// ------------------------------------------------------
|
|
// Aligned Allocation
|
|
// ------------------------------------------------------
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_zalloc_aligned_at(heap, size, alignment, 0);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
size_t total;
|
|
if (mi_count_size_overflow(count, size, &total)) return NULL;
|
|
return mi_heap_zalloc_aligned_at(heap, total, alignment, offset);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_calloc_aligned_at(heap,count,size,alignment,0);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_malloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_malloc_aligned(mi_prim_get_default_heap(), size, alignment);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_zalloc_aligned_at(mi_prim_get_default_heap(), size, alignment, offset);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_zalloc_aligned(mi_prim_get_default_heap(), size, alignment);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_calloc_aligned_at(mi_prim_get_default_heap(), count, size, alignment, offset);
|
|
}
|
|
|
|
mi_decl_nodiscard mi_decl_restrict void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_calloc_aligned(mi_prim_get_default_heap(), count, size, alignment);
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------
|
|
// Aligned re-allocation
|
|
// ------------------------------------------------------
|
|
|
|
static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept {
|
|
mi_assert(alignment > 0);
|
|
if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
|
|
if (p == NULL) return mi_heap_malloc_zero_aligned_at(heap,newsize,alignment,offset,zero);
|
|
size_t size = mi_usable_size(p);
|
|
if (newsize <= size && newsize >= (size - (size / 2))
|
|
&& (((uintptr_t)p + offset) % alignment) == 0) {
|
|
return p; // reallocation still fits, is aligned and not more than 50% waste
|
|
}
|
|
else {
|
|
// note: we don't zero allocate upfront so we only zero initialize the expanded part
|
|
void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset);
|
|
if (newp != NULL) {
|
|
if (zero && newsize > size) {
|
|
// also set last word in the previous allocation to zero to ensure any padding is zero-initialized
|
|
size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
|
|
_mi_memzero((uint8_t*)newp + start, newsize - start);
|
|
}
|
|
_mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize));
|
|
mi_free(p); // only free if successful
|
|
}
|
|
return newp;
|
|
}
|
|
}
|
|
|
|
static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept {
|
|
mi_assert(alignment > 0);
|
|
if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
|
|
size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL)
|
|
return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
size_t total;
|
|
if (mi_count_size_overflow(newcount, size, &total)) return NULL;
|
|
return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
|
|
size_t total;
|
|
if (mi_count_size_overflow(newcount, size, &total)) return NULL;
|
|
return mi_heap_rezalloc_aligned(heap, p, total, alignment);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_realloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_realloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_rezalloc_aligned_at(mi_prim_get_default_heap(), p, newsize, alignment, offset);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_rezalloc_aligned(mi_prim_get_default_heap(), p, newsize, alignment);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
|
return mi_heap_recalloc_aligned_at(mi_prim_get_default_heap(), p, newcount, size, alignment, offset);
|
|
}
|
|
|
|
mi_decl_nodiscard void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
|
|
return mi_heap_recalloc_aligned(mi_prim_get_default_heap(), p, newcount, size, alignment);
|
|
}
|