cpython/Doc/howto/perf_profiling.rst

241 lines
11 KiB
ReStructuredText

.. highlight:: shell-session
.. _perf_profiling:
==============================================
Python support for the Linux ``perf`` profiler
==============================================
:author: Pablo Galindo
`The Linux perf profiler <https://perf.wiki.kernel.org>`_
is a very powerful tool that allows you to profile and obtain
information about the performance of your application.
``perf`` also has a very vibrant ecosystem of tools
that aid with the analysis of the data that it produces.
The main problem with using the ``perf`` profiler with Python applications is that
``perf`` only gets information about native symbols, that is, the names of
functions and procedures written in C. This means that the names and file names
of Python functions in your code will not appear in the output of ``perf``.
Since Python 3.12, the interpreter can run in a special mode that allows Python
functions to appear in the output of the ``perf`` profiler. When this mode is
enabled, the interpreter will interpose a small piece of code compiled on the
fly before the execution of every Python function and it will teach ``perf`` the
relationship between this piece of code and the associated Python function using
:doc:`perf map files <../c-api/perfmaps>`.
.. note::
Support for the ``perf`` profiler is currently only available for Linux on
select architectures. Check the output of the ``configure`` build step or
check the output of ``python -m sysconfig | grep HAVE_PERF_TRAMPOLINE``
to see if your system is supported.
For example, consider the following script:
.. code-block:: python
def foo(n):
result = 0
for _ in range(n):
result += 1
return result
def bar(n):
foo(n)
def baz(n):
bar(n)
if __name__ == "__main__":
baz(1000000)
We can run ``perf`` to sample CPU stack traces at 9999 hertz::
$ perf record -F 9999 -g -o perf.data python my_script.py
Then we can use ``perf report`` to analyze the data:
.. code-block:: shell-session
$ perf report --stdio -n -g
# Children Self Samples Command Shared Object Symbol
# ........ ........ ............ .......... .................. ..........................................
#
91.08% 0.00% 0 python.exe python.exe [.] _start
|
---_start
|
--90.71%--__libc_start_main
Py_BytesMain
|
|--56.88%--pymain_run_python.constprop.0
| |
| |--56.13%--_PyRun_AnyFileObject
| | _PyRun_SimpleFileObject
| | |
| | |--55.02%--run_mod
| | | |
| | | --54.65%--PyEval_EvalCode
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | |
| | | |--51.67%--_PyEval_EvalFrameDefault
| | | | |
| | | | |--11.52%--_PyLong_Add
| | | | | |
| | | | | |--2.97%--_PyObject_Malloc
...
As you can see, the Python functions are not shown in the output, only ``_PyEval_EvalFrameDefault``
(the function that evaluates the Python bytecode) shows up. Unfortunately that's not very useful because all Python
functions use the same C function to evaluate bytecode so we cannot know which Python function corresponds to which
bytecode-evaluating function.
Instead, if we run the same experiment with ``perf`` support enabled we get:
.. code-block:: shell-session
$ perf report --stdio -n -g
# Children Self Samples Command Shared Object Symbol
# ........ ........ ............ .......... .................. .....................................................................
#
90.58% 0.36% 1 python.exe python.exe [.] _start
|
---_start
|
--89.86%--__libc_start_main
Py_BytesMain
|
|--55.43%--pymain_run_python.constprop.0
| |
| |--54.71%--_PyRun_AnyFileObject
| | _PyRun_SimpleFileObject
| | |
| | |--53.62%--run_mod
| | | |
| | | --53.26%--PyEval_EvalCode
| | | py::<module>:/src/script.py
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | py::baz:/src/script.py
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | py::bar:/src/script.py
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | py::foo:/src/script.py
| | | |
| | | |--51.81%--_PyEval_EvalFrameDefault
| | | | |
| | | | |--13.77%--_PyLong_Add
| | | | | |
| | | | | |--3.26%--_PyObject_Malloc
How to enable ``perf`` profiling support
----------------------------------------
``perf`` profiling support can be enabled either from the start using
the environment variable :envvar:`PYTHONPERFSUPPORT` or the
:option:`-X perf <-X>` option,
or dynamically using :func:`sys.activate_stack_trampoline` and
:func:`sys.deactivate_stack_trampoline`.
The :mod:`!sys` functions take precedence over the :option:`!-X` option,
the :option:`!-X` option takes precedence over the environment variable.
Example, using the environment variable::
$ PYTHONPERFSUPPORT=1 python script.py
$ perf report -g -i perf.data
Example, using the :option:`!-X` option::
$ python -X perf script.py
$ perf report -g -i perf.data
Example, using the :mod:`sys` APIs in file :file:`example.py`:
.. code-block:: python
import sys
sys.activate_stack_trampoline("perf")
do_profiled_stuff()
sys.deactivate_stack_trampoline()
non_profiled_stuff()
...then::
$ python ./example.py
$ perf report -g -i perf.data
How to obtain the best results
------------------------------
For best results, Python should be compiled with
``CFLAGS="-fno-omit-frame-pointer -mno-omit-leaf-frame-pointer"`` as this allows
profilers to unwind using only the frame pointer and not on DWARF debug
information. This is because as the code that is interposed to allow ``perf``
support is dynamically generated it doesn't have any DWARF debugging information
available.
You can check if your system has been compiled with this flag by running::
$ python -m sysconfig | grep 'no-omit-frame-pointer'
If you don't see any output it means that your interpreter has not been compiled with
frame pointers and therefore it may not be able to show Python functions in the output
of ``perf``.
How to work without frame pointers
----------------------------------
If you are working with a Python interpreter that has been compiled without frame pointers
you can still use the ``perf`` profiler but the overhead will be a bit higher because Python
needs to generate unwinding information for every Python function call on the fly. Additionally,
``perf`` will take more time to process the data because it will need to use the DWARF debugging
information to unwind the stack and this is a slow process.
To enable this mode, you can use the environment variable :envvar:`PYTHONPERFJITSUPPORT` or the
:option:`-X perfjit <-X>` option, which will enable the JIT mode for the ``perf`` profiler.
When using the perf JIT mode, you need an extra step before you can run ``perf report``. You need to
call the ``perf inject`` command to inject the JIT information into the ``perf.data`` file.
$ perf record -F 9999 -g --call-graph dwarf -o perf.data python -Xperfjit my_script.py
$ perf inject -i perf.data --jit
$ perf report -g -i perf.data
or using the environment variable::
$ PYTHONPERFJITSUPPORT=1 perf record -F 9999 -g --call-graph dwarf -o perf.data python my_script.py
$ perf inject -i perf.data --jit
$ perf report -g -i perf.data
Notice that when using ``--call-graph dwarf`` the ``perf`` tool will take snapshots of the stack of
the process being profiled and save the information in the ``perf.data`` file. By default the size of
the stack dump is 8192 bytes but the user can change the size by passing the size after comma like
``--call-graph dwarf,4096``. The size of the stack dump is important because if the size is too small
``perf`` will not be able to unwind the stack and the output will be incomplete.