mirror of https://github.com/python/cpython
699 lines
28 KiB
C
699 lines
28 KiB
C
/* ----------------------------------------------------------------------------
|
|
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
|
|
This is free software; you can redistribute it and/or modify it under the
|
|
terms of the MIT license. A copy of the license can be found in the file
|
|
"LICENSE" at the root of this distribution.
|
|
-----------------------------------------------------------------------------*/
|
|
#include "mimalloc.h"
|
|
#include "mimalloc/internal.h"
|
|
#include "mimalloc/atomic.h"
|
|
#include "mimalloc/prim.h"
|
|
|
|
|
|
/* -----------------------------------------------------------
|
|
Initialization.
|
|
On windows initializes support for aligned allocation and
|
|
large OS pages (if MIMALLOC_LARGE_OS_PAGES is true).
|
|
----------------------------------------------------------- */
|
|
|
|
static mi_os_mem_config_t mi_os_mem_config = {
|
|
4096, // page size
|
|
0, // large page size (usually 2MiB)
|
|
4096, // allocation granularity
|
|
true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems)
|
|
false, // must free whole? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span)
|
|
true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory)
|
|
};
|
|
|
|
bool _mi_os_has_overcommit(void) {
|
|
return mi_os_mem_config.has_overcommit;
|
|
}
|
|
|
|
bool _mi_os_has_virtual_reserve(void) {
|
|
return mi_os_mem_config.has_virtual_reserve;
|
|
}
|
|
|
|
|
|
// OS (small) page size
|
|
size_t _mi_os_page_size(void) {
|
|
return mi_os_mem_config.page_size;
|
|
}
|
|
|
|
// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
|
|
size_t _mi_os_large_page_size(void) {
|
|
return (mi_os_mem_config.large_page_size != 0 ? mi_os_mem_config.large_page_size : _mi_os_page_size());
|
|
}
|
|
|
|
bool _mi_os_use_large_page(size_t size, size_t alignment) {
|
|
// if we have access, check the size and alignment requirements
|
|
if (mi_os_mem_config.large_page_size == 0 || !mi_option_is_enabled(mi_option_allow_large_os_pages)) return false;
|
|
return ((size % mi_os_mem_config.large_page_size) == 0 && (alignment % mi_os_mem_config.large_page_size) == 0);
|
|
}
|
|
|
|
// round to a good OS allocation size (bounded by max 12.5% waste)
|
|
size_t _mi_os_good_alloc_size(size_t size) {
|
|
size_t align_size;
|
|
if (size < 512*MI_KiB) align_size = _mi_os_page_size();
|
|
else if (size < 2*MI_MiB) align_size = 64*MI_KiB;
|
|
else if (size < 8*MI_MiB) align_size = 256*MI_KiB;
|
|
else if (size < 32*MI_MiB) align_size = 1*MI_MiB;
|
|
else align_size = 4*MI_MiB;
|
|
if mi_unlikely(size >= (SIZE_MAX - align_size)) return size; // possible overflow?
|
|
return _mi_align_up(size, align_size);
|
|
}
|
|
|
|
void _mi_os_init(void) {
|
|
_mi_prim_mem_init(&mi_os_mem_config);
|
|
}
|
|
|
|
|
|
/* -----------------------------------------------------------
|
|
Util
|
|
-------------------------------------------------------------- */
|
|
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
|
|
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats);
|
|
|
|
static void* mi_align_up_ptr(void* p, size_t alignment) {
|
|
return (void*)_mi_align_up((uintptr_t)p, alignment);
|
|
}
|
|
|
|
static void* mi_align_down_ptr(void* p, size_t alignment) {
|
|
return (void*)_mi_align_down((uintptr_t)p, alignment);
|
|
}
|
|
|
|
|
|
/* -----------------------------------------------------------
|
|
aligned hinting
|
|
-------------------------------------------------------------- */
|
|
|
|
// On 64-bit systems, we can do efficient aligned allocation by using
|
|
// the 2TiB to 30TiB area to allocate those.
|
|
#if (MI_INTPTR_SIZE >= 8)
|
|
static mi_decl_cache_align _Atomic(uintptr_t)aligned_base;
|
|
|
|
// Return a MI_SEGMENT_SIZE aligned address that is probably available.
|
|
// If this returns NULL, the OS will determine the address but on some OS's that may not be
|
|
// properly aligned which can be more costly as it needs to be adjusted afterwards.
|
|
// For a size > 1GiB this always returns NULL in order to guarantee good ASLR randomization;
|
|
// (otherwise an initial large allocation of say 2TiB has a 50% chance to include (known) addresses
|
|
// in the middle of the 2TiB - 6TiB address range (see issue #372))
|
|
|
|
#define MI_HINT_BASE ((uintptr_t)2 << 40) // 2TiB start
|
|
#define MI_HINT_AREA ((uintptr_t)4 << 40) // upto 6TiB (since before win8 there is "only" 8TiB available to processes)
|
|
#define MI_HINT_MAX ((uintptr_t)30 << 40) // wrap after 30TiB (area after 32TiB is used for huge OS pages)
|
|
|
|
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size)
|
|
{
|
|
if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL;
|
|
size = _mi_align_up(size, MI_SEGMENT_SIZE);
|
|
if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096.
|
|
#if (MI_SECURE>0)
|
|
size += MI_SEGMENT_SIZE; // put in `MI_SEGMENT_SIZE` virtual gaps between hinted blocks; this splits VLA's but increases guarded areas.
|
|
#endif
|
|
|
|
uintptr_t hint = mi_atomic_add_acq_rel(&aligned_base, size);
|
|
if (hint == 0 || hint > MI_HINT_MAX) { // wrap or initialize
|
|
uintptr_t init = MI_HINT_BASE;
|
|
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode
|
|
mi_heap_t* heap = mi_prim_get_default_heap();
|
|
// gh-123022: default heap may not be initialized in CPython in background threads
|
|
if (mi_heap_is_initialized(heap)) {
|
|
uintptr_t r = _mi_heap_random_next(heap);
|
|
init = init + ((MI_SEGMENT_SIZE * ((r>>17) & 0xFFFFF)) % MI_HINT_AREA); // (randomly 20 bits)*4MiB == 0 to 4TiB
|
|
}
|
|
#endif
|
|
uintptr_t expected = hint + size;
|
|
mi_atomic_cas_strong_acq_rel(&aligned_base, &expected, init);
|
|
hint = mi_atomic_add_acq_rel(&aligned_base, size); // this may still give 0 or > MI_HINT_MAX but that is ok, it is a hint after all
|
|
}
|
|
if (hint%try_alignment != 0) return NULL;
|
|
return (void*)hint;
|
|
}
|
|
#else
|
|
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
|
|
MI_UNUSED(try_alignment); MI_UNUSED(size);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* -----------------------------------------------------------
|
|
Free memory
|
|
-------------------------------------------------------------- */
|
|
|
|
static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats);
|
|
|
|
static void mi_os_prim_free(void* addr, size_t size, bool still_committed, mi_stats_t* tld_stats) {
|
|
MI_UNUSED(tld_stats);
|
|
mi_assert_internal((size % _mi_os_page_size()) == 0);
|
|
if (addr == NULL || size == 0) return; // || _mi_os_is_huge_reserved(addr)
|
|
int err = _mi_prim_free(addr, size);
|
|
if (err != 0) {
|
|
_mi_warning_message("unable to free OS memory (error: %d (0x%x), size: 0x%zx bytes, address: %p)\n", err, err, size, addr);
|
|
}
|
|
mi_stats_t* stats = &_mi_stats_main;
|
|
if (still_committed) { _mi_stat_decrease(&stats->committed, size); }
|
|
_mi_stat_decrease(&stats->reserved, size);
|
|
}
|
|
|
|
void _mi_os_free_ex(void* addr, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* tld_stats) {
|
|
if (mi_memkind_is_os(memid.memkind)) {
|
|
size_t csize = _mi_os_good_alloc_size(size);
|
|
void* base = addr;
|
|
// different base? (due to alignment)
|
|
if (memid.mem.os.base != NULL) {
|
|
mi_assert(memid.mem.os.base <= addr);
|
|
mi_assert((uint8_t*)memid.mem.os.base + memid.mem.os.alignment >= (uint8_t*)addr);
|
|
base = memid.mem.os.base;
|
|
csize += ((uint8_t*)addr - (uint8_t*)memid.mem.os.base);
|
|
}
|
|
// free it
|
|
if (memid.memkind == MI_MEM_OS_HUGE) {
|
|
mi_assert(memid.is_pinned);
|
|
mi_os_free_huge_os_pages(base, csize, tld_stats);
|
|
}
|
|
else {
|
|
mi_os_prim_free(base, csize, still_committed, tld_stats);
|
|
}
|
|
}
|
|
else {
|
|
// nothing to do
|
|
mi_assert(memid.memkind < MI_MEM_OS);
|
|
}
|
|
}
|
|
|
|
void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* tld_stats) {
|
|
_mi_os_free_ex(p, size, true, memid, tld_stats);
|
|
}
|
|
|
|
|
|
/* -----------------------------------------------------------
|
|
Primitive allocation from the OS.
|
|
-------------------------------------------------------------- */
|
|
|
|
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
|
|
static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* stats) {
|
|
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
|
|
mi_assert_internal(is_zero != NULL);
|
|
mi_assert_internal(is_large != NULL);
|
|
if (size == 0) return NULL;
|
|
if (!commit) { allow_large = false; }
|
|
if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning
|
|
|
|
*is_zero = false;
|
|
void* p = NULL;
|
|
int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p);
|
|
if (err != 0) {
|
|
_mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large);
|
|
}
|
|
mi_stat_counter_increase(stats->mmap_calls, 1);
|
|
if (p != NULL) {
|
|
_mi_stat_increase(&stats->reserved, size);
|
|
if (commit) {
|
|
_mi_stat_increase(&stats->committed, size);
|
|
// seems needed for asan (or `mimalloc-test-api` fails)
|
|
#ifdef MI_TRACK_ASAN
|
|
if (*is_zero) { mi_track_mem_defined(p,size); }
|
|
else { mi_track_mem_undefined(p,size); }
|
|
#endif
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
// Primitive aligned allocation from the OS.
|
|
// This function guarantees the allocated memory is aligned.
|
|
static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** base, mi_stats_t* stats) {
|
|
mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0));
|
|
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
|
|
mi_assert_internal(is_large != NULL);
|
|
mi_assert_internal(is_zero != NULL);
|
|
mi_assert_internal(base != NULL);
|
|
if (!commit) allow_large = false;
|
|
if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL;
|
|
size = _mi_align_up(size, _mi_os_page_size());
|
|
|
|
// try first with a hint (this will be aligned directly on Win 10+ or BSD)
|
|
void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats);
|
|
if (p == NULL) return NULL;
|
|
|
|
// aligned already?
|
|
if (((uintptr_t)p % alignment) == 0) {
|
|
*base = p;
|
|
}
|
|
else {
|
|
// if not aligned, free it, overallocate, and unmap around it
|
|
// NOTE(sgross): this warning causes issues in Python tests
|
|
// _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit);
|
|
mi_os_prim_free(p, size, commit, stats);
|
|
if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
|
|
const size_t over_size = size + alignment;
|
|
|
|
if (mi_os_mem_config.must_free_whole) { // win32 virtualAlloc cannot free parts of an allocate block
|
|
// over-allocate uncommitted (virtual) memory
|
|
p = mi_os_prim_alloc(over_size, 1 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, is_zero, stats);
|
|
if (p == NULL) return NULL;
|
|
|
|
// set p to the aligned part in the full region
|
|
// note: this is dangerous on Windows as VirtualFree needs the actual base pointer
|
|
// this is handled though by having the `base` field in the memid's
|
|
*base = p; // remember the base
|
|
p = mi_align_up_ptr(p, alignment);
|
|
|
|
// explicitly commit only the aligned part
|
|
if (commit) {
|
|
_mi_os_commit(p, size, NULL, stats);
|
|
}
|
|
}
|
|
else { // mmap can free inside an allocation
|
|
// overallocate...
|
|
p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats);
|
|
if (p == NULL) return NULL;
|
|
|
|
// and selectively unmap parts around the over-allocated area. (noop on sbrk)
|
|
void* aligned_p = mi_align_up_ptr(p, alignment);
|
|
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
|
|
size_t mid_size = _mi_align_up(size, _mi_os_page_size());
|
|
size_t post_size = over_size - pre_size - mid_size;
|
|
mi_assert_internal(pre_size < over_size&& post_size < over_size&& mid_size >= size);
|
|
if (pre_size > 0) { mi_os_prim_free(p, pre_size, commit, stats); }
|
|
if (post_size > 0) { mi_os_prim_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); }
|
|
// we can return the aligned pointer on `mmap` (and sbrk) systems
|
|
p = aligned_p;
|
|
*base = aligned_p; // since we freed the pre part, `*base == p`.
|
|
}
|
|
}
|
|
|
|
mi_assert_internal(p == NULL || (p != NULL && *base != NULL && ((uintptr_t)p % alignment) == 0));
|
|
return p;
|
|
}
|
|
|
|
|
|
/* -----------------------------------------------------------
|
|
OS API: alloc and alloc_aligned
|
|
----------------------------------------------------------- */
|
|
|
|
void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* tld_stats) {
|
|
MI_UNUSED(tld_stats);
|
|
*memid = _mi_memid_none();
|
|
mi_stats_t* stats = &_mi_stats_main;
|
|
if (size == 0) return NULL;
|
|
size = _mi_os_good_alloc_size(size);
|
|
bool os_is_large = false;
|
|
bool os_is_zero = false;
|
|
void* p = mi_os_prim_alloc(size, 0, true, false, &os_is_large, &os_is_zero, stats);
|
|
if (p != NULL) {
|
|
*memid = _mi_memid_create_os(true, os_is_zero, os_is_large);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats)
|
|
{
|
|
MI_UNUSED(&_mi_os_get_aligned_hint); // suppress unused warnings
|
|
MI_UNUSED(tld_stats);
|
|
*memid = _mi_memid_none();
|
|
if (size == 0) return NULL;
|
|
size = _mi_os_good_alloc_size(size);
|
|
alignment = _mi_align_up(alignment, _mi_os_page_size());
|
|
|
|
bool os_is_large = false;
|
|
bool os_is_zero = false;
|
|
void* os_base = NULL;
|
|
void* p = mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, &os_base, &_mi_stats_main /*tld->stats*/ );
|
|
if (p != NULL) {
|
|
*memid = _mi_memid_create_os(commit, os_is_zero, os_is_large);
|
|
memid->mem.os.base = os_base;
|
|
memid->mem.os.alignment = alignment;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* -----------------------------------------------------------
|
|
OS aligned allocation with an offset. This is used
|
|
for large alignments > MI_ALIGNMENT_MAX. We use a large mimalloc
|
|
page where the object can be aligned at an offset from the start of the segment.
|
|
As we may need to overallocate, we need to free such pointers using `mi_free_aligned`
|
|
to use the actual start of the memory region.
|
|
----------------------------------------------------------- */
|
|
|
|
void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats) {
|
|
mi_assert(offset <= MI_SEGMENT_SIZE);
|
|
mi_assert(offset <= size);
|
|
mi_assert((alignment % _mi_os_page_size()) == 0);
|
|
*memid = _mi_memid_none();
|
|
if (offset > MI_SEGMENT_SIZE) return NULL;
|
|
if (offset == 0) {
|
|
// regular aligned allocation
|
|
return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld_stats);
|
|
}
|
|
else {
|
|
// overallocate to align at an offset
|
|
const size_t extra = _mi_align_up(offset, alignment) - offset;
|
|
const size_t oversize = size + extra;
|
|
void* const start = _mi_os_alloc_aligned(oversize, alignment, commit, allow_large, memid, tld_stats);
|
|
if (start == NULL) return NULL;
|
|
|
|
void* const p = (uint8_t*)start + extra;
|
|
mi_assert(_mi_is_aligned((uint8_t*)p + offset, alignment));
|
|
// decommit the overallocation at the start
|
|
if (commit && extra > _mi_os_page_size()) {
|
|
_mi_os_decommit(start, extra, tld_stats);
|
|
}
|
|
return p;
|
|
}
|
|
}
|
|
|
|
/* -----------------------------------------------------------
|
|
OS memory API: reset, commit, decommit, protect, unprotect.
|
|
----------------------------------------------------------- */
|
|
|
|
// OS page align within a given area, either conservative (pages inside the area only),
|
|
// or not (straddling pages outside the area is possible)
|
|
static void* mi_os_page_align_areax(bool conservative, void* addr, size_t size, size_t* newsize) {
|
|
mi_assert(addr != NULL && size > 0);
|
|
if (newsize != NULL) *newsize = 0;
|
|
if (size == 0 || addr == NULL) return NULL;
|
|
|
|
// page align conservatively within the range
|
|
void* start = (conservative ? mi_align_up_ptr(addr, _mi_os_page_size())
|
|
: mi_align_down_ptr(addr, _mi_os_page_size()));
|
|
void* end = (conservative ? mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size())
|
|
: mi_align_up_ptr((uint8_t*)addr + size, _mi_os_page_size()));
|
|
ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start;
|
|
if (diff <= 0) return NULL;
|
|
|
|
mi_assert_internal((conservative && (size_t)diff <= size) || (!conservative && (size_t)diff >= size));
|
|
if (newsize != NULL) *newsize = (size_t)diff;
|
|
return start;
|
|
}
|
|
|
|
static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t* newsize) {
|
|
return mi_os_page_align_areax(true, addr, size, newsize);
|
|
}
|
|
|
|
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) {
|
|
MI_UNUSED(tld_stats);
|
|
mi_stats_t* stats = &_mi_stats_main;
|
|
if (is_zero != NULL) { *is_zero = false; }
|
|
_mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit
|
|
_mi_stat_counter_increase(&stats->commit_calls, 1);
|
|
|
|
// page align range
|
|
size_t csize;
|
|
void* start = mi_os_page_align_areax(false /* conservative? */, addr, size, &csize);
|
|
if (csize == 0) return true;
|
|
|
|
// commit
|
|
bool os_is_zero = false;
|
|
int err = _mi_prim_commit(start, csize, &os_is_zero);
|
|
if (err != 0) {
|
|
_mi_warning_message("cannot commit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
|
|
return false;
|
|
}
|
|
if (os_is_zero && is_zero != NULL) {
|
|
*is_zero = true;
|
|
mi_assert_expensive(mi_mem_is_zero(start, csize));
|
|
}
|
|
// note: the following seems required for asan (otherwise `mimalloc-test-stress` fails)
|
|
#ifdef MI_TRACK_ASAN
|
|
if (os_is_zero) { mi_track_mem_defined(start,csize); }
|
|
else { mi_track_mem_undefined(start,csize); }
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
static bool mi_os_decommit_ex(void* addr, size_t size, bool* needs_recommit, mi_stats_t* tld_stats) {
|
|
MI_UNUSED(tld_stats);
|
|
mi_stats_t* stats = &_mi_stats_main;
|
|
mi_assert_internal(needs_recommit!=NULL);
|
|
_mi_stat_decrease(&stats->committed, size);
|
|
|
|
// page align
|
|
size_t csize;
|
|
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
|
|
if (csize == 0) return true;
|
|
|
|
// decommit
|
|
*needs_recommit = true;
|
|
int err = _mi_prim_decommit(start,csize,needs_recommit);
|
|
if (err != 0) {
|
|
_mi_warning_message("cannot decommit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
|
|
}
|
|
mi_assert_internal(err == 0);
|
|
return (err == 0);
|
|
}
|
|
|
|
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) {
|
|
bool needs_recommit;
|
|
return mi_os_decommit_ex(addr, size, &needs_recommit, tld_stats);
|
|
}
|
|
|
|
|
|
// Signal to the OS that the address range is no longer in use
|
|
// but may be used later again. This will release physical memory
|
|
// pages and reduce swapping while keeping the memory committed.
|
|
// We page align to a conservative area inside the range to reset.
|
|
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
|
|
// page align conservatively within the range
|
|
size_t csize;
|
|
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
|
|
if (csize == 0) return true; // || _mi_os_is_huge_reserved(addr)
|
|
_mi_stat_increase(&stats->reset, csize);
|
|
_mi_stat_counter_increase(&stats->reset_calls, 1);
|
|
|
|
#if (MI_DEBUG>1) && !MI_SECURE && !MI_TRACK_ENABLED // && !MI_TSAN
|
|
memset(start, 0, csize); // pretend it is eagerly reset
|
|
#endif
|
|
|
|
int err = _mi_prim_reset(start, csize);
|
|
if (err != 0) {
|
|
_mi_warning_message("cannot reset OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
|
|
}
|
|
return (err == 0);
|
|
}
|
|
|
|
|
|
// either resets or decommits memory, returns true if the memory needs
|
|
// to be recommitted if it is to be re-used later on.
|
|
bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats)
|
|
{
|
|
if (mi_option_get(mi_option_purge_delay) < 0) return false; // is purging allowed?
|
|
_mi_stat_counter_increase(&stats->purge_calls, 1);
|
|
_mi_stat_increase(&stats->purged, size);
|
|
|
|
if (mi_option_is_enabled(mi_option_purge_decommits) && // should decommit?
|
|
!_mi_preloading()) // don't decommit during preloading (unsafe)
|
|
{
|
|
bool needs_recommit = true;
|
|
mi_os_decommit_ex(p, size, &needs_recommit, stats);
|
|
return needs_recommit;
|
|
}
|
|
else {
|
|
if (allow_reset) { // this can sometimes be not allowed if the range is not fully committed
|
|
_mi_os_reset(p, size, stats);
|
|
}
|
|
return false; // needs no recommit
|
|
}
|
|
}
|
|
|
|
// either resets or decommits memory, returns true if the memory needs
|
|
// to be recommitted if it is to be re-used later on.
|
|
bool _mi_os_purge(void* p, size_t size, mi_stats_t * stats) {
|
|
return _mi_os_purge_ex(p, size, true, stats);
|
|
}
|
|
|
|
// Protect a region in memory to be not accessible.
|
|
static bool mi_os_protectx(void* addr, size_t size, bool protect) {
|
|
// page align conservatively within the range
|
|
size_t csize = 0;
|
|
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
|
|
if (csize == 0) return false;
|
|
/*
|
|
if (_mi_os_is_huge_reserved(addr)) {
|
|
_mi_warning_message("cannot mprotect memory allocated in huge OS pages\n");
|
|
}
|
|
*/
|
|
int err = _mi_prim_protect(start,csize,protect);
|
|
if (err != 0) {
|
|
_mi_warning_message("cannot %s OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", (protect ? "protect" : "unprotect"), err, err, start, csize);
|
|
}
|
|
return (err == 0);
|
|
}
|
|
|
|
bool _mi_os_protect(void* addr, size_t size) {
|
|
return mi_os_protectx(addr, size, true);
|
|
}
|
|
|
|
bool _mi_os_unprotect(void* addr, size_t size) {
|
|
return mi_os_protectx(addr, size, false);
|
|
}
|
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
Support for allocating huge OS pages (1Gib) that are reserved up-front
|
|
and possibly associated with a specific NUMA node. (use `numa_node>=0`)
|
|
-----------------------------------------------------------------------------*/
|
|
#define MI_HUGE_OS_PAGE_SIZE (MI_GiB)
|
|
|
|
|
|
#if (MI_INTPTR_SIZE >= 8)
|
|
// To ensure proper alignment, use our own area for huge OS pages
|
|
static mi_decl_cache_align _Atomic(uintptr_t) mi_huge_start; // = 0
|
|
|
|
// Claim an aligned address range for huge pages
|
|
static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
|
|
if (total_size != NULL) *total_size = 0;
|
|
const size_t size = pages * MI_HUGE_OS_PAGE_SIZE;
|
|
|
|
uintptr_t start = 0;
|
|
uintptr_t end = 0;
|
|
uintptr_t huge_start = mi_atomic_load_relaxed(&mi_huge_start);
|
|
do {
|
|
start = huge_start;
|
|
if (start == 0) {
|
|
// Initialize the start address after the 32TiB area
|
|
start = ((uintptr_t)32 << 40); // 32TiB virtual start address
|
|
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode
|
|
mi_heap_t* heap = mi_prim_get_default_heap();
|
|
// gh-123022: default heap may not be initialized in CPython in background threads
|
|
if (mi_heap_is_initialized(heap)) {
|
|
uintptr_t r = _mi_heap_random_next(heap);
|
|
start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x0FFF)); // (randomly 12bits)*1GiB == between 0 to 4TiB
|
|
}
|
|
#endif
|
|
}
|
|
end = start + size;
|
|
mi_assert_internal(end % MI_SEGMENT_SIZE == 0);
|
|
} while (!mi_atomic_cas_strong_acq_rel(&mi_huge_start, &huge_start, end));
|
|
|
|
if (total_size != NULL) *total_size = size;
|
|
return (uint8_t*)start;
|
|
}
|
|
#else
|
|
static uint8_t* mi_os_claim_huge_pages(size_t pages, size_t* total_size) {
|
|
MI_UNUSED(pages);
|
|
if (total_size != NULL) *total_size = 0;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
// Allocate MI_SEGMENT_SIZE aligned huge pages
|
|
void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_msecs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid) {
|
|
*memid = _mi_memid_none();
|
|
if (psize != NULL) *psize = 0;
|
|
if (pages_reserved != NULL) *pages_reserved = 0;
|
|
size_t size = 0;
|
|
uint8_t* start = mi_os_claim_huge_pages(pages, &size);
|
|
if (start == NULL) return NULL; // or 32-bit systems
|
|
|
|
// Allocate one page at the time but try to place them contiguously
|
|
// We allocate one page at the time to be able to abort if it takes too long
|
|
// or to at least allocate as many as available on the system.
|
|
mi_msecs_t start_t = _mi_clock_start();
|
|
size_t page = 0;
|
|
bool all_zero = true;
|
|
while (page < pages) {
|
|
// allocate a page
|
|
bool is_zero = false;
|
|
void* addr = start + (page * MI_HUGE_OS_PAGE_SIZE);
|
|
void* p = NULL;
|
|
int err = _mi_prim_alloc_huge_os_pages(addr, MI_HUGE_OS_PAGE_SIZE, numa_node, &is_zero, &p);
|
|
if (!is_zero) { all_zero = false; }
|
|
if (err != 0) {
|
|
_mi_warning_message("unable to allocate huge OS page (error: %d (0x%x), address: %p, size: %zx bytes)\n", err, err, addr, MI_HUGE_OS_PAGE_SIZE);
|
|
break;
|
|
}
|
|
|
|
// Did we succeed at a contiguous address?
|
|
if (p != addr) {
|
|
// no success, issue a warning and break
|
|
if (p != NULL) {
|
|
_mi_warning_message("could not allocate contiguous huge OS page %zu at %p\n", page, addr);
|
|
mi_os_prim_free(p, MI_HUGE_OS_PAGE_SIZE, true, &_mi_stats_main);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// success, record it
|
|
page++; // increase before timeout check (see issue #711)
|
|
_mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
|
|
_mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE);
|
|
|
|
// check for timeout
|
|
if (max_msecs > 0) {
|
|
mi_msecs_t elapsed = _mi_clock_end(start_t);
|
|
if (page >= 1) {
|
|
mi_msecs_t estimate = ((elapsed / (page+1)) * pages);
|
|
if (estimate > 2*max_msecs) { // seems like we are going to timeout, break
|
|
elapsed = max_msecs + 1;
|
|
}
|
|
}
|
|
if (elapsed > max_msecs) {
|
|
_mi_warning_message("huge OS page allocation timed out (after allocating %zu page(s))\n", page);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mi_assert_internal(page*MI_HUGE_OS_PAGE_SIZE <= size);
|
|
if (pages_reserved != NULL) { *pages_reserved = page; }
|
|
if (psize != NULL) { *psize = page * MI_HUGE_OS_PAGE_SIZE; }
|
|
if (page != 0) {
|
|
mi_assert(start != NULL);
|
|
*memid = _mi_memid_create_os(true /* is committed */, all_zero, true /* is_large */);
|
|
memid->memkind = MI_MEM_OS_HUGE;
|
|
mi_assert(memid->is_pinned);
|
|
#ifdef MI_TRACK_ASAN
|
|
if (all_zero) { mi_track_mem_defined(start,size); }
|
|
#endif
|
|
}
|
|
return (page == 0 ? NULL : start);
|
|
}
|
|
|
|
// free every huge page in a range individually (as we allocated per page)
|
|
// note: needed with VirtualAlloc but could potentially be done in one go on mmap'd systems.
|
|
static void mi_os_free_huge_os_pages(void* p, size_t size, mi_stats_t* stats) {
|
|
if (p==NULL || size==0) return;
|
|
uint8_t* base = (uint8_t*)p;
|
|
while (size >= MI_HUGE_OS_PAGE_SIZE) {
|
|
mi_os_prim_free(base, MI_HUGE_OS_PAGE_SIZE, true, stats);
|
|
size -= MI_HUGE_OS_PAGE_SIZE;
|
|
base += MI_HUGE_OS_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
Support NUMA aware allocation
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
_Atomic(size_t) _mi_numa_node_count; // = 0 // cache the node count
|
|
|
|
size_t _mi_os_numa_node_count_get(void) {
|
|
size_t count = mi_atomic_load_acquire(&_mi_numa_node_count);
|
|
if (count <= 0) {
|
|
long ncount = mi_option_get(mi_option_use_numa_nodes); // given explicitly?
|
|
if (ncount > 0) {
|
|
count = (size_t)ncount;
|
|
}
|
|
else {
|
|
count = _mi_prim_numa_node_count(); // or detect dynamically
|
|
if (count == 0) count = 1;
|
|
}
|
|
mi_atomic_store_release(&_mi_numa_node_count, count); // save it
|
|
_mi_verbose_message("using %zd numa regions\n", count);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
int _mi_os_numa_node_get(mi_os_tld_t* tld) {
|
|
MI_UNUSED(tld);
|
|
size_t numa_count = _mi_os_numa_node_count();
|
|
if (numa_count<=1) return 0; // optimize on single numa node systems: always node 0
|
|
// never more than the node count and >= 0
|
|
size_t numa_node = _mi_prim_numa_node();
|
|
if (numa_node >= numa_count) { numa_node = numa_node % numa_count; }
|
|
return (int)numa_node;
|
|
}
|