mirror of https://github.com/python/cpython
7377 lines
214 KiB
C
7377 lines
214 KiB
C
/*
|
|
* This file compiles an abstract syntax tree (AST) into Python bytecode.
|
|
*
|
|
* The primary entry point is _PyAST_Compile(), which returns a
|
|
* PyCodeObject. The compiler makes several passes to build the code
|
|
* object:
|
|
* 1. Checks for future statements. See future.c
|
|
* 2. Builds a symbol table. See symtable.c.
|
|
* 3. Generate code for basic blocks. See compiler_mod() in this file.
|
|
* 4. Assemble the basic blocks into final code. See assemble() in
|
|
* this file.
|
|
* 5. Optimize the byte code (peephole optimizations).
|
|
*
|
|
* Note that compiler_mod() suggests module, but the module ast type
|
|
* (mod_ty) has cases for expressions and interactive statements.
|
|
*
|
|
* CAUTION: The VISIT_* macros abort the current function when they
|
|
* encounter a problem. So don't invoke them when there is memory
|
|
* which needs to be released. Code blocks are OK, as the compiler
|
|
* structure takes care of releasing those. Use the arena to manage
|
|
* objects.
|
|
*/
|
|
|
|
#include "Python.h"
|
|
#include "pycore_ast.h" // _PyAST_GetDocString()
|
|
#include "pycore_compile.h" // _PyFuture_FromAST()
|
|
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
|
|
#include "pycore_long.h" // _PyLong_GetZero()
|
|
#include "pycore_symtable.h" // PySTEntryObject
|
|
|
|
#define NEED_OPCODE_JUMP_TABLES
|
|
#include "opcode.h" // EXTENDED_ARG
|
|
#include "wordcode_helpers.h" // instrsize()
|
|
|
|
|
|
#define DEFAULT_BLOCK_SIZE 16
|
|
#define DEFAULT_BLOCKS 8
|
|
#define DEFAULT_CODE_SIZE 128
|
|
#define DEFAULT_LNOTAB_SIZE 16
|
|
|
|
#define COMP_GENEXP 0
|
|
#define COMP_LISTCOMP 1
|
|
#define COMP_SETCOMP 2
|
|
#define COMP_DICTCOMP 3
|
|
|
|
#define IS_TOP_LEVEL_AWAIT(c) ( \
|
|
(c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) \
|
|
&& (c->u->u_ste->ste_type == ModuleBlock))
|
|
|
|
struct instr {
|
|
unsigned char i_opcode;
|
|
int i_oparg;
|
|
struct basicblock_ *i_target; /* target block (if jump instruction) */
|
|
int i_lineno;
|
|
};
|
|
|
|
#define LOG_BITS_PER_INT 5
|
|
#define MASK_LOW_LOG_BITS 31
|
|
|
|
static inline int
|
|
is_bit_set_in_table(uint32_t *table, int bitindex) {
|
|
/* Is the relevant bit set in the relevant word? */
|
|
/* 256 bits fit into 8 32-bits words.
|
|
* Word is indexed by (bitindex>>ln(size of int in bits)).
|
|
* Bit within word is the low bits of bitindex.
|
|
*/
|
|
uint32_t word = table[bitindex >> LOG_BITS_PER_INT];
|
|
return (word >> (bitindex & MASK_LOW_LOG_BITS)) & 1;
|
|
}
|
|
|
|
static inline int
|
|
is_relative_jump(struct instr *i)
|
|
{
|
|
return is_bit_set_in_table(_PyOpcode_RelativeJump, i->i_opcode);
|
|
}
|
|
|
|
static inline int
|
|
is_jump(struct instr *i)
|
|
{
|
|
return is_bit_set_in_table(_PyOpcode_Jump, i->i_opcode);
|
|
}
|
|
|
|
typedef struct basicblock_ {
|
|
/* Each basicblock in a compilation unit is linked via b_list in the
|
|
reverse order that the block are allocated. b_list points to the next
|
|
block, not to be confused with b_next, which is next by control flow. */
|
|
struct basicblock_ *b_list;
|
|
/* number of instructions used */
|
|
int b_iused;
|
|
/* length of instruction array (b_instr) */
|
|
int b_ialloc;
|
|
/* pointer to an array of instructions, initially NULL */
|
|
struct instr *b_instr;
|
|
/* If b_next is non-NULL, it is a pointer to the next
|
|
block reached by normal control flow. */
|
|
struct basicblock_ *b_next;
|
|
/* b_return is true if a RETURN_VALUE opcode is inserted. */
|
|
unsigned b_return : 1;
|
|
/* Number of predecssors that a block has. */
|
|
int b_predecessors;
|
|
/* Basic block has no fall through (it ends with a return, raise or jump) */
|
|
unsigned b_nofallthrough : 1;
|
|
/* Basic block exits scope (it ends with a return or raise) */
|
|
unsigned b_exit : 1;
|
|
/* depth of stack upon entry of block, computed by stackdepth() */
|
|
int b_startdepth;
|
|
/* instruction offset for block, computed by assemble_jump_offsets() */
|
|
int b_offset;
|
|
} basicblock;
|
|
|
|
/* fblockinfo tracks the current frame block.
|
|
|
|
A frame block is used to handle loops, try/except, and try/finally.
|
|
It's called a frame block to distinguish it from a basic block in the
|
|
compiler IR.
|
|
*/
|
|
|
|
enum fblocktype { WHILE_LOOP, FOR_LOOP, TRY_EXCEPT, FINALLY_TRY, FINALLY_END,
|
|
WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE, EXCEPTION_HANDLER };
|
|
|
|
struct fblockinfo {
|
|
enum fblocktype fb_type;
|
|
basicblock *fb_block;
|
|
/* (optional) type-specific exit or cleanup block */
|
|
basicblock *fb_exit;
|
|
/* (optional) additional information required for unwinding */
|
|
void *fb_datum;
|
|
};
|
|
|
|
enum {
|
|
COMPILER_SCOPE_MODULE,
|
|
COMPILER_SCOPE_CLASS,
|
|
COMPILER_SCOPE_FUNCTION,
|
|
COMPILER_SCOPE_ASYNC_FUNCTION,
|
|
COMPILER_SCOPE_LAMBDA,
|
|
COMPILER_SCOPE_COMPREHENSION,
|
|
};
|
|
|
|
/* The following items change on entry and exit of code blocks.
|
|
They must be saved and restored when returning to a block.
|
|
*/
|
|
struct compiler_unit {
|
|
PySTEntryObject *u_ste;
|
|
|
|
PyObject *u_name;
|
|
PyObject *u_qualname; /* dot-separated qualified name (lazy) */
|
|
int u_scope_type;
|
|
|
|
/* The following fields are dicts that map objects to
|
|
the index of them in co_XXX. The index is used as
|
|
the argument for opcodes that refer to those collections.
|
|
*/
|
|
PyObject *u_consts; /* all constants */
|
|
PyObject *u_names; /* all names */
|
|
PyObject *u_varnames; /* local variables */
|
|
PyObject *u_cellvars; /* cell variables */
|
|
PyObject *u_freevars; /* free variables */
|
|
|
|
PyObject *u_private; /* for private name mangling */
|
|
|
|
Py_ssize_t u_argcount; /* number of arguments for block */
|
|
Py_ssize_t u_posonlyargcount; /* number of positional only arguments for block */
|
|
Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */
|
|
/* Pointer to the most recently allocated block. By following b_list
|
|
members, you can reach all early allocated blocks. */
|
|
basicblock *u_blocks;
|
|
basicblock *u_curblock; /* pointer to current block */
|
|
|
|
int u_nfblocks;
|
|
struct fblockinfo u_fblock[CO_MAXBLOCKS];
|
|
|
|
int u_firstlineno; /* the first lineno of the block */
|
|
int u_lineno; /* the lineno for the current stmt */
|
|
int u_col_offset; /* the offset of the current stmt */
|
|
};
|
|
|
|
/* This struct captures the global state of a compilation.
|
|
|
|
The u pointer points to the current compilation unit, while units
|
|
for enclosing blocks are stored in c_stack. The u and c_stack are
|
|
managed by compiler_enter_scope() and compiler_exit_scope().
|
|
|
|
Note that we don't track recursion levels during compilation - the
|
|
task of detecting and rejecting excessive levels of nesting is
|
|
handled by the symbol analysis pass.
|
|
|
|
*/
|
|
|
|
struct compiler {
|
|
PyObject *c_filename;
|
|
struct symtable *c_st;
|
|
PyFutureFeatures *c_future; /* pointer to module's __future__ */
|
|
PyCompilerFlags *c_flags;
|
|
|
|
int c_optimize; /* optimization level */
|
|
int c_interactive; /* true if in interactive mode */
|
|
int c_nestlevel;
|
|
PyObject *c_const_cache; /* Python dict holding all constants,
|
|
including names tuple */
|
|
struct compiler_unit *u; /* compiler state for current block */
|
|
PyObject *c_stack; /* Python list holding compiler_unit ptrs */
|
|
PyArena *c_arena; /* pointer to memory allocation arena */
|
|
};
|
|
|
|
typedef struct {
|
|
PyObject *stores;
|
|
int allow_irrefutable;
|
|
} pattern_context;
|
|
|
|
static int compiler_enter_scope(struct compiler *, identifier, int, void *, int);
|
|
static void compiler_free(struct compiler *);
|
|
static basicblock *compiler_new_block(struct compiler *);
|
|
static int compiler_next_instr(basicblock *);
|
|
static int compiler_addop(struct compiler *, int);
|
|
static int compiler_addop_i(struct compiler *, int, Py_ssize_t);
|
|
static int compiler_addop_j(struct compiler *, int, basicblock *);
|
|
static int compiler_addop_j_noline(struct compiler *, int, basicblock *);
|
|
static int compiler_error(struct compiler *, const char *, ...);
|
|
static int compiler_warn(struct compiler *, const char *, ...);
|
|
static int compiler_nameop(struct compiler *, identifier, expr_context_ty);
|
|
|
|
static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
|
|
static int compiler_visit_stmt(struct compiler *, stmt_ty);
|
|
static int compiler_visit_keyword(struct compiler *, keyword_ty);
|
|
static int compiler_visit_expr(struct compiler *, expr_ty);
|
|
static int compiler_augassign(struct compiler *, stmt_ty);
|
|
static int compiler_annassign(struct compiler *, stmt_ty);
|
|
static int compiler_subscript(struct compiler *, expr_ty);
|
|
static int compiler_slice(struct compiler *, expr_ty);
|
|
|
|
static int inplace_binop(operator_ty);
|
|
static int are_all_items_const(asdl_expr_seq *, Py_ssize_t, Py_ssize_t);
|
|
|
|
|
|
static int compiler_with(struct compiler *, stmt_ty, int);
|
|
static int compiler_async_with(struct compiler *, stmt_ty, int);
|
|
static int compiler_async_for(struct compiler *, stmt_ty);
|
|
static int compiler_call_helper(struct compiler *c, int n,
|
|
asdl_expr_seq *args,
|
|
asdl_keyword_seq *keywords);
|
|
static int compiler_try_except(struct compiler *, stmt_ty);
|
|
static int compiler_set_qualname(struct compiler *);
|
|
|
|
static int compiler_sync_comprehension_generator(
|
|
struct compiler *c,
|
|
asdl_comprehension_seq *generators, int gen_index,
|
|
int depth,
|
|
expr_ty elt, expr_ty val, int type);
|
|
|
|
static int compiler_async_comprehension_generator(
|
|
struct compiler *c,
|
|
asdl_comprehension_seq *generators, int gen_index,
|
|
int depth,
|
|
expr_ty elt, expr_ty val, int type);
|
|
|
|
static int compiler_pattern(struct compiler *, expr_ty, pattern_context *);
|
|
static int compiler_match(struct compiler *, stmt_ty);
|
|
static int compiler_pattern_subpattern(struct compiler *, expr_ty,
|
|
pattern_context *);
|
|
|
|
static PyCodeObject *assemble(struct compiler *, int addNone);
|
|
static PyObject *__doc__, *__annotations__;
|
|
|
|
#define CAPSULE_NAME "compile.c compiler unit"
|
|
|
|
PyObject *
|
|
_Py_Mangle(PyObject *privateobj, PyObject *ident)
|
|
{
|
|
/* Name mangling: __private becomes _classname__private.
|
|
This is independent from how the name is used. */
|
|
PyObject *result;
|
|
size_t nlen, plen, ipriv;
|
|
Py_UCS4 maxchar;
|
|
if (privateobj == NULL || !PyUnicode_Check(privateobj) ||
|
|
PyUnicode_READ_CHAR(ident, 0) != '_' ||
|
|
PyUnicode_READ_CHAR(ident, 1) != '_') {
|
|
Py_INCREF(ident);
|
|
return ident;
|
|
}
|
|
nlen = PyUnicode_GET_LENGTH(ident);
|
|
plen = PyUnicode_GET_LENGTH(privateobj);
|
|
/* Don't mangle __id__ or names with dots.
|
|
|
|
The only time a name with a dot can occur is when
|
|
we are compiling an import statement that has a
|
|
package name.
|
|
|
|
TODO(jhylton): Decide whether we want to support
|
|
mangling of the module name, e.g. __M.X.
|
|
*/
|
|
if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' &&
|
|
PyUnicode_READ_CHAR(ident, nlen-2) == '_') ||
|
|
PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) {
|
|
Py_INCREF(ident);
|
|
return ident; /* Don't mangle __whatever__ */
|
|
}
|
|
/* Strip leading underscores from class name */
|
|
ipriv = 0;
|
|
while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_')
|
|
ipriv++;
|
|
if (ipriv == plen) {
|
|
Py_INCREF(ident);
|
|
return ident; /* Don't mangle if class is just underscores */
|
|
}
|
|
plen -= ipriv;
|
|
|
|
if (plen + nlen >= PY_SSIZE_T_MAX - 1) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"private identifier too large to be mangled");
|
|
return NULL;
|
|
}
|
|
|
|
maxchar = PyUnicode_MAX_CHAR_VALUE(ident);
|
|
if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar)
|
|
maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj);
|
|
|
|
result = PyUnicode_New(1 + nlen + plen, maxchar);
|
|
if (!result)
|
|
return 0;
|
|
/* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */
|
|
PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_');
|
|
if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
assert(_PyUnicode_CheckConsistency(result, 1));
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
compiler_init(struct compiler *c)
|
|
{
|
|
memset(c, 0, sizeof(struct compiler));
|
|
|
|
c->c_const_cache = PyDict_New();
|
|
if (!c->c_const_cache) {
|
|
return 0;
|
|
}
|
|
|
|
c->c_stack = PyList_New(0);
|
|
if (!c->c_stack) {
|
|
Py_CLEAR(c->c_const_cache);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
PyCodeObject *
|
|
_PyAST_Compile(mod_ty mod, PyObject *filename, PyCompilerFlags *flags,
|
|
int optimize, PyArena *arena)
|
|
{
|
|
struct compiler c;
|
|
PyCodeObject *co = NULL;
|
|
PyCompilerFlags local_flags = _PyCompilerFlags_INIT;
|
|
int merged;
|
|
|
|
if (!__doc__) {
|
|
__doc__ = PyUnicode_InternFromString("__doc__");
|
|
if (!__doc__)
|
|
return NULL;
|
|
}
|
|
if (!__annotations__) {
|
|
__annotations__ = PyUnicode_InternFromString("__annotations__");
|
|
if (!__annotations__)
|
|
return NULL;
|
|
}
|
|
if (!compiler_init(&c))
|
|
return NULL;
|
|
Py_INCREF(filename);
|
|
c.c_filename = filename;
|
|
c.c_arena = arena;
|
|
c.c_future = _PyFuture_FromAST(mod, filename);
|
|
if (c.c_future == NULL)
|
|
goto finally;
|
|
if (!flags) {
|
|
flags = &local_flags;
|
|
}
|
|
merged = c.c_future->ff_features | flags->cf_flags;
|
|
c.c_future->ff_features = merged;
|
|
flags->cf_flags = merged;
|
|
c.c_flags = flags;
|
|
c.c_optimize = (optimize == -1) ? _Py_GetConfig()->optimization_level : optimize;
|
|
c.c_nestlevel = 0;
|
|
|
|
_PyASTOptimizeState state;
|
|
state.optimize = c.c_optimize;
|
|
state.ff_features = merged;
|
|
|
|
if (!_PyAST_Optimize(mod, arena, &state)) {
|
|
goto finally;
|
|
}
|
|
|
|
c.c_st = _PySymtable_Build(mod, filename, c.c_future);
|
|
if (c.c_st == NULL) {
|
|
if (!PyErr_Occurred())
|
|
PyErr_SetString(PyExc_SystemError, "no symtable");
|
|
goto finally;
|
|
}
|
|
|
|
co = compiler_mod(&c, mod);
|
|
|
|
finally:
|
|
compiler_free(&c);
|
|
assert(co || PyErr_Occurred());
|
|
return co;
|
|
}
|
|
|
|
static void
|
|
compiler_free(struct compiler *c)
|
|
{
|
|
if (c->c_st)
|
|
_PySymtable_Free(c->c_st);
|
|
if (c->c_future)
|
|
PyObject_Free(c->c_future);
|
|
Py_XDECREF(c->c_filename);
|
|
Py_DECREF(c->c_const_cache);
|
|
Py_DECREF(c->c_stack);
|
|
}
|
|
|
|
static PyObject *
|
|
list2dict(PyObject *list)
|
|
{
|
|
Py_ssize_t i, n;
|
|
PyObject *v, *k;
|
|
PyObject *dict = PyDict_New();
|
|
if (!dict) return NULL;
|
|
|
|
n = PyList_Size(list);
|
|
for (i = 0; i < n; i++) {
|
|
v = PyLong_FromSsize_t(i);
|
|
if (!v) {
|
|
Py_DECREF(dict);
|
|
return NULL;
|
|
}
|
|
k = PyList_GET_ITEM(list, i);
|
|
if (PyDict_SetItem(dict, k, v) < 0) {
|
|
Py_DECREF(v);
|
|
Py_DECREF(dict);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(v);
|
|
}
|
|
return dict;
|
|
}
|
|
|
|
/* Return new dict containing names from src that match scope(s).
|
|
|
|
src is a symbol table dictionary. If the scope of a name matches
|
|
either scope_type or flag is set, insert it into the new dict. The
|
|
values are integers, starting at offset and increasing by one for
|
|
each key.
|
|
*/
|
|
|
|
static PyObject *
|
|
dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
|
|
{
|
|
Py_ssize_t i = offset, scope, num_keys, key_i;
|
|
PyObject *k, *v, *dest = PyDict_New();
|
|
PyObject *sorted_keys;
|
|
|
|
assert(offset >= 0);
|
|
if (dest == NULL)
|
|
return NULL;
|
|
|
|
/* Sort the keys so that we have a deterministic order on the indexes
|
|
saved in the returned dictionary. These indexes are used as indexes
|
|
into the free and cell var storage. Therefore if they aren't
|
|
deterministic, then the generated bytecode is not deterministic.
|
|
*/
|
|
sorted_keys = PyDict_Keys(src);
|
|
if (sorted_keys == NULL)
|
|
return NULL;
|
|
if (PyList_Sort(sorted_keys) != 0) {
|
|
Py_DECREF(sorted_keys);
|
|
return NULL;
|
|
}
|
|
num_keys = PyList_GET_SIZE(sorted_keys);
|
|
|
|
for (key_i = 0; key_i < num_keys; key_i++) {
|
|
/* XXX this should probably be a macro in symtable.h */
|
|
long vi;
|
|
k = PyList_GET_ITEM(sorted_keys, key_i);
|
|
v = PyDict_GetItemWithError(src, k);
|
|
assert(v && PyLong_Check(v));
|
|
vi = PyLong_AS_LONG(v);
|
|
scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;
|
|
|
|
if (scope == scope_type || vi & flag) {
|
|
PyObject *item = PyLong_FromSsize_t(i);
|
|
if (item == NULL) {
|
|
Py_DECREF(sorted_keys);
|
|
Py_DECREF(dest);
|
|
return NULL;
|
|
}
|
|
i++;
|
|
if (PyDict_SetItem(dest, k, item) < 0) {
|
|
Py_DECREF(sorted_keys);
|
|
Py_DECREF(item);
|
|
Py_DECREF(dest);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(item);
|
|
}
|
|
}
|
|
Py_DECREF(sorted_keys);
|
|
return dest;
|
|
}
|
|
|
|
static void
|
|
compiler_unit_check(struct compiler_unit *u)
|
|
{
|
|
basicblock *block;
|
|
for (block = u->u_blocks; block != NULL; block = block->b_list) {
|
|
assert(!_PyMem_IsPtrFreed(block));
|
|
if (block->b_instr != NULL) {
|
|
assert(block->b_ialloc > 0);
|
|
assert(block->b_iused >= 0);
|
|
assert(block->b_ialloc >= block->b_iused);
|
|
}
|
|
else {
|
|
assert (block->b_iused == 0);
|
|
assert (block->b_ialloc == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
compiler_unit_free(struct compiler_unit *u)
|
|
{
|
|
basicblock *b, *next;
|
|
|
|
compiler_unit_check(u);
|
|
b = u->u_blocks;
|
|
while (b != NULL) {
|
|
if (b->b_instr)
|
|
PyObject_Free((void *)b->b_instr);
|
|
next = b->b_list;
|
|
PyObject_Free((void *)b);
|
|
b = next;
|
|
}
|
|
Py_CLEAR(u->u_ste);
|
|
Py_CLEAR(u->u_name);
|
|
Py_CLEAR(u->u_qualname);
|
|
Py_CLEAR(u->u_consts);
|
|
Py_CLEAR(u->u_names);
|
|
Py_CLEAR(u->u_varnames);
|
|
Py_CLEAR(u->u_freevars);
|
|
Py_CLEAR(u->u_cellvars);
|
|
Py_CLEAR(u->u_private);
|
|
PyObject_Free(u);
|
|
}
|
|
|
|
static int
|
|
compiler_enter_scope(struct compiler *c, identifier name,
|
|
int scope_type, void *key, int lineno)
|
|
{
|
|
struct compiler_unit *u;
|
|
basicblock *block;
|
|
|
|
u = (struct compiler_unit *)PyObject_Calloc(1, sizeof(
|
|
struct compiler_unit));
|
|
if (!u) {
|
|
PyErr_NoMemory();
|
|
return 0;
|
|
}
|
|
u->u_scope_type = scope_type;
|
|
u->u_argcount = 0;
|
|
u->u_posonlyargcount = 0;
|
|
u->u_kwonlyargcount = 0;
|
|
u->u_ste = PySymtable_Lookup(c->c_st, key);
|
|
if (!u->u_ste) {
|
|
compiler_unit_free(u);
|
|
return 0;
|
|
}
|
|
Py_INCREF(name);
|
|
u->u_name = name;
|
|
u->u_varnames = list2dict(u->u_ste->ste_varnames);
|
|
u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0);
|
|
if (!u->u_varnames || !u->u_cellvars) {
|
|
compiler_unit_free(u);
|
|
return 0;
|
|
}
|
|
if (u->u_ste->ste_needs_class_closure) {
|
|
/* Cook up an implicit __class__ cell. */
|
|
_Py_IDENTIFIER(__class__);
|
|
PyObject *name;
|
|
int res;
|
|
assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
|
|
assert(PyDict_GET_SIZE(u->u_cellvars) == 0);
|
|
name = _PyUnicode_FromId(&PyId___class__);
|
|
if (!name) {
|
|
compiler_unit_free(u);
|
|
return 0;
|
|
}
|
|
res = PyDict_SetItem(u->u_cellvars, name, _PyLong_GetZero());
|
|
if (res < 0) {
|
|
compiler_unit_free(u);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
|
|
PyDict_GET_SIZE(u->u_cellvars));
|
|
if (!u->u_freevars) {
|
|
compiler_unit_free(u);
|
|
return 0;
|
|
}
|
|
|
|
u->u_blocks = NULL;
|
|
u->u_nfblocks = 0;
|
|
u->u_firstlineno = lineno;
|
|
u->u_lineno = 0;
|
|
u->u_col_offset = 0;
|
|
u->u_consts = PyDict_New();
|
|
if (!u->u_consts) {
|
|
compiler_unit_free(u);
|
|
return 0;
|
|
}
|
|
u->u_names = PyDict_New();
|
|
if (!u->u_names) {
|
|
compiler_unit_free(u);
|
|
return 0;
|
|
}
|
|
|
|
u->u_private = NULL;
|
|
|
|
/* Push the old compiler_unit on the stack. */
|
|
if (c->u) {
|
|
PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
|
|
if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
|
|
Py_XDECREF(capsule);
|
|
compiler_unit_free(u);
|
|
return 0;
|
|
}
|
|
Py_DECREF(capsule);
|
|
u->u_private = c->u->u_private;
|
|
Py_XINCREF(u->u_private);
|
|
}
|
|
c->u = u;
|
|
|
|
c->c_nestlevel++;
|
|
|
|
block = compiler_new_block(c);
|
|
if (block == NULL)
|
|
return 0;
|
|
c->u->u_curblock = block;
|
|
|
|
if (u->u_scope_type != COMPILER_SCOPE_MODULE) {
|
|
if (!compiler_set_qualname(c))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
compiler_exit_scope(struct compiler *c)
|
|
{
|
|
// Don't call PySequence_DelItem() with an exception raised
|
|
PyObject *exc_type, *exc_val, *exc_tb;
|
|
PyErr_Fetch(&exc_type, &exc_val, &exc_tb);
|
|
|
|
c->c_nestlevel--;
|
|
compiler_unit_free(c->u);
|
|
/* Restore c->u to the parent unit. */
|
|
Py_ssize_t n = PyList_GET_SIZE(c->c_stack) - 1;
|
|
if (n >= 0) {
|
|
PyObject *capsule = PyList_GET_ITEM(c->c_stack, n);
|
|
c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
|
|
assert(c->u);
|
|
/* we are deleting from a list so this really shouldn't fail */
|
|
if (PySequence_DelItem(c->c_stack, n) < 0) {
|
|
_PyErr_WriteUnraisableMsg("on removing the last compiler "
|
|
"stack item", NULL);
|
|
}
|
|
compiler_unit_check(c->u);
|
|
}
|
|
else {
|
|
c->u = NULL;
|
|
}
|
|
|
|
PyErr_Restore(exc_type, exc_val, exc_tb);
|
|
}
|
|
|
|
static int
|
|
compiler_set_qualname(struct compiler *c)
|
|
{
|
|
_Py_static_string(dot, ".");
|
|
_Py_static_string(dot_locals, ".<locals>");
|
|
Py_ssize_t stack_size;
|
|
struct compiler_unit *u = c->u;
|
|
PyObject *name, *base, *dot_str, *dot_locals_str;
|
|
|
|
base = NULL;
|
|
stack_size = PyList_GET_SIZE(c->c_stack);
|
|
assert(stack_size >= 1);
|
|
if (stack_size > 1) {
|
|
int scope, force_global = 0;
|
|
struct compiler_unit *parent;
|
|
PyObject *mangled, *capsule;
|
|
|
|
capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
|
|
parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
|
|
assert(parent);
|
|
|
|
if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
|
|
|| u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
|
|
|| u->u_scope_type == COMPILER_SCOPE_CLASS) {
|
|
assert(u->u_name);
|
|
mangled = _Py_Mangle(parent->u_private, u->u_name);
|
|
if (!mangled)
|
|
return 0;
|
|
scope = _PyST_GetScope(parent->u_ste, mangled);
|
|
Py_DECREF(mangled);
|
|
assert(scope != GLOBAL_IMPLICIT);
|
|
if (scope == GLOBAL_EXPLICIT)
|
|
force_global = 1;
|
|
}
|
|
|
|
if (!force_global) {
|
|
if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
|
|
|| parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
|
|
|| parent->u_scope_type == COMPILER_SCOPE_LAMBDA) {
|
|
dot_locals_str = _PyUnicode_FromId(&dot_locals);
|
|
if (dot_locals_str == NULL)
|
|
return 0;
|
|
base = PyUnicode_Concat(parent->u_qualname, dot_locals_str);
|
|
if (base == NULL)
|
|
return 0;
|
|
}
|
|
else {
|
|
Py_INCREF(parent->u_qualname);
|
|
base = parent->u_qualname;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (base != NULL) {
|
|
dot_str = _PyUnicode_FromId(&dot);
|
|
if (dot_str == NULL) {
|
|
Py_DECREF(base);
|
|
return 0;
|
|
}
|
|
name = PyUnicode_Concat(base, dot_str);
|
|
Py_DECREF(base);
|
|
if (name == NULL)
|
|
return 0;
|
|
PyUnicode_Append(&name, u->u_name);
|
|
if (name == NULL)
|
|
return 0;
|
|
}
|
|
else {
|
|
Py_INCREF(u->u_name);
|
|
name = u->u_name;
|
|
}
|
|
u->u_qualname = name;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Allocate a new block and return a pointer to it.
|
|
Returns NULL on error.
|
|
*/
|
|
|
|
static basicblock *
|
|
compiler_new_block(struct compiler *c)
|
|
{
|
|
basicblock *b;
|
|
struct compiler_unit *u;
|
|
|
|
u = c->u;
|
|
b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock));
|
|
if (b == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
/* Extend the singly linked list of blocks with new block. */
|
|
b->b_list = u->u_blocks;
|
|
u->u_blocks = b;
|
|
return b;
|
|
}
|
|
|
|
static basicblock *
|
|
compiler_next_block(struct compiler *c)
|
|
{
|
|
basicblock *block = compiler_new_block(c);
|
|
if (block == NULL)
|
|
return NULL;
|
|
c->u->u_curblock->b_next = block;
|
|
c->u->u_curblock = block;
|
|
return block;
|
|
}
|
|
|
|
static basicblock *
|
|
compiler_use_next_block(struct compiler *c, basicblock *block)
|
|
{
|
|
assert(block != NULL);
|
|
c->u->u_curblock->b_next = block;
|
|
c->u->u_curblock = block;
|
|
return block;
|
|
}
|
|
|
|
static basicblock *
|
|
compiler_copy_block(struct compiler *c, basicblock *block)
|
|
{
|
|
/* Cannot copy a block if it has a fallthrough, since
|
|
* a block can only have one fallthrough predecessor.
|
|
*/
|
|
assert(block->b_nofallthrough);
|
|
basicblock *result = compiler_next_block(c);
|
|
if (result == NULL) {
|
|
return NULL;
|
|
}
|
|
for (int i = 0; i < block->b_iused; i++) {
|
|
int n = compiler_next_instr(result);
|
|
if (n < 0) {
|
|
return NULL;
|
|
}
|
|
result->b_instr[n] = block->b_instr[i];
|
|
}
|
|
result->b_exit = block->b_exit;
|
|
result->b_nofallthrough = 1;
|
|
return result;
|
|
}
|
|
|
|
/* Returns the offset of the next instruction in the current block's
|
|
b_instr array. Resizes the b_instr as necessary.
|
|
Returns -1 on failure.
|
|
*/
|
|
|
|
static int
|
|
compiler_next_instr(basicblock *b)
|
|
{
|
|
assert(b != NULL);
|
|
if (b->b_instr == NULL) {
|
|
b->b_instr = (struct instr *)PyObject_Calloc(
|
|
DEFAULT_BLOCK_SIZE, sizeof(struct instr));
|
|
if (b->b_instr == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
b->b_ialloc = DEFAULT_BLOCK_SIZE;
|
|
}
|
|
else if (b->b_iused == b->b_ialloc) {
|
|
struct instr *tmp;
|
|
size_t oldsize, newsize;
|
|
oldsize = b->b_ialloc * sizeof(struct instr);
|
|
newsize = oldsize << 1;
|
|
|
|
if (oldsize > (SIZE_MAX >> 1)) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
|
|
if (newsize == 0) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
b->b_ialloc <<= 1;
|
|
tmp = (struct instr *)PyObject_Realloc(
|
|
(void *)b->b_instr, newsize);
|
|
if (tmp == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
b->b_instr = tmp;
|
|
memset((char *)b->b_instr + oldsize, 0, newsize - oldsize);
|
|
}
|
|
return b->b_iused++;
|
|
}
|
|
|
|
/* Set the line number and column offset for the following instructions.
|
|
|
|
The line number is reset in the following cases:
|
|
- when entering a new scope
|
|
- on each statement
|
|
- on each expression and sub-expression
|
|
- before the "except" and "finally" clauses
|
|
*/
|
|
|
|
#define SET_LOC(c, x) \
|
|
(c)->u->u_lineno = (x)->lineno; \
|
|
(c)->u->u_col_offset = (x)->col_offset;
|
|
|
|
/* Return the stack effect of opcode with argument oparg.
|
|
|
|
Some opcodes have different stack effect when jump to the target and
|
|
when not jump. The 'jump' parameter specifies the case:
|
|
|
|
* 0 -- when not jump
|
|
* 1 -- when jump
|
|
* -1 -- maximal
|
|
*/
|
|
static int
|
|
stack_effect(int opcode, int oparg, int jump)
|
|
{
|
|
switch (opcode) {
|
|
case NOP:
|
|
case EXTENDED_ARG:
|
|
return 0;
|
|
|
|
/* Stack manipulation */
|
|
case POP_TOP:
|
|
return -1;
|
|
case ROT_TWO:
|
|
case ROT_THREE:
|
|
case ROT_FOUR:
|
|
return 0;
|
|
case DUP_TOP:
|
|
return 1;
|
|
case DUP_TOP_TWO:
|
|
return 2;
|
|
|
|
/* Unary operators */
|
|
case UNARY_POSITIVE:
|
|
case UNARY_NEGATIVE:
|
|
case UNARY_NOT:
|
|
case UNARY_INVERT:
|
|
return 0;
|
|
|
|
case SET_ADD:
|
|
case LIST_APPEND:
|
|
return -1;
|
|
case MAP_ADD:
|
|
return -2;
|
|
|
|
/* Binary operators */
|
|
case BINARY_POWER:
|
|
case BINARY_MULTIPLY:
|
|
case BINARY_MATRIX_MULTIPLY:
|
|
case BINARY_MODULO:
|
|
case BINARY_ADD:
|
|
case BINARY_SUBTRACT:
|
|
case BINARY_SUBSCR:
|
|
case BINARY_FLOOR_DIVIDE:
|
|
case BINARY_TRUE_DIVIDE:
|
|
return -1;
|
|
case INPLACE_FLOOR_DIVIDE:
|
|
case INPLACE_TRUE_DIVIDE:
|
|
return -1;
|
|
|
|
case INPLACE_ADD:
|
|
case INPLACE_SUBTRACT:
|
|
case INPLACE_MULTIPLY:
|
|
case INPLACE_MATRIX_MULTIPLY:
|
|
case INPLACE_MODULO:
|
|
return -1;
|
|
case STORE_SUBSCR:
|
|
return -3;
|
|
case DELETE_SUBSCR:
|
|
return -2;
|
|
|
|
case BINARY_LSHIFT:
|
|
case BINARY_RSHIFT:
|
|
case BINARY_AND:
|
|
case BINARY_XOR:
|
|
case BINARY_OR:
|
|
return -1;
|
|
case INPLACE_POWER:
|
|
return -1;
|
|
case GET_ITER:
|
|
return 0;
|
|
|
|
case PRINT_EXPR:
|
|
return -1;
|
|
case LOAD_BUILD_CLASS:
|
|
return 1;
|
|
case INPLACE_LSHIFT:
|
|
case INPLACE_RSHIFT:
|
|
case INPLACE_AND:
|
|
case INPLACE_XOR:
|
|
case INPLACE_OR:
|
|
return -1;
|
|
|
|
case SETUP_WITH:
|
|
/* 1 in the normal flow.
|
|
* Restore the stack position and push 6 values before jumping to
|
|
* the handler if an exception be raised. */
|
|
return jump ? 6 : 1;
|
|
case RETURN_VALUE:
|
|
return -1;
|
|
case IMPORT_STAR:
|
|
return -1;
|
|
case SETUP_ANNOTATIONS:
|
|
return 0;
|
|
case YIELD_VALUE:
|
|
return 0;
|
|
case YIELD_FROM:
|
|
return -1;
|
|
case POP_BLOCK:
|
|
return 0;
|
|
case POP_EXCEPT:
|
|
return -3;
|
|
|
|
case STORE_NAME:
|
|
return -1;
|
|
case DELETE_NAME:
|
|
return 0;
|
|
case UNPACK_SEQUENCE:
|
|
return oparg-1;
|
|
case UNPACK_EX:
|
|
return (oparg&0xFF) + (oparg>>8);
|
|
case FOR_ITER:
|
|
/* -1 at end of iterator, 1 if continue iterating. */
|
|
return jump > 0 ? -1 : 1;
|
|
|
|
case STORE_ATTR:
|
|
return -2;
|
|
case DELETE_ATTR:
|
|
return -1;
|
|
case STORE_GLOBAL:
|
|
return -1;
|
|
case DELETE_GLOBAL:
|
|
return 0;
|
|
case LOAD_CONST:
|
|
return 1;
|
|
case LOAD_NAME:
|
|
return 1;
|
|
case BUILD_TUPLE:
|
|
case BUILD_LIST:
|
|
case BUILD_SET:
|
|
case BUILD_STRING:
|
|
return 1-oparg;
|
|
case BUILD_MAP:
|
|
return 1 - 2*oparg;
|
|
case BUILD_CONST_KEY_MAP:
|
|
return -oparg;
|
|
case LOAD_ATTR:
|
|
return 0;
|
|
case COMPARE_OP:
|
|
case IS_OP:
|
|
case CONTAINS_OP:
|
|
return -1;
|
|
case JUMP_IF_NOT_EXC_MATCH:
|
|
return -2;
|
|
case IMPORT_NAME:
|
|
return -1;
|
|
case IMPORT_FROM:
|
|
return 1;
|
|
|
|
/* Jumps */
|
|
case JUMP_FORWARD:
|
|
case JUMP_ABSOLUTE:
|
|
return 0;
|
|
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
return jump ? 0 : -1;
|
|
|
|
case POP_JUMP_IF_FALSE:
|
|
case POP_JUMP_IF_TRUE:
|
|
return -1;
|
|
|
|
case LOAD_GLOBAL:
|
|
return 1;
|
|
|
|
/* Exception handling */
|
|
case SETUP_FINALLY:
|
|
/* 0 in the normal flow.
|
|
* Restore the stack position and push 6 values before jumping to
|
|
* the handler if an exception be raised. */
|
|
return jump ? 6 : 0;
|
|
case RERAISE:
|
|
return -3;
|
|
|
|
case WITH_EXCEPT_START:
|
|
return 1;
|
|
|
|
case LOAD_FAST:
|
|
return 1;
|
|
case STORE_FAST:
|
|
return -1;
|
|
case DELETE_FAST:
|
|
return 0;
|
|
|
|
case RAISE_VARARGS:
|
|
return -oparg;
|
|
|
|
/* Functions and calls */
|
|
case CALL_FUNCTION:
|
|
return -oparg;
|
|
case CALL_METHOD:
|
|
return -oparg-1;
|
|
case CALL_FUNCTION_KW:
|
|
return -oparg-1;
|
|
case CALL_FUNCTION_EX:
|
|
return -1 - ((oparg & 0x01) != 0);
|
|
case MAKE_FUNCTION:
|
|
return -1 - ((oparg & 0x01) != 0) - ((oparg & 0x02) != 0) -
|
|
((oparg & 0x04) != 0) - ((oparg & 0x08) != 0);
|
|
case BUILD_SLICE:
|
|
if (oparg == 3)
|
|
return -2;
|
|
else
|
|
return -1;
|
|
|
|
/* Closures */
|
|
case LOAD_CLOSURE:
|
|
return 1;
|
|
case LOAD_DEREF:
|
|
case LOAD_CLASSDEREF:
|
|
return 1;
|
|
case STORE_DEREF:
|
|
return -1;
|
|
case DELETE_DEREF:
|
|
return 0;
|
|
|
|
/* Iterators and generators */
|
|
case GET_AWAITABLE:
|
|
return 0;
|
|
case SETUP_ASYNC_WITH:
|
|
/* 0 in the normal flow.
|
|
* Restore the stack position to the position before the result
|
|
* of __aenter__ and push 6 values before jumping to the handler
|
|
* if an exception be raised. */
|
|
return jump ? -1 + 6 : 0;
|
|
case BEFORE_ASYNC_WITH:
|
|
return 1;
|
|
case GET_AITER:
|
|
return 0;
|
|
case GET_ANEXT:
|
|
return 1;
|
|
case GET_YIELD_FROM_ITER:
|
|
return 0;
|
|
case END_ASYNC_FOR:
|
|
return -7;
|
|
case FORMAT_VALUE:
|
|
/* If there's a fmt_spec on the stack, we go from 2->1,
|
|
else 1->1. */
|
|
return (oparg & FVS_MASK) == FVS_HAVE_SPEC ? -1 : 0;
|
|
case LOAD_METHOD:
|
|
return 1;
|
|
case LOAD_ASSERTION_ERROR:
|
|
return 1;
|
|
case LIST_TO_TUPLE:
|
|
return 0;
|
|
case LIST_EXTEND:
|
|
case SET_UPDATE:
|
|
case DICT_MERGE:
|
|
case DICT_UPDATE:
|
|
return -1;
|
|
case COPY_DICT_WITHOUT_KEYS:
|
|
return 0;
|
|
case MATCH_CLASS:
|
|
return -1;
|
|
case GET_LEN:
|
|
case MATCH_MAPPING:
|
|
case MATCH_SEQUENCE:
|
|
return 1;
|
|
case MATCH_KEYS:
|
|
return 2;
|
|
default:
|
|
return PY_INVALID_STACK_EFFECT;
|
|
}
|
|
return PY_INVALID_STACK_EFFECT; /* not reachable */
|
|
}
|
|
|
|
int
|
|
PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump)
|
|
{
|
|
return stack_effect(opcode, oparg, jump);
|
|
}
|
|
|
|
int
|
|
PyCompile_OpcodeStackEffect(int opcode, int oparg)
|
|
{
|
|
return stack_effect(opcode, oparg, -1);
|
|
}
|
|
|
|
/* Add an opcode with no argument.
|
|
Returns 0 on failure, 1 on success.
|
|
*/
|
|
|
|
static int
|
|
compiler_addop_line(struct compiler *c, int opcode, int line)
|
|
{
|
|
basicblock *b;
|
|
struct instr *i;
|
|
int off;
|
|
assert(!HAS_ARG(opcode));
|
|
off = compiler_next_instr(c->u->u_curblock);
|
|
if (off < 0)
|
|
return 0;
|
|
b = c->u->u_curblock;
|
|
i = &b->b_instr[off];
|
|
i->i_opcode = opcode;
|
|
i->i_oparg = 0;
|
|
if (opcode == RETURN_VALUE)
|
|
b->b_return = 1;
|
|
i->i_lineno = line;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_addop(struct compiler *c, int opcode)
|
|
{
|
|
return compiler_addop_line(c, opcode, c->u->u_lineno);
|
|
}
|
|
|
|
static int
|
|
compiler_addop_noline(struct compiler *c, int opcode)
|
|
{
|
|
return compiler_addop_line(c, opcode, -1);
|
|
}
|
|
|
|
|
|
static Py_ssize_t
|
|
compiler_add_o(PyObject *dict, PyObject *o)
|
|
{
|
|
PyObject *v;
|
|
Py_ssize_t arg;
|
|
|
|
v = PyDict_GetItemWithError(dict, o);
|
|
if (!v) {
|
|
if (PyErr_Occurred()) {
|
|
return -1;
|
|
}
|
|
arg = PyDict_GET_SIZE(dict);
|
|
v = PyLong_FromSsize_t(arg);
|
|
if (!v) {
|
|
return -1;
|
|
}
|
|
if (PyDict_SetItem(dict, o, v) < 0) {
|
|
Py_DECREF(v);
|
|
return -1;
|
|
}
|
|
Py_DECREF(v);
|
|
}
|
|
else
|
|
arg = PyLong_AsLong(v);
|
|
return arg;
|
|
}
|
|
|
|
// Merge const *o* recursively and return constant key object.
|
|
static PyObject*
|
|
merge_consts_recursive(struct compiler *c, PyObject *o)
|
|
{
|
|
// None and Ellipsis are singleton, and key is the singleton.
|
|
// No need to merge object and key.
|
|
if (o == Py_None || o == Py_Ellipsis) {
|
|
Py_INCREF(o);
|
|
return o;
|
|
}
|
|
|
|
PyObject *key = _PyCode_ConstantKey(o);
|
|
if (key == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// t is borrowed reference
|
|
PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key);
|
|
if (t != key) {
|
|
// o is registered in c_const_cache. Just use it.
|
|
Py_XINCREF(t);
|
|
Py_DECREF(key);
|
|
return t;
|
|
}
|
|
|
|
// We registered o in c_const_cache.
|
|
// When o is a tuple or frozenset, we want to merge its
|
|
// items too.
|
|
if (PyTuple_CheckExact(o)) {
|
|
Py_ssize_t len = PyTuple_GET_SIZE(o);
|
|
for (Py_ssize_t i = 0; i < len; i++) {
|
|
PyObject *item = PyTuple_GET_ITEM(o, i);
|
|
PyObject *u = merge_consts_recursive(c, item);
|
|
if (u == NULL) {
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
|
|
// See _PyCode_ConstantKey()
|
|
PyObject *v; // borrowed
|
|
if (PyTuple_CheckExact(u)) {
|
|
v = PyTuple_GET_ITEM(u, 1);
|
|
}
|
|
else {
|
|
v = u;
|
|
}
|
|
if (v != item) {
|
|
Py_INCREF(v);
|
|
PyTuple_SET_ITEM(o, i, v);
|
|
Py_DECREF(item);
|
|
}
|
|
|
|
Py_DECREF(u);
|
|
}
|
|
}
|
|
else if (PyFrozenSet_CheckExact(o)) {
|
|
// *key* is tuple. And its first item is frozenset of
|
|
// constant keys.
|
|
// See _PyCode_ConstantKey() for detail.
|
|
assert(PyTuple_CheckExact(key));
|
|
assert(PyTuple_GET_SIZE(key) == 2);
|
|
|
|
Py_ssize_t len = PySet_GET_SIZE(o);
|
|
if (len == 0) { // empty frozenset should not be re-created.
|
|
return key;
|
|
}
|
|
PyObject *tuple = PyTuple_New(len);
|
|
if (tuple == NULL) {
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
Py_ssize_t i = 0, pos = 0;
|
|
PyObject *item;
|
|
Py_hash_t hash;
|
|
while (_PySet_NextEntry(o, &pos, &item, &hash)) {
|
|
PyObject *k = merge_consts_recursive(c, item);
|
|
if (k == NULL) {
|
|
Py_DECREF(tuple);
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
PyObject *u;
|
|
if (PyTuple_CheckExact(k)) {
|
|
u = PyTuple_GET_ITEM(k, 1);
|
|
Py_INCREF(u);
|
|
Py_DECREF(k);
|
|
}
|
|
else {
|
|
u = k;
|
|
}
|
|
PyTuple_SET_ITEM(tuple, i, u); // Steals reference of u.
|
|
i++;
|
|
}
|
|
|
|
// Instead of rewriting o, we create new frozenset and embed in the
|
|
// key tuple. Caller should get merged frozenset from the key tuple.
|
|
PyObject *new = PyFrozenSet_New(tuple);
|
|
Py_DECREF(tuple);
|
|
if (new == NULL) {
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
assert(PyTuple_GET_ITEM(key, 1) == o);
|
|
Py_DECREF(o);
|
|
PyTuple_SET_ITEM(key, 1, new);
|
|
}
|
|
|
|
return key;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
compiler_add_const(struct compiler *c, PyObject *o)
|
|
{
|
|
PyObject *key = merge_consts_recursive(c, o);
|
|
if (key == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
Py_ssize_t arg = compiler_add_o(c->u->u_consts, key);
|
|
Py_DECREF(key);
|
|
return arg;
|
|
}
|
|
|
|
static int
|
|
compiler_addop_load_const(struct compiler *c, PyObject *o)
|
|
{
|
|
Py_ssize_t arg = compiler_add_const(c, o);
|
|
if (arg < 0)
|
|
return 0;
|
|
return compiler_addop_i(c, LOAD_CONST, arg);
|
|
}
|
|
|
|
static int
|
|
compiler_addop_o(struct compiler *c, int opcode, PyObject *dict,
|
|
PyObject *o)
|
|
{
|
|
Py_ssize_t arg = compiler_add_o(dict, o);
|
|
if (arg < 0)
|
|
return 0;
|
|
return compiler_addop_i(c, opcode, arg);
|
|
}
|
|
|
|
static int
|
|
compiler_addop_name(struct compiler *c, int opcode, PyObject *dict,
|
|
PyObject *o)
|
|
{
|
|
Py_ssize_t arg;
|
|
|
|
PyObject *mangled = _Py_Mangle(c->u->u_private, o);
|
|
if (!mangled)
|
|
return 0;
|
|
arg = compiler_add_o(dict, mangled);
|
|
Py_DECREF(mangled);
|
|
if (arg < 0)
|
|
return 0;
|
|
return compiler_addop_i(c, opcode, arg);
|
|
}
|
|
|
|
/* Add an opcode with an integer argument.
|
|
Returns 0 on failure, 1 on success.
|
|
*/
|
|
|
|
static int
|
|
compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg)
|
|
{
|
|
struct instr *i;
|
|
int off;
|
|
|
|
/* oparg value is unsigned, but a signed C int is usually used to store
|
|
it in the C code (like Python/ceval.c).
|
|
|
|
Limit to 32-bit signed C int (rather than INT_MAX) for portability.
|
|
|
|
The argument of a concrete bytecode instruction is limited to 8-bit.
|
|
EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */
|
|
assert(HAS_ARG(opcode));
|
|
assert(0 <= oparg && oparg <= 2147483647);
|
|
|
|
off = compiler_next_instr(c->u->u_curblock);
|
|
if (off < 0)
|
|
return 0;
|
|
i = &c->u->u_curblock->b_instr[off];
|
|
i->i_opcode = opcode;
|
|
i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
|
|
i->i_lineno = c->u->u_lineno;
|
|
return 1;
|
|
}
|
|
|
|
static int add_jump_to_block(basicblock *b, int opcode, int lineno, basicblock *target)
|
|
{
|
|
assert(HAS_ARG(opcode));
|
|
assert(b != NULL);
|
|
assert(target != NULL);
|
|
|
|
int off = compiler_next_instr(b);
|
|
struct instr *i = &b->b_instr[off];
|
|
if (off < 0) {
|
|
return 0;
|
|
}
|
|
i->i_opcode = opcode;
|
|
i->i_target = target;
|
|
i->i_lineno = lineno;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_addop_j(struct compiler *c, int opcode, basicblock *b)
|
|
{
|
|
return add_jump_to_block(c->u->u_curblock, opcode, c->u->u_lineno, b);
|
|
}
|
|
|
|
static int
|
|
compiler_addop_j_noline(struct compiler *c, int opcode, basicblock *b)
|
|
{
|
|
return add_jump_to_block(c->u->u_curblock, opcode, -1, b);
|
|
}
|
|
|
|
/* NEXT_BLOCK() creates an implicit jump from the current block
|
|
to the new block.
|
|
|
|
The returns inside this macro make it impossible to decref objects
|
|
created in the local function. Local objects should use the arena.
|
|
*/
|
|
#define NEXT_BLOCK(C) { \
|
|
if (compiler_next_block((C)) == NULL) \
|
|
return 0; \
|
|
}
|
|
|
|
#define ADDOP(C, OP) { \
|
|
if (!compiler_addop((C), (OP))) \
|
|
return 0; \
|
|
}
|
|
|
|
#define ADDOP_NOLINE(C, OP) { \
|
|
if (!compiler_addop_noline((C), (OP))) \
|
|
return 0; \
|
|
}
|
|
|
|
#define ADDOP_IN_SCOPE(C, OP) { \
|
|
if (!compiler_addop((C), (OP))) { \
|
|
compiler_exit_scope(c); \
|
|
return 0; \
|
|
} \
|
|
}
|
|
|
|
#define ADDOP_LOAD_CONST(C, O) { \
|
|
if (!compiler_addop_load_const((C), (O))) \
|
|
return 0; \
|
|
}
|
|
|
|
/* Same as ADDOP_LOAD_CONST, but steals a reference. */
|
|
#define ADDOP_LOAD_CONST_NEW(C, O) { \
|
|
PyObject *__new_const = (O); \
|
|
if (__new_const == NULL) { \
|
|
return 0; \
|
|
} \
|
|
if (!compiler_addop_load_const((C), __new_const)) { \
|
|
Py_DECREF(__new_const); \
|
|
return 0; \
|
|
} \
|
|
Py_DECREF(__new_const); \
|
|
}
|
|
|
|
#define ADDOP_O(C, OP, O, TYPE) { \
|
|
if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) \
|
|
return 0; \
|
|
}
|
|
|
|
/* Same as ADDOP_O, but steals a reference. */
|
|
#define ADDOP_N(C, OP, O, TYPE) { \
|
|
if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) { \
|
|
Py_DECREF((O)); \
|
|
return 0; \
|
|
} \
|
|
Py_DECREF((O)); \
|
|
}
|
|
|
|
#define ADDOP_NAME(C, OP, O, TYPE) { \
|
|
if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \
|
|
return 0; \
|
|
}
|
|
|
|
#define ADDOP_I(C, OP, O) { \
|
|
if (!compiler_addop_i((C), (OP), (O))) \
|
|
return 0; \
|
|
}
|
|
|
|
#define ADDOP_JUMP(C, OP, O) { \
|
|
if (!compiler_addop_j((C), (OP), (O))) \
|
|
return 0; \
|
|
}
|
|
|
|
/* Add a jump with no line number.
|
|
* Used for artificial jumps that have no corresponding
|
|
* token in the source code. */
|
|
#define ADDOP_JUMP_NOLINE(C, OP, O) { \
|
|
if (!compiler_addop_j_noline((C), (OP), (O))) \
|
|
return 0; \
|
|
}
|
|
|
|
#define ADDOP_COMPARE(C, CMP) { \
|
|
if (!compiler_addcompare((C), (cmpop_ty)(CMP))) \
|
|
return 0; \
|
|
}
|
|
|
|
/* VISIT and VISIT_SEQ takes an ASDL type as their second argument. They use
|
|
the ASDL name to synthesize the name of the C type and the visit function.
|
|
*/
|
|
|
|
#define VISIT(C, TYPE, V) {\
|
|
if (!compiler_visit_ ## TYPE((C), (V))) \
|
|
return 0; \
|
|
}
|
|
|
|
#define VISIT_IN_SCOPE(C, TYPE, V) {\
|
|
if (!compiler_visit_ ## TYPE((C), (V))) { \
|
|
compiler_exit_scope(c); \
|
|
return 0; \
|
|
} \
|
|
}
|
|
|
|
#define VISIT_SLICE(C, V, CTX) {\
|
|
if (!compiler_visit_slice((C), (V), (CTX))) \
|
|
return 0; \
|
|
}
|
|
|
|
#define VISIT_SEQ(C, TYPE, SEQ) { \
|
|
int _i; \
|
|
asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
|
|
for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
|
|
TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
|
|
if (!compiler_visit_ ## TYPE((C), elt)) \
|
|
return 0; \
|
|
} \
|
|
}
|
|
|
|
#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
|
|
int _i; \
|
|
asdl_ ## TYPE ## _seq *seq = (SEQ); /* avoid variable capture */ \
|
|
for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
|
|
TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
|
|
if (!compiler_visit_ ## TYPE((C), elt)) { \
|
|
compiler_exit_scope(c); \
|
|
return 0; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#define RETURN_IF_FALSE(X) \
|
|
if (!(X)) { \
|
|
return 0; \
|
|
}
|
|
|
|
/* Search if variable annotations are present statically in a block. */
|
|
|
|
static int
|
|
find_ann(asdl_stmt_seq *stmts)
|
|
{
|
|
int i, j, res = 0;
|
|
stmt_ty st;
|
|
|
|
for (i = 0; i < asdl_seq_LEN(stmts); i++) {
|
|
st = (stmt_ty)asdl_seq_GET(stmts, i);
|
|
switch (st->kind) {
|
|
case AnnAssign_kind:
|
|
return 1;
|
|
case For_kind:
|
|
res = find_ann(st->v.For.body) ||
|
|
find_ann(st->v.For.orelse);
|
|
break;
|
|
case AsyncFor_kind:
|
|
res = find_ann(st->v.AsyncFor.body) ||
|
|
find_ann(st->v.AsyncFor.orelse);
|
|
break;
|
|
case While_kind:
|
|
res = find_ann(st->v.While.body) ||
|
|
find_ann(st->v.While.orelse);
|
|
break;
|
|
case If_kind:
|
|
res = find_ann(st->v.If.body) ||
|
|
find_ann(st->v.If.orelse);
|
|
break;
|
|
case With_kind:
|
|
res = find_ann(st->v.With.body);
|
|
break;
|
|
case AsyncWith_kind:
|
|
res = find_ann(st->v.AsyncWith.body);
|
|
break;
|
|
case Try_kind:
|
|
for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) {
|
|
excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
|
|
st->v.Try.handlers, j);
|
|
if (find_ann(handler->v.ExceptHandler.body)) {
|
|
return 1;
|
|
}
|
|
}
|
|
res = find_ann(st->v.Try.body) ||
|
|
find_ann(st->v.Try.finalbody) ||
|
|
find_ann(st->v.Try.orelse);
|
|
break;
|
|
default:
|
|
res = 0;
|
|
}
|
|
if (res) {
|
|
break;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Frame block handling functions
|
|
*/
|
|
|
|
static int
|
|
compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b,
|
|
basicblock *exit, void *datum)
|
|
{
|
|
struct fblockinfo *f;
|
|
if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
|
|
return compiler_error(c, "too many statically nested blocks");
|
|
}
|
|
f = &c->u->u_fblock[c->u->u_nfblocks++];
|
|
f->fb_type = t;
|
|
f->fb_block = b;
|
|
f->fb_exit = exit;
|
|
f->fb_datum = datum;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
|
|
{
|
|
struct compiler_unit *u = c->u;
|
|
assert(u->u_nfblocks > 0);
|
|
u->u_nfblocks--;
|
|
assert(u->u_fblock[u->u_nfblocks].fb_type == t);
|
|
assert(u->u_fblock[u->u_nfblocks].fb_block == b);
|
|
}
|
|
|
|
static int
|
|
compiler_call_exit_with_nones(struct compiler *c) {
|
|
ADDOP_O(c, LOAD_CONST, Py_None, consts);
|
|
ADDOP(c, DUP_TOP);
|
|
ADDOP(c, DUP_TOP);
|
|
ADDOP_I(c, CALL_FUNCTION, 3);
|
|
return 1;
|
|
}
|
|
|
|
/* Unwind a frame block. If preserve_tos is true, the TOS before
|
|
* popping the blocks will be restored afterwards, unless another
|
|
* return, break or continue is found. In which case, the TOS will
|
|
* be popped.
|
|
*/
|
|
static int
|
|
compiler_unwind_fblock(struct compiler *c, struct fblockinfo *info,
|
|
int preserve_tos)
|
|
{
|
|
switch (info->fb_type) {
|
|
case WHILE_LOOP:
|
|
case EXCEPTION_HANDLER:
|
|
return 1;
|
|
|
|
case FOR_LOOP:
|
|
/* Pop the iterator */
|
|
if (preserve_tos) {
|
|
ADDOP(c, ROT_TWO);
|
|
}
|
|
ADDOP(c, POP_TOP);
|
|
return 1;
|
|
|
|
case TRY_EXCEPT:
|
|
ADDOP(c, POP_BLOCK);
|
|
return 1;
|
|
|
|
case FINALLY_TRY:
|
|
/* This POP_BLOCK gets the line number of the unwinding statement */
|
|
ADDOP(c, POP_BLOCK);
|
|
if (preserve_tos) {
|
|
if (!compiler_push_fblock(c, POP_VALUE, NULL, NULL, NULL)) {
|
|
return 0;
|
|
}
|
|
}
|
|
/* Emit the finally block */
|
|
VISIT_SEQ(c, stmt, info->fb_datum);
|
|
if (preserve_tos) {
|
|
compiler_pop_fblock(c, POP_VALUE, NULL);
|
|
}
|
|
/* The finally block should appear to execute after the
|
|
* statement causing the unwinding, so make the unwinding
|
|
* instruction artificial */
|
|
c->u->u_lineno = -1;
|
|
return 1;
|
|
|
|
case FINALLY_END:
|
|
if (preserve_tos) {
|
|
ADDOP(c, ROT_FOUR);
|
|
}
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP(c, POP_TOP);
|
|
if (preserve_tos) {
|
|
ADDOP(c, ROT_FOUR);
|
|
}
|
|
ADDOP(c, POP_EXCEPT);
|
|
return 1;
|
|
|
|
case WITH:
|
|
case ASYNC_WITH:
|
|
ADDOP(c, POP_BLOCK);
|
|
if (preserve_tos) {
|
|
ADDOP(c, ROT_TWO);
|
|
}
|
|
if(!compiler_call_exit_with_nones(c)) {
|
|
return 0;
|
|
}
|
|
if (info->fb_type == ASYNC_WITH) {
|
|
ADDOP(c, GET_AWAITABLE);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, YIELD_FROM);
|
|
}
|
|
ADDOP(c, POP_TOP);
|
|
return 1;
|
|
|
|
case HANDLER_CLEANUP:
|
|
if (info->fb_datum) {
|
|
ADDOP(c, POP_BLOCK);
|
|
}
|
|
if (preserve_tos) {
|
|
ADDOP(c, ROT_FOUR);
|
|
}
|
|
ADDOP(c, POP_EXCEPT);
|
|
if (info->fb_datum) {
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
compiler_nameop(c, info->fb_datum, Store);
|
|
compiler_nameop(c, info->fb_datum, Del);
|
|
}
|
|
return 1;
|
|
|
|
case POP_VALUE:
|
|
if (preserve_tos) {
|
|
ADDOP(c, ROT_TWO);
|
|
}
|
|
ADDOP(c, POP_TOP);
|
|
return 1;
|
|
}
|
|
Py_UNREACHABLE();
|
|
}
|
|
|
|
/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */
|
|
static int
|
|
compiler_unwind_fblock_stack(struct compiler *c, int preserve_tos, struct fblockinfo **loop) {
|
|
if (c->u->u_nfblocks == 0) {
|
|
return 1;
|
|
}
|
|
struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1];
|
|
if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) {
|
|
*loop = top;
|
|
return 1;
|
|
}
|
|
struct fblockinfo copy = *top;
|
|
c->u->u_nfblocks--;
|
|
if (!compiler_unwind_fblock(c, ©, preserve_tos)) {
|
|
return 0;
|
|
}
|
|
if (!compiler_unwind_fblock_stack(c, preserve_tos, loop)) {
|
|
return 0;
|
|
}
|
|
c->u->u_fblock[c->u->u_nfblocks] = copy;
|
|
c->u->u_nfblocks++;
|
|
return 1;
|
|
}
|
|
|
|
/* Compile a sequence of statements, checking for a docstring
|
|
and for annotations. */
|
|
|
|
static int
|
|
compiler_body(struct compiler *c, asdl_stmt_seq *stmts)
|
|
{
|
|
int i = 0;
|
|
stmt_ty st;
|
|
PyObject *docstring;
|
|
|
|
/* Set current line number to the line number of first statement.
|
|
This way line number for SETUP_ANNOTATIONS will always
|
|
coincide with the line number of first "real" statement in module.
|
|
If body is empty, then lineno will be set later in assemble. */
|
|
if (c->u->u_scope_type == COMPILER_SCOPE_MODULE && asdl_seq_LEN(stmts)) {
|
|
st = (stmt_ty)asdl_seq_GET(stmts, 0);
|
|
SET_LOC(c, st);
|
|
}
|
|
/* Every annotated class and module should have __annotations__. */
|
|
if (find_ann(stmts)) {
|
|
ADDOP(c, SETUP_ANNOTATIONS);
|
|
}
|
|
if (!asdl_seq_LEN(stmts))
|
|
return 1;
|
|
/* if not -OO mode, set docstring */
|
|
if (c->c_optimize < 2) {
|
|
docstring = _PyAST_GetDocString(stmts);
|
|
if (docstring) {
|
|
i = 1;
|
|
st = (stmt_ty)asdl_seq_GET(stmts, 0);
|
|
assert(st->kind == Expr_kind);
|
|
VISIT(c, expr, st->v.Expr.value);
|
|
if (!compiler_nameop(c, __doc__, Store))
|
|
return 0;
|
|
}
|
|
}
|
|
for (; i < asdl_seq_LEN(stmts); i++)
|
|
VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
|
|
return 1;
|
|
}
|
|
|
|
static PyCodeObject *
|
|
compiler_mod(struct compiler *c, mod_ty mod)
|
|
{
|
|
PyCodeObject *co;
|
|
int addNone = 1;
|
|
static PyObject *module;
|
|
if (!module) {
|
|
module = PyUnicode_InternFromString("<module>");
|
|
if (!module)
|
|
return NULL;
|
|
}
|
|
/* Use 0 for firstlineno initially, will fixup in assemble(). */
|
|
if (!compiler_enter_scope(c, module, COMPILER_SCOPE_MODULE, mod, 1))
|
|
return NULL;
|
|
switch (mod->kind) {
|
|
case Module_kind:
|
|
if (!compiler_body(c, mod->v.Module.body)) {
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
break;
|
|
case Interactive_kind:
|
|
if (find_ann(mod->v.Interactive.body)) {
|
|
ADDOP(c, SETUP_ANNOTATIONS);
|
|
}
|
|
c->c_interactive = 1;
|
|
VISIT_SEQ_IN_SCOPE(c, stmt, mod->v.Interactive.body);
|
|
break;
|
|
case Expression_kind:
|
|
VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
|
|
addNone = 0;
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"module kind %d should not be possible",
|
|
mod->kind);
|
|
return 0;
|
|
}
|
|
co = assemble(c, addNone);
|
|
compiler_exit_scope(c);
|
|
return co;
|
|
}
|
|
|
|
/* The test for LOCAL must come before the test for FREE in order to
|
|
handle classes where name is both local and free. The local var is
|
|
a method and the free var is a free var referenced within a method.
|
|
*/
|
|
|
|
static int
|
|
get_ref_type(struct compiler *c, PyObject *name)
|
|
{
|
|
int scope;
|
|
if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
|
|
_PyUnicode_EqualToASCIIString(name, "__class__"))
|
|
return CELL;
|
|
scope = _PyST_GetScope(c->u->u_ste, name);
|
|
if (scope == 0) {
|
|
PyErr_Format(PyExc_SystemError,
|
|
"_PyST_GetScope(name=%R) failed: "
|
|
"unknown scope in unit %S (%R); "
|
|
"symbols: %R; locals: %R; globals: %R",
|
|
name,
|
|
c->u->u_name, c->u->u_ste->ste_id,
|
|
c->u->u_ste->ste_symbols, c->u->u_varnames, c->u->u_names);
|
|
return -1;
|
|
}
|
|
return scope;
|
|
}
|
|
|
|
static int
|
|
compiler_lookup_arg(PyObject *dict, PyObject *name)
|
|
{
|
|
PyObject *v;
|
|
v = PyDict_GetItemWithError(dict, name);
|
|
if (v == NULL)
|
|
return -1;
|
|
return PyLong_AS_LONG(v);
|
|
}
|
|
|
|
static int
|
|
compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t flags,
|
|
PyObject *qualname)
|
|
{
|
|
Py_ssize_t i, free = PyCode_GetNumFree(co);
|
|
if (qualname == NULL)
|
|
qualname = co->co_name;
|
|
|
|
if (free) {
|
|
for (i = 0; i < free; ++i) {
|
|
/* Bypass com_addop_varname because it will generate
|
|
LOAD_DEREF but LOAD_CLOSURE is needed.
|
|
*/
|
|
PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
|
|
|
|
/* Special case: If a class contains a method with a
|
|
free variable that has the same name as a method,
|
|
the name will be considered free *and* local in the
|
|
class. It should be handled by the closure, as
|
|
well as by the normal name lookup logic.
|
|
*/
|
|
int reftype = get_ref_type(c, name);
|
|
if (reftype == -1) {
|
|
return 0;
|
|
}
|
|
int arg;
|
|
if (reftype == CELL) {
|
|
arg = compiler_lookup_arg(c->u->u_cellvars, name);
|
|
}
|
|
else {
|
|
arg = compiler_lookup_arg(c->u->u_freevars, name);
|
|
}
|
|
if (arg == -1) {
|
|
PyErr_Format(PyExc_SystemError,
|
|
"compiler_lookup_arg(name=%R) with reftype=%d failed in %S; "
|
|
"freevars of code %S: %R",
|
|
name,
|
|
reftype,
|
|
c->u->u_name,
|
|
co->co_name,
|
|
co->co_freevars);
|
|
return 0;
|
|
}
|
|
ADDOP_I(c, LOAD_CLOSURE, arg);
|
|
}
|
|
flags |= 0x08;
|
|
ADDOP_I(c, BUILD_TUPLE, free);
|
|
}
|
|
ADDOP_LOAD_CONST(c, (PyObject*)co);
|
|
ADDOP_LOAD_CONST(c, qualname);
|
|
ADDOP_I(c, MAKE_FUNCTION, flags);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_decorators(struct compiler *c, asdl_expr_seq* decos)
|
|
{
|
|
int i;
|
|
|
|
if (!decos)
|
|
return 1;
|
|
|
|
for (i = 0; i < asdl_seq_LEN(decos); i++) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_kwonlydefaults(struct compiler *c, asdl_arg_seq *kwonlyargs,
|
|
asdl_expr_seq *kw_defaults)
|
|
{
|
|
/* Push a dict of keyword-only default values.
|
|
|
|
Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed.
|
|
*/
|
|
int i;
|
|
PyObject *keys = NULL;
|
|
|
|
for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
|
|
arg_ty arg = asdl_seq_GET(kwonlyargs, i);
|
|
expr_ty default_ = asdl_seq_GET(kw_defaults, i);
|
|
if (default_) {
|
|
PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
|
|
if (!mangled) {
|
|
goto error;
|
|
}
|
|
if (keys == NULL) {
|
|
keys = PyList_New(1);
|
|
if (keys == NULL) {
|
|
Py_DECREF(mangled);
|
|
return 0;
|
|
}
|
|
PyList_SET_ITEM(keys, 0, mangled);
|
|
}
|
|
else {
|
|
int res = PyList_Append(keys, mangled);
|
|
Py_DECREF(mangled);
|
|
if (res == -1) {
|
|
goto error;
|
|
}
|
|
}
|
|
if (!compiler_visit_expr(c, default_)) {
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
if (keys != NULL) {
|
|
Py_ssize_t default_count = PyList_GET_SIZE(keys);
|
|
PyObject *keys_tuple = PyList_AsTuple(keys);
|
|
Py_DECREF(keys);
|
|
ADDOP_LOAD_CONST_NEW(c, keys_tuple);
|
|
ADDOP_I(c, BUILD_CONST_KEY_MAP, default_count);
|
|
assert(default_count > 0);
|
|
return 1;
|
|
}
|
|
else {
|
|
return -1;
|
|
}
|
|
|
|
error:
|
|
Py_XDECREF(keys);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_annexpr(struct compiler *c, expr_ty annotation)
|
|
{
|
|
ADDOP_LOAD_CONST_NEW(c, _PyAST_ExprAsUnicode(annotation));
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_argannotation(struct compiler *c, identifier id,
|
|
expr_ty annotation, Py_ssize_t *annotations_len)
|
|
{
|
|
if (annotation) {
|
|
PyObject *mangled = _Py_Mangle(c->u->u_private, id);
|
|
if (!mangled)
|
|
return 0;
|
|
|
|
ADDOP_LOAD_CONST(c, mangled);
|
|
Py_DECREF(mangled);
|
|
VISIT(c, annexpr, annotation);
|
|
*annotations_len += 2;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_argannotations(struct compiler *c, asdl_arg_seq* args,
|
|
Py_ssize_t *annotations_len)
|
|
{
|
|
int i;
|
|
for (i = 0; i < asdl_seq_LEN(args); i++) {
|
|
arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
|
|
if (!compiler_visit_argannotation(
|
|
c,
|
|
arg->arg,
|
|
arg->annotation,
|
|
annotations_len))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_annotations(struct compiler *c, arguments_ty args,
|
|
expr_ty returns)
|
|
{
|
|
/* Push arg annotation names and values.
|
|
The expressions are evaluated out-of-order wrt the source code.
|
|
|
|
Return 0 on error, -1 if no annotations pushed, 1 if a annotations is pushed.
|
|
*/
|
|
static identifier return_str;
|
|
Py_ssize_t annotations_len = 0;
|
|
|
|
if (!compiler_visit_argannotations(c, args->args, &annotations_len))
|
|
return 0;
|
|
if (!compiler_visit_argannotations(c, args->posonlyargs, &annotations_len))
|
|
return 0;
|
|
if (args->vararg && args->vararg->annotation &&
|
|
!compiler_visit_argannotation(c, args->vararg->arg,
|
|
args->vararg->annotation, &annotations_len))
|
|
return 0;
|
|
if (!compiler_visit_argannotations(c, args->kwonlyargs, &annotations_len))
|
|
return 0;
|
|
if (args->kwarg && args->kwarg->annotation &&
|
|
!compiler_visit_argannotation(c, args->kwarg->arg,
|
|
args->kwarg->annotation, &annotations_len))
|
|
return 0;
|
|
|
|
if (!return_str) {
|
|
return_str = PyUnicode_InternFromString("return");
|
|
if (!return_str)
|
|
return 0;
|
|
}
|
|
if (!compiler_visit_argannotation(c, return_str, returns, &annotations_len)) {
|
|
return 0;
|
|
}
|
|
|
|
if (annotations_len) {
|
|
ADDOP_I(c, BUILD_TUPLE, annotations_len);
|
|
return 1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_defaults(struct compiler *c, arguments_ty args)
|
|
{
|
|
VISIT_SEQ(c, expr, args->defaults);
|
|
ADDOP_I(c, BUILD_TUPLE, asdl_seq_LEN(args->defaults));
|
|
return 1;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
compiler_default_arguments(struct compiler *c, arguments_ty args)
|
|
{
|
|
Py_ssize_t funcflags = 0;
|
|
if (args->defaults && asdl_seq_LEN(args->defaults) > 0) {
|
|
if (!compiler_visit_defaults(c, args))
|
|
return -1;
|
|
funcflags |= 0x01;
|
|
}
|
|
if (args->kwonlyargs) {
|
|
int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs,
|
|
args->kw_defaults);
|
|
if (res == 0) {
|
|
return -1;
|
|
}
|
|
else if (res > 0) {
|
|
funcflags |= 0x02;
|
|
}
|
|
}
|
|
return funcflags;
|
|
}
|
|
|
|
static int
|
|
forbidden_name(struct compiler *c, identifier name, expr_context_ty ctx)
|
|
{
|
|
|
|
if (ctx == Store && _PyUnicode_EqualToASCIIString(name, "__debug__")) {
|
|
compiler_error(c, "cannot assign to __debug__");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
compiler_check_debug_one_arg(struct compiler *c, arg_ty arg)
|
|
{
|
|
if (arg != NULL) {
|
|
if (forbidden_name(c, arg->arg, Store))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_check_debug_args_seq(struct compiler *c, asdl_arg_seq *args)
|
|
{
|
|
if (args != NULL) {
|
|
for (Py_ssize_t i = 0, n = asdl_seq_LEN(args); i < n; i++) {
|
|
if (!compiler_check_debug_one_arg(c, asdl_seq_GET(args, i)))
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_check_debug_args(struct compiler *c, arguments_ty args)
|
|
{
|
|
if (!compiler_check_debug_args_seq(c, args->posonlyargs))
|
|
return 0;
|
|
if (!compiler_check_debug_args_seq(c, args->args))
|
|
return 0;
|
|
if (!compiler_check_debug_one_arg(c, args->vararg))
|
|
return 0;
|
|
if (!compiler_check_debug_args_seq(c, args->kwonlyargs))
|
|
return 0;
|
|
if (!compiler_check_debug_one_arg(c, args->kwarg))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_function(struct compiler *c, stmt_ty s, int is_async)
|
|
{
|
|
PyCodeObject *co;
|
|
PyObject *qualname, *docstring = NULL;
|
|
arguments_ty args;
|
|
expr_ty returns;
|
|
identifier name;
|
|
asdl_expr_seq* decos;
|
|
asdl_stmt_seq *body;
|
|
Py_ssize_t i, funcflags;
|
|
int annotations;
|
|
int scope_type;
|
|
int firstlineno;
|
|
|
|
if (is_async) {
|
|
assert(s->kind == AsyncFunctionDef_kind);
|
|
|
|
args = s->v.AsyncFunctionDef.args;
|
|
returns = s->v.AsyncFunctionDef.returns;
|
|
decos = s->v.AsyncFunctionDef.decorator_list;
|
|
name = s->v.AsyncFunctionDef.name;
|
|
body = s->v.AsyncFunctionDef.body;
|
|
|
|
scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
|
|
} else {
|
|
assert(s->kind == FunctionDef_kind);
|
|
|
|
args = s->v.FunctionDef.args;
|
|
returns = s->v.FunctionDef.returns;
|
|
decos = s->v.FunctionDef.decorator_list;
|
|
name = s->v.FunctionDef.name;
|
|
body = s->v.FunctionDef.body;
|
|
|
|
scope_type = COMPILER_SCOPE_FUNCTION;
|
|
}
|
|
|
|
if (!compiler_check_debug_args(c, args))
|
|
return 0;
|
|
|
|
if (!compiler_decorators(c, decos))
|
|
return 0;
|
|
|
|
firstlineno = s->lineno;
|
|
if (asdl_seq_LEN(decos)) {
|
|
firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
|
|
}
|
|
|
|
funcflags = compiler_default_arguments(c, args);
|
|
if (funcflags == -1) {
|
|
return 0;
|
|
}
|
|
|
|
annotations = compiler_visit_annotations(c, args, returns);
|
|
if (annotations == 0) {
|
|
return 0;
|
|
}
|
|
else if (annotations > 0) {
|
|
funcflags |= 0x04;
|
|
}
|
|
|
|
if (!compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno)) {
|
|
return 0;
|
|
}
|
|
|
|
/* if not -OO mode, add docstring */
|
|
if (c->c_optimize < 2) {
|
|
docstring = _PyAST_GetDocString(body);
|
|
}
|
|
if (compiler_add_const(c, docstring ? docstring : Py_None) < 0) {
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
|
|
c->u->u_argcount = asdl_seq_LEN(args->args);
|
|
c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
|
|
c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
|
|
for (i = docstring ? 1 : 0; i < asdl_seq_LEN(body); i++) {
|
|
VISIT_IN_SCOPE(c, stmt, (stmt_ty)asdl_seq_GET(body, i));
|
|
}
|
|
co = assemble(c, 1);
|
|
qualname = c->u->u_qualname;
|
|
Py_INCREF(qualname);
|
|
compiler_exit_scope(c);
|
|
if (co == NULL) {
|
|
Py_XDECREF(qualname);
|
|
Py_XDECREF(co);
|
|
return 0;
|
|
}
|
|
|
|
if (!compiler_make_closure(c, co, funcflags, qualname)) {
|
|
Py_DECREF(qualname);
|
|
Py_DECREF(co);
|
|
return 0;
|
|
}
|
|
Py_DECREF(qualname);
|
|
Py_DECREF(co);
|
|
|
|
/* decorators */
|
|
for (i = 0; i < asdl_seq_LEN(decos); i++) {
|
|
ADDOP_I(c, CALL_FUNCTION, 1);
|
|
}
|
|
|
|
return compiler_nameop(c, name, Store);
|
|
}
|
|
|
|
static int
|
|
compiler_class(struct compiler *c, stmt_ty s)
|
|
{
|
|
PyCodeObject *co;
|
|
PyObject *str;
|
|
int i, firstlineno;
|
|
asdl_expr_seq *decos = s->v.ClassDef.decorator_list;
|
|
|
|
if (!compiler_decorators(c, decos))
|
|
return 0;
|
|
|
|
firstlineno = s->lineno;
|
|
if (asdl_seq_LEN(decos)) {
|
|
firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
|
|
}
|
|
|
|
/* ultimately generate code for:
|
|
<name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
|
|
where:
|
|
<func> is a function/closure created from the class body;
|
|
it has a single argument (__locals__) where the dict
|
|
(or MutableSequence) representing the locals is passed
|
|
<name> is the class name
|
|
<bases> is the positional arguments and *varargs argument
|
|
<keywords> is the keyword arguments and **kwds argument
|
|
This borrows from compiler_call.
|
|
*/
|
|
|
|
/* 1. compile the class body into a code object */
|
|
if (!compiler_enter_scope(c, s->v.ClassDef.name,
|
|
COMPILER_SCOPE_CLASS, (void *)s, firstlineno))
|
|
return 0;
|
|
/* this block represents what we do in the new scope */
|
|
{
|
|
/* use the class name for name mangling */
|
|
Py_INCREF(s->v.ClassDef.name);
|
|
Py_XSETREF(c->u->u_private, s->v.ClassDef.name);
|
|
/* load (global) __name__ ... */
|
|
str = PyUnicode_InternFromString("__name__");
|
|
if (!str || !compiler_nameop(c, str, Load)) {
|
|
Py_XDECREF(str);
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
Py_DECREF(str);
|
|
/* ... and store it as __module__ */
|
|
str = PyUnicode_InternFromString("__module__");
|
|
if (!str || !compiler_nameop(c, str, Store)) {
|
|
Py_XDECREF(str);
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
Py_DECREF(str);
|
|
assert(c->u->u_qualname);
|
|
ADDOP_LOAD_CONST(c, c->u->u_qualname);
|
|
str = PyUnicode_InternFromString("__qualname__");
|
|
if (!str || !compiler_nameop(c, str, Store)) {
|
|
Py_XDECREF(str);
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
Py_DECREF(str);
|
|
/* compile the body proper */
|
|
if (!compiler_body(c, s->v.ClassDef.body)) {
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
/* The following code is artificial */
|
|
c->u->u_lineno = -1;
|
|
/* Return __classcell__ if it is referenced, otherwise return None */
|
|
if (c->u->u_ste->ste_needs_class_closure) {
|
|
/* Store __classcell__ into class namespace & return it */
|
|
str = PyUnicode_InternFromString("__class__");
|
|
if (str == NULL) {
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
i = compiler_lookup_arg(c->u->u_cellvars, str);
|
|
Py_DECREF(str);
|
|
if (i < 0) {
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
assert(i == 0);
|
|
|
|
ADDOP_I(c, LOAD_CLOSURE, i);
|
|
ADDOP(c, DUP_TOP);
|
|
str = PyUnicode_InternFromString("__classcell__");
|
|
if (!str || !compiler_nameop(c, str, Store)) {
|
|
Py_XDECREF(str);
|
|
compiler_exit_scope(c);
|
|
return 0;
|
|
}
|
|
Py_DECREF(str);
|
|
}
|
|
else {
|
|
/* No methods referenced __class__, so just return None */
|
|
assert(PyDict_GET_SIZE(c->u->u_cellvars) == 0);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
}
|
|
ADDOP_IN_SCOPE(c, RETURN_VALUE);
|
|
/* create the code object */
|
|
co = assemble(c, 1);
|
|
}
|
|
/* leave the new scope */
|
|
compiler_exit_scope(c);
|
|
if (co == NULL)
|
|
return 0;
|
|
|
|
/* 2. load the 'build_class' function */
|
|
ADDOP(c, LOAD_BUILD_CLASS);
|
|
|
|
/* 3. load a function (or closure) made from the code object */
|
|
if (!compiler_make_closure(c, co, 0, NULL)) {
|
|
Py_DECREF(co);
|
|
return 0;
|
|
}
|
|
Py_DECREF(co);
|
|
|
|
/* 4. load class name */
|
|
ADDOP_LOAD_CONST(c, s->v.ClassDef.name);
|
|
|
|
/* 5. generate the rest of the code for the call */
|
|
if (!compiler_call_helper(c, 2, s->v.ClassDef.bases, s->v.ClassDef.keywords))
|
|
return 0;
|
|
|
|
/* 6. apply decorators */
|
|
for (i = 0; i < asdl_seq_LEN(decos); i++) {
|
|
ADDOP_I(c, CALL_FUNCTION, 1);
|
|
}
|
|
|
|
/* 7. store into <name> */
|
|
if (!compiler_nameop(c, s->v.ClassDef.name, Store))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Return 0 if the expression is a constant value except named singletons.
|
|
Return 1 otherwise. */
|
|
static int
|
|
check_is_arg(expr_ty e)
|
|
{
|
|
if (e->kind != Constant_kind) {
|
|
return 1;
|
|
}
|
|
PyObject *value = e->v.Constant.value;
|
|
return (value == Py_None
|
|
|| value == Py_False
|
|
|| value == Py_True
|
|
|| value == Py_Ellipsis);
|
|
}
|
|
|
|
/* Check operands of identity chacks ("is" and "is not").
|
|
Emit a warning if any operand is a constant except named singletons.
|
|
Return 0 on error.
|
|
*/
|
|
static int
|
|
check_compare(struct compiler *c, expr_ty e)
|
|
{
|
|
Py_ssize_t i, n;
|
|
int left = check_is_arg(e->v.Compare.left);
|
|
n = asdl_seq_LEN(e->v.Compare.ops);
|
|
for (i = 0; i < n; i++) {
|
|
cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i);
|
|
int right = check_is_arg((expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
|
|
if (op == Is || op == IsNot) {
|
|
if (!right || !left) {
|
|
const char *msg = (op == Is)
|
|
? "\"is\" with a literal. Did you mean \"==\"?"
|
|
: "\"is not\" with a literal. Did you mean \"!=\"?";
|
|
return compiler_warn(c, msg);
|
|
}
|
|
}
|
|
left = right;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int compiler_addcompare(struct compiler *c, cmpop_ty op)
|
|
{
|
|
int cmp;
|
|
switch (op) {
|
|
case Eq:
|
|
cmp = Py_EQ;
|
|
break;
|
|
case NotEq:
|
|
cmp = Py_NE;
|
|
break;
|
|
case Lt:
|
|
cmp = Py_LT;
|
|
break;
|
|
case LtE:
|
|
cmp = Py_LE;
|
|
break;
|
|
case Gt:
|
|
cmp = Py_GT;
|
|
break;
|
|
case GtE:
|
|
cmp = Py_GE;
|
|
break;
|
|
case Is:
|
|
ADDOP_I(c, IS_OP, 0);
|
|
return 1;
|
|
case IsNot:
|
|
ADDOP_I(c, IS_OP, 1);
|
|
return 1;
|
|
case In:
|
|
ADDOP_I(c, CONTAINS_OP, 0);
|
|
return 1;
|
|
case NotIn:
|
|
ADDOP_I(c, CONTAINS_OP, 1);
|
|
return 1;
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
ADDOP_I(c, COMPARE_OP, cmp);
|
|
return 1;
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
compiler_jump_if(struct compiler *c, expr_ty e, basicblock *next, int cond)
|
|
{
|
|
switch (e->kind) {
|
|
case UnaryOp_kind:
|
|
if (e->v.UnaryOp.op == Not)
|
|
return compiler_jump_if(c, e->v.UnaryOp.operand, next, !cond);
|
|
/* fallback to general implementation */
|
|
break;
|
|
case BoolOp_kind: {
|
|
asdl_expr_seq *s = e->v.BoolOp.values;
|
|
Py_ssize_t i, n = asdl_seq_LEN(s) - 1;
|
|
assert(n >= 0);
|
|
int cond2 = e->v.BoolOp.op == Or;
|
|
basicblock *next2 = next;
|
|
if (!cond2 != !cond) {
|
|
next2 = compiler_new_block(c);
|
|
if (next2 == NULL)
|
|
return 0;
|
|
}
|
|
for (i = 0; i < n; ++i) {
|
|
if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, i), next2, cond2))
|
|
return 0;
|
|
}
|
|
if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, n), next, cond))
|
|
return 0;
|
|
if (next2 != next)
|
|
compiler_use_next_block(c, next2);
|
|
return 1;
|
|
}
|
|
case IfExp_kind: {
|
|
basicblock *end, *next2;
|
|
end = compiler_new_block(c);
|
|
if (end == NULL)
|
|
return 0;
|
|
next2 = compiler_new_block(c);
|
|
if (next2 == NULL)
|
|
return 0;
|
|
if (!compiler_jump_if(c, e->v.IfExp.test, next2, 0))
|
|
return 0;
|
|
if (!compiler_jump_if(c, e->v.IfExp.body, next, cond))
|
|
return 0;
|
|
ADDOP_JUMP_NOLINE(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, next2);
|
|
if (!compiler_jump_if(c, e->v.IfExp.orelse, next, cond))
|
|
return 0;
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
case Compare_kind: {
|
|
Py_ssize_t i, n = asdl_seq_LEN(e->v.Compare.ops) - 1;
|
|
if (n > 0) {
|
|
if (!check_compare(c, e)) {
|
|
return 0;
|
|
}
|
|
basicblock *cleanup = compiler_new_block(c);
|
|
if (cleanup == NULL)
|
|
return 0;
|
|
VISIT(c, expr, e->v.Compare.left);
|
|
for (i = 0; i < n; i++) {
|
|
VISIT(c, expr,
|
|
(expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
|
|
ADDOP(c, DUP_TOP);
|
|
ADDOP(c, ROT_THREE);
|
|
ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i));
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, cleanup);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
|
|
ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n));
|
|
ADDOP_JUMP(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
|
|
NEXT_BLOCK(c);
|
|
basicblock *end = compiler_new_block(c);
|
|
if (end == NULL)
|
|
return 0;
|
|
ADDOP_JUMP_NOLINE(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, cleanup);
|
|
ADDOP(c, POP_TOP);
|
|
if (!cond) {
|
|
ADDOP_JUMP_NOLINE(c, JUMP_FORWARD, next);
|
|
}
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
/* fallback to general implementation */
|
|
break;
|
|
}
|
|
default:
|
|
/* fallback to general implementation */
|
|
break;
|
|
}
|
|
|
|
/* general implementation */
|
|
VISIT(c, expr, e);
|
|
ADDOP_JUMP(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
|
|
NEXT_BLOCK(c);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_ifexp(struct compiler *c, expr_ty e)
|
|
{
|
|
basicblock *end, *next;
|
|
|
|
assert(e->kind == IfExp_kind);
|
|
end = compiler_new_block(c);
|
|
if (end == NULL)
|
|
return 0;
|
|
next = compiler_new_block(c);
|
|
if (next == NULL)
|
|
return 0;
|
|
if (!compiler_jump_if(c, e->v.IfExp.test, next, 0))
|
|
return 0;
|
|
VISIT(c, expr, e->v.IfExp.body);
|
|
ADDOP_JUMP_NOLINE(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, next);
|
|
VISIT(c, expr, e->v.IfExp.orelse);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_lambda(struct compiler *c, expr_ty e)
|
|
{
|
|
PyCodeObject *co;
|
|
PyObject *qualname;
|
|
static identifier name;
|
|
Py_ssize_t funcflags;
|
|
arguments_ty args = e->v.Lambda.args;
|
|
assert(e->kind == Lambda_kind);
|
|
|
|
if (!compiler_check_debug_args(c, args))
|
|
return 0;
|
|
|
|
if (!name) {
|
|
name = PyUnicode_InternFromString("<lambda>");
|
|
if (!name)
|
|
return 0;
|
|
}
|
|
|
|
funcflags = compiler_default_arguments(c, args);
|
|
if (funcflags == -1) {
|
|
return 0;
|
|
}
|
|
|
|
if (!compiler_enter_scope(c, name, COMPILER_SCOPE_LAMBDA,
|
|
(void *)e, e->lineno))
|
|
return 0;
|
|
|
|
/* Make None the first constant, so the lambda can't have a
|
|
docstring. */
|
|
if (compiler_add_const(c, Py_None) < 0)
|
|
return 0;
|
|
|
|
c->u->u_argcount = asdl_seq_LEN(args->args);
|
|
c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
|
|
c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
|
|
VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
|
|
if (c->u->u_ste->ste_generator) {
|
|
co = assemble(c, 0);
|
|
}
|
|
else {
|
|
ADDOP_IN_SCOPE(c, RETURN_VALUE);
|
|
co = assemble(c, 1);
|
|
}
|
|
qualname = c->u->u_qualname;
|
|
Py_INCREF(qualname);
|
|
compiler_exit_scope(c);
|
|
if (co == NULL) {
|
|
Py_DECREF(qualname);
|
|
return 0;
|
|
}
|
|
|
|
if (!compiler_make_closure(c, co, funcflags, qualname)) {
|
|
Py_DECREF(qualname);
|
|
Py_DECREF(co);
|
|
return 0;
|
|
}
|
|
Py_DECREF(qualname);
|
|
Py_DECREF(co);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_if(struct compiler *c, stmt_ty s)
|
|
{
|
|
basicblock *end, *next;
|
|
assert(s->kind == If_kind);
|
|
end = compiler_new_block(c);
|
|
if (end == NULL) {
|
|
return 0;
|
|
}
|
|
if (asdl_seq_LEN(s->v.If.orelse)) {
|
|
next = compiler_new_block(c);
|
|
if (next == NULL) {
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
next = end;
|
|
}
|
|
if (!compiler_jump_if(c, s->v.If.test, next, 0)) {
|
|
return 0;
|
|
}
|
|
VISIT_SEQ(c, stmt, s->v.If.body);
|
|
if (asdl_seq_LEN(s->v.If.orelse)) {
|
|
ADDOP_JUMP_NOLINE(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, next);
|
|
VISIT_SEQ(c, stmt, s->v.If.orelse);
|
|
}
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_for(struct compiler *c, stmt_ty s)
|
|
{
|
|
basicblock *start, *body, *cleanup, *end;
|
|
|
|
start = compiler_new_block(c);
|
|
body = compiler_new_block(c);
|
|
cleanup = compiler_new_block(c);
|
|
end = compiler_new_block(c);
|
|
if (start == NULL || body == NULL || end == NULL || cleanup == NULL) {
|
|
return 0;
|
|
}
|
|
if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) {
|
|
return 0;
|
|
}
|
|
VISIT(c, expr, s->v.For.iter);
|
|
ADDOP(c, GET_ITER);
|
|
compiler_use_next_block(c, start);
|
|
ADDOP_JUMP(c, FOR_ITER, cleanup);
|
|
compiler_use_next_block(c, body);
|
|
VISIT(c, expr, s->v.For.target);
|
|
VISIT_SEQ(c, stmt, s->v.For.body);
|
|
/* Mark jump as artificial */
|
|
c->u->u_lineno = -1;
|
|
ADDOP_JUMP(c, JUMP_ABSOLUTE, start);
|
|
compiler_use_next_block(c, cleanup);
|
|
|
|
compiler_pop_fblock(c, FOR_LOOP, start);
|
|
|
|
VISIT_SEQ(c, stmt, s->v.For.orelse);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_async_for(struct compiler *c, stmt_ty s)
|
|
{
|
|
basicblock *start, *except, *end;
|
|
if (IS_TOP_LEVEL_AWAIT(c)){
|
|
c->u->u_ste->ste_coroutine = 1;
|
|
} else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) {
|
|
return compiler_error(c, "'async for' outside async function");
|
|
}
|
|
|
|
start = compiler_new_block(c);
|
|
except = compiler_new_block(c);
|
|
end = compiler_new_block(c);
|
|
|
|
if (start == NULL || except == NULL || end == NULL) {
|
|
return 0;
|
|
}
|
|
VISIT(c, expr, s->v.AsyncFor.iter);
|
|
ADDOP(c, GET_AITER);
|
|
|
|
compiler_use_next_block(c, start);
|
|
if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) {
|
|
return 0;
|
|
}
|
|
/* SETUP_FINALLY to guard the __anext__ call */
|
|
ADDOP_JUMP(c, SETUP_FINALLY, except);
|
|
ADDOP(c, GET_ANEXT);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, YIELD_FROM);
|
|
ADDOP(c, POP_BLOCK); /* for SETUP_FINALLY */
|
|
|
|
/* Success block for __anext__ */
|
|
VISIT(c, expr, s->v.AsyncFor.target);
|
|
VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
|
|
ADDOP_JUMP(c, JUMP_ABSOLUTE, start);
|
|
|
|
compiler_pop_fblock(c, FOR_LOOP, start);
|
|
|
|
/* Except block for __anext__ */
|
|
compiler_use_next_block(c, except);
|
|
|
|
c->u->u_lineno = -1;
|
|
ADDOP(c, END_ASYNC_FOR);
|
|
|
|
/* `else` block */
|
|
VISIT_SEQ(c, stmt, s->v.For.orelse);
|
|
|
|
compiler_use_next_block(c, end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_while(struct compiler *c, stmt_ty s)
|
|
{
|
|
basicblock *loop, *body, *end, *anchor = NULL;
|
|
loop = compiler_new_block(c);
|
|
body = compiler_new_block(c);
|
|
anchor = compiler_new_block(c);
|
|
end = compiler_new_block(c);
|
|
if (loop == NULL || body == NULL || anchor == NULL || end == NULL) {
|
|
return 0;
|
|
}
|
|
compiler_use_next_block(c, loop);
|
|
if (!compiler_push_fblock(c, WHILE_LOOP, loop, end, NULL)) {
|
|
return 0;
|
|
}
|
|
if (!compiler_jump_if(c, s->v.While.test, anchor, 0)) {
|
|
return 0;
|
|
}
|
|
|
|
compiler_use_next_block(c, body);
|
|
VISIT_SEQ(c, stmt, s->v.While.body);
|
|
SET_LOC(c, s);
|
|
if (!compiler_jump_if(c, s->v.While.test, body, 1)) {
|
|
return 0;
|
|
}
|
|
|
|
compiler_pop_fblock(c, WHILE_LOOP, loop);
|
|
|
|
compiler_use_next_block(c, anchor);
|
|
if (s->v.While.orelse) {
|
|
VISIT_SEQ(c, stmt, s->v.While.orelse);
|
|
}
|
|
compiler_use_next_block(c, end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_return(struct compiler *c, stmt_ty s)
|
|
{
|
|
int preserve_tos = ((s->v.Return.value != NULL) &&
|
|
(s->v.Return.value->kind != Constant_kind));
|
|
if (c->u->u_ste->ste_type != FunctionBlock)
|
|
return compiler_error(c, "'return' outside function");
|
|
if (s->v.Return.value != NULL &&
|
|
c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator)
|
|
{
|
|
return compiler_error(
|
|
c, "'return' with value in async generator");
|
|
}
|
|
if (preserve_tos) {
|
|
VISIT(c, expr, s->v.Return.value);
|
|
} else {
|
|
/* Emit instruction with line number for expression */
|
|
if (s->v.Return.value != NULL) {
|
|
SET_LOC(c, s->v.Return.value);
|
|
ADDOP(c, NOP);
|
|
}
|
|
}
|
|
if (!compiler_unwind_fblock_stack(c, preserve_tos, NULL))
|
|
return 0;
|
|
if (s->v.Return.value == NULL) {
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
}
|
|
else if (!preserve_tos) {
|
|
ADDOP_LOAD_CONST(c, s->v.Return.value->v.Constant.value);
|
|
}
|
|
ADDOP(c, RETURN_VALUE);
|
|
NEXT_BLOCK(c);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_break(struct compiler *c)
|
|
{
|
|
struct fblockinfo *loop = NULL;
|
|
if (!compiler_unwind_fblock_stack(c, 0, &loop)) {
|
|
return 0;
|
|
}
|
|
if (loop == NULL) {
|
|
return compiler_error(c, "'break' outside loop");
|
|
}
|
|
if (!compiler_unwind_fblock(c, loop, 0)) {
|
|
return 0;
|
|
}
|
|
ADDOP_JUMP(c, JUMP_ABSOLUTE, loop->fb_exit);
|
|
NEXT_BLOCK(c);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_continue(struct compiler *c)
|
|
{
|
|
struct fblockinfo *loop = NULL;
|
|
if (!compiler_unwind_fblock_stack(c, 0, &loop)) {
|
|
return 0;
|
|
}
|
|
if (loop == NULL) {
|
|
return compiler_error(c, "'continue' not properly in loop");
|
|
}
|
|
ADDOP_JUMP(c, JUMP_ABSOLUTE, loop->fb_block);
|
|
NEXT_BLOCK(c)
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Code generated for "try: <body> finally: <finalbody>" is as follows:
|
|
|
|
SETUP_FINALLY L
|
|
<code for body>
|
|
POP_BLOCK
|
|
<code for finalbody>
|
|
JUMP E
|
|
L:
|
|
<code for finalbody>
|
|
E:
|
|
|
|
The special instructions use the block stack. Each block
|
|
stack entry contains the instruction that created it (here
|
|
SETUP_FINALLY), the level of the value stack at the time the
|
|
block stack entry was created, and a label (here L).
|
|
|
|
SETUP_FINALLY:
|
|
Pushes the current value stack level and the label
|
|
onto the block stack.
|
|
POP_BLOCK:
|
|
Pops en entry from the block stack.
|
|
|
|
The block stack is unwound when an exception is raised:
|
|
when a SETUP_FINALLY entry is found, the raised and the caught
|
|
exceptions are pushed onto the value stack (and the exception
|
|
condition is cleared), and the interpreter jumps to the label
|
|
gotten from the block stack.
|
|
*/
|
|
|
|
static int
|
|
compiler_try_finally(struct compiler *c, stmt_ty s)
|
|
{
|
|
basicblock *body, *end, *exit;
|
|
|
|
body = compiler_new_block(c);
|
|
end = compiler_new_block(c);
|
|
exit = compiler_new_block(c);
|
|
if (body == NULL || end == NULL || exit == NULL)
|
|
return 0;
|
|
|
|
/* `try` block */
|
|
ADDOP_JUMP(c, SETUP_FINALLY, end);
|
|
compiler_use_next_block(c, body);
|
|
if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.Try.finalbody))
|
|
return 0;
|
|
if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
|
|
if (!compiler_try_except(c, s))
|
|
return 0;
|
|
}
|
|
else {
|
|
VISIT_SEQ(c, stmt, s->v.Try.body);
|
|
}
|
|
ADDOP_NOLINE(c, POP_BLOCK);
|
|
compiler_pop_fblock(c, FINALLY_TRY, body);
|
|
VISIT_SEQ(c, stmt, s->v.Try.finalbody);
|
|
ADDOP_JUMP_NOLINE(c, JUMP_FORWARD, exit);
|
|
/* `finally` block */
|
|
compiler_use_next_block(c, end);
|
|
if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL))
|
|
return 0;
|
|
VISIT_SEQ(c, stmt, s->v.Try.finalbody);
|
|
compiler_pop_fblock(c, FINALLY_END, end);
|
|
ADDOP_I(c, RERAISE, 0);
|
|
compiler_use_next_block(c, exit);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
|
|
(The contents of the value stack is shown in [], with the top
|
|
at the right; 'tb' is trace-back info, 'val' the exception's
|
|
associated value, and 'exc' the exception.)
|
|
|
|
Value stack Label Instruction Argument
|
|
[] SETUP_FINALLY L1
|
|
[] <code for S>
|
|
[] POP_BLOCK
|
|
[] JUMP_FORWARD L0
|
|
|
|
[tb, val, exc] L1: DUP )
|
|
[tb, val, exc, exc] <evaluate E1> )
|
|
[tb, val, exc, exc, E1] JUMP_IF_NOT_EXC_MATCH L2 ) only if E1
|
|
[tb, val, exc] POP
|
|
[tb, val] <assign to V1> (or POP if no V1)
|
|
[tb] POP
|
|
[] <code for S1>
|
|
JUMP_FORWARD L0
|
|
|
|
[tb, val, exc] L2: DUP
|
|
.............................etc.......................
|
|
|
|
[tb, val, exc] Ln+1: RERAISE # re-raise exception
|
|
|
|
[] L0: <next statement>
|
|
|
|
Of course, parts are not generated if Vi or Ei is not present.
|
|
*/
|
|
static int
|
|
compiler_try_except(struct compiler *c, stmt_ty s)
|
|
{
|
|
basicblock *body, *orelse, *except, *end;
|
|
Py_ssize_t i, n;
|
|
|
|
body = compiler_new_block(c);
|
|
except = compiler_new_block(c);
|
|
orelse = compiler_new_block(c);
|
|
end = compiler_new_block(c);
|
|
if (body == NULL || except == NULL || orelse == NULL || end == NULL)
|
|
return 0;
|
|
ADDOP_JUMP(c, SETUP_FINALLY, except);
|
|
compiler_use_next_block(c, body);
|
|
if (!compiler_push_fblock(c, TRY_EXCEPT, body, NULL, NULL))
|
|
return 0;
|
|
VISIT_SEQ(c, stmt, s->v.Try.body);
|
|
compiler_pop_fblock(c, TRY_EXCEPT, body);
|
|
ADDOP_NOLINE(c, POP_BLOCK);
|
|
ADDOP_JUMP_NOLINE(c, JUMP_FORWARD, orelse);
|
|
n = asdl_seq_LEN(s->v.Try.handlers);
|
|
compiler_use_next_block(c, except);
|
|
/* Runtime will push a block here, so we need to account for that */
|
|
if (!compiler_push_fblock(c, EXCEPTION_HANDLER, NULL, NULL, NULL))
|
|
return 0;
|
|
for (i = 0; i < n; i++) {
|
|
excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
|
|
s->v.Try.handlers, i);
|
|
if (!handler->v.ExceptHandler.type && i < n-1)
|
|
return compiler_error(c, "default 'except:' must be last");
|
|
SET_LOC(c, handler);
|
|
except = compiler_new_block(c);
|
|
if (except == NULL)
|
|
return 0;
|
|
if (handler->v.ExceptHandler.type) {
|
|
ADDOP(c, DUP_TOP);
|
|
VISIT(c, expr, handler->v.ExceptHandler.type);
|
|
ADDOP_JUMP(c, JUMP_IF_NOT_EXC_MATCH, except);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
ADDOP(c, POP_TOP);
|
|
if (handler->v.ExceptHandler.name) {
|
|
basicblock *cleanup_end, *cleanup_body;
|
|
|
|
cleanup_end = compiler_new_block(c);
|
|
cleanup_body = compiler_new_block(c);
|
|
if (cleanup_end == NULL || cleanup_body == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
compiler_nameop(c, handler->v.ExceptHandler.name, Store);
|
|
ADDOP(c, POP_TOP);
|
|
|
|
/*
|
|
try:
|
|
# body
|
|
except type as name:
|
|
try:
|
|
# body
|
|
finally:
|
|
name = None # in case body contains "del name"
|
|
del name
|
|
*/
|
|
|
|
/* second try: */
|
|
ADDOP_JUMP(c, SETUP_FINALLY, cleanup_end);
|
|
compiler_use_next_block(c, cleanup_body);
|
|
if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name))
|
|
return 0;
|
|
|
|
/* second # body */
|
|
VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
|
|
compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
|
|
ADDOP(c, POP_BLOCK);
|
|
ADDOP(c, POP_EXCEPT);
|
|
/* name = None; del name; # Mark as artificial */
|
|
c->u->u_lineno = -1;
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
compiler_nameop(c, handler->v.ExceptHandler.name, Store);
|
|
compiler_nameop(c, handler->v.ExceptHandler.name, Del);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
|
|
/* except: */
|
|
compiler_use_next_block(c, cleanup_end);
|
|
|
|
/* name = None; del name; # Mark as artificial */
|
|
c->u->u_lineno = -1;
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
compiler_nameop(c, handler->v.ExceptHandler.name, Store);
|
|
compiler_nameop(c, handler->v.ExceptHandler.name, Del);
|
|
|
|
ADDOP_I(c, RERAISE, 1);
|
|
}
|
|
else {
|
|
basicblock *cleanup_body;
|
|
|
|
cleanup_body = compiler_new_block(c);
|
|
if (!cleanup_body)
|
|
return 0;
|
|
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP(c, POP_TOP);
|
|
compiler_use_next_block(c, cleanup_body);
|
|
if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, NULL))
|
|
return 0;
|
|
VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
|
|
compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
|
|
/* name = None; del name; # Mark as artificial */
|
|
c->u->u_lineno = -1;
|
|
ADDOP(c, POP_EXCEPT);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
}
|
|
compiler_use_next_block(c, except);
|
|
}
|
|
compiler_pop_fblock(c, EXCEPTION_HANDLER, NULL);
|
|
/* Mark as artificial */
|
|
c->u->u_lineno = -1;
|
|
ADDOP_I(c, RERAISE, 0);
|
|
compiler_use_next_block(c, orelse);
|
|
VISIT_SEQ(c, stmt, s->v.Try.orelse);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_try(struct compiler *c, stmt_ty s) {
|
|
if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
|
|
return compiler_try_finally(c, s);
|
|
else
|
|
return compiler_try_except(c, s);
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_import_as(struct compiler *c, identifier name, identifier asname)
|
|
{
|
|
/* The IMPORT_NAME opcode was already generated. This function
|
|
merely needs to bind the result to a name.
|
|
|
|
If there is a dot in name, we need to split it and emit a
|
|
IMPORT_FROM for each name.
|
|
*/
|
|
Py_ssize_t len = PyUnicode_GET_LENGTH(name);
|
|
Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1);
|
|
if (dot == -2)
|
|
return 0;
|
|
if (dot != -1) {
|
|
/* Consume the base module name to get the first attribute */
|
|
while (1) {
|
|
Py_ssize_t pos = dot + 1;
|
|
PyObject *attr;
|
|
dot = PyUnicode_FindChar(name, '.', pos, len, 1);
|
|
if (dot == -2)
|
|
return 0;
|
|
attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len);
|
|
if (!attr)
|
|
return 0;
|
|
ADDOP_N(c, IMPORT_FROM, attr, names);
|
|
if (dot == -1) {
|
|
break;
|
|
}
|
|
ADDOP(c, ROT_TWO);
|
|
ADDOP(c, POP_TOP);
|
|
}
|
|
if (!compiler_nameop(c, asname, Store)) {
|
|
return 0;
|
|
}
|
|
ADDOP(c, POP_TOP);
|
|
return 1;
|
|
}
|
|
return compiler_nameop(c, asname, Store);
|
|
}
|
|
|
|
static int
|
|
compiler_import(struct compiler *c, stmt_ty s)
|
|
{
|
|
/* The Import node stores a module name like a.b.c as a single
|
|
string. This is convenient for all cases except
|
|
import a.b.c as d
|
|
where we need to parse that string to extract the individual
|
|
module names.
|
|
XXX Perhaps change the representation to make this case simpler?
|
|
*/
|
|
Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);
|
|
|
|
PyObject *zero = _PyLong_GetZero(); // borrowed reference
|
|
for (i = 0; i < n; i++) {
|
|
alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
|
|
int r;
|
|
|
|
ADDOP_LOAD_CONST(c, zero);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP_NAME(c, IMPORT_NAME, alias->name, names);
|
|
|
|
if (alias->asname) {
|
|
r = compiler_import_as(c, alias->name, alias->asname);
|
|
if (!r)
|
|
return r;
|
|
}
|
|
else {
|
|
identifier tmp = alias->name;
|
|
Py_ssize_t dot = PyUnicode_FindChar(
|
|
alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
|
|
if (dot != -1) {
|
|
tmp = PyUnicode_Substring(alias->name, 0, dot);
|
|
if (tmp == NULL)
|
|
return 0;
|
|
}
|
|
r = compiler_nameop(c, tmp, Store);
|
|
if (dot != -1) {
|
|
Py_DECREF(tmp);
|
|
}
|
|
if (!r)
|
|
return r;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_from_import(struct compiler *c, stmt_ty s)
|
|
{
|
|
Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names);
|
|
PyObject *names;
|
|
static PyObject *empty_string;
|
|
|
|
if (!empty_string) {
|
|
empty_string = PyUnicode_FromString("");
|
|
if (!empty_string)
|
|
return 0;
|
|
}
|
|
|
|
ADDOP_LOAD_CONST_NEW(c, PyLong_FromLong(s->v.ImportFrom.level));
|
|
|
|
names = PyTuple_New(n);
|
|
if (!names)
|
|
return 0;
|
|
|
|
/* build up the names */
|
|
for (i = 0; i < n; i++) {
|
|
alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
|
|
Py_INCREF(alias->name);
|
|
PyTuple_SET_ITEM(names, i, alias->name);
|
|
}
|
|
|
|
if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module &&
|
|
_PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) {
|
|
Py_DECREF(names);
|
|
return compiler_error(c, "from __future__ imports must occur "
|
|
"at the beginning of the file");
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, names);
|
|
|
|
if (s->v.ImportFrom.module) {
|
|
ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names);
|
|
}
|
|
else {
|
|
ADDOP_NAME(c, IMPORT_NAME, empty_string, names);
|
|
}
|
|
for (i = 0; i < n; i++) {
|
|
alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
|
|
identifier store_name;
|
|
|
|
if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
|
|
assert(n == 1);
|
|
ADDOP(c, IMPORT_STAR);
|
|
return 1;
|
|
}
|
|
|
|
ADDOP_NAME(c, IMPORT_FROM, alias->name, names);
|
|
store_name = alias->name;
|
|
if (alias->asname)
|
|
store_name = alias->asname;
|
|
|
|
if (!compiler_nameop(c, store_name, Store)) {
|
|
return 0;
|
|
}
|
|
}
|
|
/* remove imported module */
|
|
ADDOP(c, POP_TOP);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_assert(struct compiler *c, stmt_ty s)
|
|
{
|
|
basicblock *end;
|
|
|
|
/* Always emit a warning if the test is a non-zero length tuple */
|
|
if ((s->v.Assert.test->kind == Tuple_kind &&
|
|
asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0) ||
|
|
(s->v.Assert.test->kind == Constant_kind &&
|
|
PyTuple_Check(s->v.Assert.test->v.Constant.value) &&
|
|
PyTuple_Size(s->v.Assert.test->v.Constant.value) > 0))
|
|
{
|
|
if (!compiler_warn(c, "assertion is always true, "
|
|
"perhaps remove parentheses?"))
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
if (c->c_optimize)
|
|
return 1;
|
|
end = compiler_new_block(c);
|
|
if (end == NULL)
|
|
return 0;
|
|
if (!compiler_jump_if(c, s->v.Assert.test, end, 1))
|
|
return 0;
|
|
ADDOP(c, LOAD_ASSERTION_ERROR);
|
|
if (s->v.Assert.msg) {
|
|
VISIT(c, expr, s->v.Assert.msg);
|
|
ADDOP_I(c, CALL_FUNCTION, 1);
|
|
}
|
|
ADDOP_I(c, RAISE_VARARGS, 1);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_stmt_expr(struct compiler *c, expr_ty value)
|
|
{
|
|
if (c->c_interactive && c->c_nestlevel <= 1) {
|
|
VISIT(c, expr, value);
|
|
ADDOP(c, PRINT_EXPR);
|
|
return 1;
|
|
}
|
|
|
|
if (value->kind == Constant_kind) {
|
|
/* ignore constant statement */
|
|
ADDOP(c, NOP);
|
|
return 1;
|
|
}
|
|
|
|
VISIT(c, expr, value);
|
|
/* Mark POP_TOP as artificial */
|
|
c->u->u_lineno = -1;
|
|
ADDOP(c, POP_TOP);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_stmt(struct compiler *c, stmt_ty s)
|
|
{
|
|
Py_ssize_t i, n;
|
|
|
|
/* Always assign a lineno to the next instruction for a stmt. */
|
|
SET_LOC(c, s);
|
|
|
|
switch (s->kind) {
|
|
case FunctionDef_kind:
|
|
return compiler_function(c, s, 0);
|
|
case ClassDef_kind:
|
|
return compiler_class(c, s);
|
|
case Return_kind:
|
|
return compiler_return(c, s);
|
|
case Delete_kind:
|
|
VISIT_SEQ(c, expr, s->v.Delete.targets)
|
|
break;
|
|
case Assign_kind:
|
|
n = asdl_seq_LEN(s->v.Assign.targets);
|
|
VISIT(c, expr, s->v.Assign.value);
|
|
for (i = 0; i < n; i++) {
|
|
if (i < n - 1)
|
|
ADDOP(c, DUP_TOP);
|
|
VISIT(c, expr,
|
|
(expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
|
|
}
|
|
break;
|
|
case AugAssign_kind:
|
|
return compiler_augassign(c, s);
|
|
case AnnAssign_kind:
|
|
return compiler_annassign(c, s);
|
|
case For_kind:
|
|
return compiler_for(c, s);
|
|
case While_kind:
|
|
return compiler_while(c, s);
|
|
case If_kind:
|
|
return compiler_if(c, s);
|
|
case Match_kind:
|
|
return compiler_match(c, s);
|
|
case Raise_kind:
|
|
n = 0;
|
|
if (s->v.Raise.exc) {
|
|
VISIT(c, expr, s->v.Raise.exc);
|
|
n++;
|
|
if (s->v.Raise.cause) {
|
|
VISIT(c, expr, s->v.Raise.cause);
|
|
n++;
|
|
}
|
|
}
|
|
ADDOP_I(c, RAISE_VARARGS, (int)n);
|
|
NEXT_BLOCK(c);
|
|
break;
|
|
case Try_kind:
|
|
return compiler_try(c, s);
|
|
case Assert_kind:
|
|
return compiler_assert(c, s);
|
|
case Import_kind:
|
|
return compiler_import(c, s);
|
|
case ImportFrom_kind:
|
|
return compiler_from_import(c, s);
|
|
case Global_kind:
|
|
case Nonlocal_kind:
|
|
break;
|
|
case Expr_kind:
|
|
return compiler_visit_stmt_expr(c, s->v.Expr.value);
|
|
case Pass_kind:
|
|
ADDOP(c, NOP);
|
|
break;
|
|
case Break_kind:
|
|
return compiler_break(c);
|
|
case Continue_kind:
|
|
return compiler_continue(c);
|
|
case With_kind:
|
|
return compiler_with(c, s, 0);
|
|
case AsyncFunctionDef_kind:
|
|
return compiler_function(c, s, 1);
|
|
case AsyncWith_kind:
|
|
return compiler_async_with(c, s, 0);
|
|
case AsyncFor_kind:
|
|
return compiler_async_for(c, s);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
unaryop(unaryop_ty op)
|
|
{
|
|
switch (op) {
|
|
case Invert:
|
|
return UNARY_INVERT;
|
|
case Not:
|
|
return UNARY_NOT;
|
|
case UAdd:
|
|
return UNARY_POSITIVE;
|
|
case USub:
|
|
return UNARY_NEGATIVE;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unary op %d should not be possible", op);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
binop(operator_ty op)
|
|
{
|
|
switch (op) {
|
|
case Add:
|
|
return BINARY_ADD;
|
|
case Sub:
|
|
return BINARY_SUBTRACT;
|
|
case Mult:
|
|
return BINARY_MULTIPLY;
|
|
case MatMult:
|
|
return BINARY_MATRIX_MULTIPLY;
|
|
case Div:
|
|
return BINARY_TRUE_DIVIDE;
|
|
case Mod:
|
|
return BINARY_MODULO;
|
|
case Pow:
|
|
return BINARY_POWER;
|
|
case LShift:
|
|
return BINARY_LSHIFT;
|
|
case RShift:
|
|
return BINARY_RSHIFT;
|
|
case BitOr:
|
|
return BINARY_OR;
|
|
case BitXor:
|
|
return BINARY_XOR;
|
|
case BitAnd:
|
|
return BINARY_AND;
|
|
case FloorDiv:
|
|
return BINARY_FLOOR_DIVIDE;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"binary op %d should not be possible", op);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
inplace_binop(operator_ty op)
|
|
{
|
|
switch (op) {
|
|
case Add:
|
|
return INPLACE_ADD;
|
|
case Sub:
|
|
return INPLACE_SUBTRACT;
|
|
case Mult:
|
|
return INPLACE_MULTIPLY;
|
|
case MatMult:
|
|
return INPLACE_MATRIX_MULTIPLY;
|
|
case Div:
|
|
return INPLACE_TRUE_DIVIDE;
|
|
case Mod:
|
|
return INPLACE_MODULO;
|
|
case Pow:
|
|
return INPLACE_POWER;
|
|
case LShift:
|
|
return INPLACE_LSHIFT;
|
|
case RShift:
|
|
return INPLACE_RSHIFT;
|
|
case BitOr:
|
|
return INPLACE_OR;
|
|
case BitXor:
|
|
return INPLACE_XOR;
|
|
case BitAnd:
|
|
return INPLACE_AND;
|
|
case FloorDiv:
|
|
return INPLACE_FLOOR_DIVIDE;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"inplace binary op %d should not be possible", op);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx)
|
|
{
|
|
int op, scope;
|
|
Py_ssize_t arg;
|
|
enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;
|
|
|
|
PyObject *dict = c->u->u_names;
|
|
PyObject *mangled;
|
|
|
|
assert(!_PyUnicode_EqualToASCIIString(name, "None") &&
|
|
!_PyUnicode_EqualToASCIIString(name, "True") &&
|
|
!_PyUnicode_EqualToASCIIString(name, "False"));
|
|
|
|
if (forbidden_name(c, name, ctx))
|
|
return 0;
|
|
|
|
mangled = _Py_Mangle(c->u->u_private, name);
|
|
if (!mangled)
|
|
return 0;
|
|
|
|
op = 0;
|
|
optype = OP_NAME;
|
|
scope = _PyST_GetScope(c->u->u_ste, mangled);
|
|
switch (scope) {
|
|
case FREE:
|
|
dict = c->u->u_freevars;
|
|
optype = OP_DEREF;
|
|
break;
|
|
case CELL:
|
|
dict = c->u->u_cellvars;
|
|
optype = OP_DEREF;
|
|
break;
|
|
case LOCAL:
|
|
if (c->u->u_ste->ste_type == FunctionBlock)
|
|
optype = OP_FAST;
|
|
break;
|
|
case GLOBAL_IMPLICIT:
|
|
if (c->u->u_ste->ste_type == FunctionBlock)
|
|
optype = OP_GLOBAL;
|
|
break;
|
|
case GLOBAL_EXPLICIT:
|
|
optype = OP_GLOBAL;
|
|
break;
|
|
default:
|
|
/* scope can be 0 */
|
|
break;
|
|
}
|
|
|
|
/* XXX Leave assert here, but handle __doc__ and the like better */
|
|
assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');
|
|
|
|
switch (optype) {
|
|
case OP_DEREF:
|
|
switch (ctx) {
|
|
case Load:
|
|
op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF;
|
|
break;
|
|
case Store: op = STORE_DEREF; break;
|
|
case Del: op = DELETE_DEREF; break;
|
|
}
|
|
break;
|
|
case OP_FAST:
|
|
switch (ctx) {
|
|
case Load: op = LOAD_FAST; break;
|
|
case Store: op = STORE_FAST; break;
|
|
case Del: op = DELETE_FAST; break;
|
|
}
|
|
ADDOP_N(c, op, mangled, varnames);
|
|
return 1;
|
|
case OP_GLOBAL:
|
|
switch (ctx) {
|
|
case Load: op = LOAD_GLOBAL; break;
|
|
case Store: op = STORE_GLOBAL; break;
|
|
case Del: op = DELETE_GLOBAL; break;
|
|
}
|
|
break;
|
|
case OP_NAME:
|
|
switch (ctx) {
|
|
case Load: op = LOAD_NAME; break;
|
|
case Store: op = STORE_NAME; break;
|
|
case Del: op = DELETE_NAME; break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
assert(op);
|
|
arg = compiler_add_o(dict, mangled);
|
|
Py_DECREF(mangled);
|
|
if (arg < 0)
|
|
return 0;
|
|
return compiler_addop_i(c, op, arg);
|
|
}
|
|
|
|
static int
|
|
compiler_boolop(struct compiler *c, expr_ty e)
|
|
{
|
|
basicblock *end;
|
|
int jumpi;
|
|
Py_ssize_t i, n;
|
|
asdl_expr_seq *s;
|
|
|
|
assert(e->kind == BoolOp_kind);
|
|
if (e->v.BoolOp.op == And)
|
|
jumpi = JUMP_IF_FALSE_OR_POP;
|
|
else
|
|
jumpi = JUMP_IF_TRUE_OR_POP;
|
|
end = compiler_new_block(c);
|
|
if (end == NULL)
|
|
return 0;
|
|
s = e->v.BoolOp.values;
|
|
n = asdl_seq_LEN(s) - 1;
|
|
assert(n >= 0);
|
|
for (i = 0; i < n; ++i) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
|
|
ADDOP_JUMP(c, jumpi, end);
|
|
basicblock *next = compiler_new_block(c);
|
|
if (next == NULL) {
|
|
return 0;
|
|
}
|
|
compiler_use_next_block(c, next);
|
|
}
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
starunpack_helper(struct compiler *c, asdl_expr_seq *elts, int pushed,
|
|
int build, int add, int extend, int tuple)
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(elts);
|
|
Py_ssize_t i, seen_star = 0;
|
|
if (n > 2 && are_all_items_const(elts, 0, n)) {
|
|
PyObject *folded = PyTuple_New(n);
|
|
if (folded == NULL) {
|
|
return 0;
|
|
}
|
|
PyObject *val;
|
|
for (i = 0; i < n; i++) {
|
|
val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value;
|
|
Py_INCREF(val);
|
|
PyTuple_SET_ITEM(folded, i, val);
|
|
}
|
|
if (tuple) {
|
|
ADDOP_LOAD_CONST_NEW(c, folded);
|
|
} else {
|
|
if (add == SET_ADD) {
|
|
Py_SETREF(folded, PyFrozenSet_New(folded));
|
|
if (folded == NULL) {
|
|
return 0;
|
|
}
|
|
}
|
|
ADDOP_I(c, build, pushed);
|
|
ADDOP_LOAD_CONST_NEW(c, folded);
|
|
ADDOP_I(c, extend, 1);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
if (elt->kind == Starred_kind) {
|
|
seen_star = 1;
|
|
}
|
|
}
|
|
if (seen_star) {
|
|
seen_star = 0;
|
|
for (i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
if (elt->kind == Starred_kind) {
|
|
if (seen_star == 0) {
|
|
ADDOP_I(c, build, i+pushed);
|
|
seen_star = 1;
|
|
}
|
|
VISIT(c, expr, elt->v.Starred.value);
|
|
ADDOP_I(c, extend, 1);
|
|
}
|
|
else {
|
|
VISIT(c, expr, elt);
|
|
if (seen_star) {
|
|
ADDOP_I(c, add, 1);
|
|
}
|
|
}
|
|
}
|
|
assert(seen_star);
|
|
if (tuple) {
|
|
ADDOP(c, LIST_TO_TUPLE);
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
VISIT(c, expr, elt);
|
|
}
|
|
if (tuple) {
|
|
ADDOP_I(c, BUILD_TUPLE, n+pushed);
|
|
} else {
|
|
ADDOP_I(c, build, n+pushed);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
unpack_helper(struct compiler *c, asdl_expr_seq *elts)
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(elts);
|
|
int seen_star = 0;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
if (elt->kind == Starred_kind && !seen_star) {
|
|
if ((i >= (1 << 8)) ||
|
|
(n-i-1 >= (INT_MAX >> 8)))
|
|
return compiler_error(c,
|
|
"too many expressions in "
|
|
"star-unpacking assignment");
|
|
ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8)));
|
|
seen_star = 1;
|
|
}
|
|
else if (elt->kind == Starred_kind) {
|
|
return compiler_error(c,
|
|
"multiple starred expressions in assignment");
|
|
}
|
|
}
|
|
if (!seen_star) {
|
|
ADDOP_I(c, UNPACK_SEQUENCE, n);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
assignment_helper(struct compiler *c, asdl_expr_seq *elts)
|
|
{
|
|
Py_ssize_t n = asdl_seq_LEN(elts);
|
|
RETURN_IF_FALSE(unpack_helper(c, elts));
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
expr_ty elt = asdl_seq_GET(elts, i);
|
|
VISIT(c, expr, elt->kind != Starred_kind ? elt : elt->v.Starred.value);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_list(struct compiler *c, expr_ty e)
|
|
{
|
|
asdl_expr_seq *elts = e->v.List.elts;
|
|
if (e->v.List.ctx == Store) {
|
|
return assignment_helper(c, elts);
|
|
}
|
|
else if (e->v.List.ctx == Load) {
|
|
return starunpack_helper(c, elts, 0, BUILD_LIST,
|
|
LIST_APPEND, LIST_EXTEND, 0);
|
|
}
|
|
else
|
|
VISIT_SEQ(c, expr, elts);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_tuple(struct compiler *c, expr_ty e)
|
|
{
|
|
asdl_expr_seq *elts = e->v.Tuple.elts;
|
|
if (e->v.Tuple.ctx == Store) {
|
|
return assignment_helper(c, elts);
|
|
}
|
|
else if (e->v.Tuple.ctx == Load) {
|
|
return starunpack_helper(c, elts, 0, BUILD_LIST,
|
|
LIST_APPEND, LIST_EXTEND, 1);
|
|
}
|
|
else
|
|
VISIT_SEQ(c, expr, elts);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_set(struct compiler *c, expr_ty e)
|
|
{
|
|
return starunpack_helper(c, e->v.Set.elts, 0, BUILD_SET,
|
|
SET_ADD, SET_UPDATE, 0);
|
|
}
|
|
|
|
static int
|
|
are_all_items_const(asdl_expr_seq *seq, Py_ssize_t begin, Py_ssize_t end)
|
|
{
|
|
Py_ssize_t i;
|
|
for (i = begin; i < end; i++) {
|
|
expr_ty key = (expr_ty)asdl_seq_GET(seq, i);
|
|
if (key == NULL || key->kind != Constant_kind)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end)
|
|
{
|
|
Py_ssize_t i, n = end - begin;
|
|
PyObject *keys, *key;
|
|
if (n > 1 && are_all_items_const(e->v.Dict.keys, begin, end)) {
|
|
for (i = begin; i < end; i++) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
|
|
}
|
|
keys = PyTuple_New(n);
|
|
if (keys == NULL) {
|
|
return 0;
|
|
}
|
|
for (i = begin; i < end; i++) {
|
|
key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value;
|
|
Py_INCREF(key);
|
|
PyTuple_SET_ITEM(keys, i - begin, key);
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, keys);
|
|
ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
|
|
}
|
|
else {
|
|
for (i = begin; i < end; i++) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
|
|
}
|
|
ADDOP_I(c, BUILD_MAP, n);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_dict(struct compiler *c, expr_ty e)
|
|
{
|
|
Py_ssize_t i, n, elements;
|
|
int have_dict;
|
|
int is_unpacking = 0;
|
|
n = asdl_seq_LEN(e->v.Dict.values);
|
|
have_dict = 0;
|
|
elements = 0;
|
|
for (i = 0; i < n; i++) {
|
|
is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
|
|
if (is_unpacking) {
|
|
if (elements) {
|
|
if (!compiler_subdict(c, e, i - elements, i)) {
|
|
return 0;
|
|
}
|
|
if (have_dict) {
|
|
ADDOP_I(c, DICT_UPDATE, 1);
|
|
}
|
|
have_dict = 1;
|
|
elements = 0;
|
|
}
|
|
if (have_dict == 0) {
|
|
ADDOP_I(c, BUILD_MAP, 0);
|
|
have_dict = 1;
|
|
}
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
|
|
ADDOP_I(c, DICT_UPDATE, 1);
|
|
}
|
|
else {
|
|
if (elements == 0xFFFF) {
|
|
if (!compiler_subdict(c, e, i - elements, i + 1)) {
|
|
return 0;
|
|
}
|
|
if (have_dict) {
|
|
ADDOP_I(c, DICT_UPDATE, 1);
|
|
}
|
|
have_dict = 1;
|
|
elements = 0;
|
|
}
|
|
else {
|
|
elements++;
|
|
}
|
|
}
|
|
}
|
|
if (elements) {
|
|
if (!compiler_subdict(c, e, n - elements, n)) {
|
|
return 0;
|
|
}
|
|
if (have_dict) {
|
|
ADDOP_I(c, DICT_UPDATE, 1);
|
|
}
|
|
have_dict = 1;
|
|
}
|
|
if (!have_dict) {
|
|
ADDOP_I(c, BUILD_MAP, 0);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_compare(struct compiler *c, expr_ty e)
|
|
{
|
|
Py_ssize_t i, n;
|
|
|
|
if (!check_compare(c, e)) {
|
|
return 0;
|
|
}
|
|
VISIT(c, expr, e->v.Compare.left);
|
|
assert(asdl_seq_LEN(e->v.Compare.ops) > 0);
|
|
n = asdl_seq_LEN(e->v.Compare.ops) - 1;
|
|
if (n == 0) {
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
|
|
ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, 0));
|
|
}
|
|
else {
|
|
basicblock *cleanup = compiler_new_block(c);
|
|
if (cleanup == NULL)
|
|
return 0;
|
|
for (i = 0; i < n; i++) {
|
|
VISIT(c, expr,
|
|
(expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
|
|
ADDOP(c, DUP_TOP);
|
|
ADDOP(c, ROT_THREE);
|
|
ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, i));
|
|
ADDOP_JUMP(c, JUMP_IF_FALSE_OR_POP, cleanup);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
|
|
ADDOP_COMPARE(c, asdl_seq_GET(e->v.Compare.ops, n));
|
|
basicblock *end = compiler_new_block(c);
|
|
if (end == NULL)
|
|
return 0;
|
|
ADDOP_JUMP_NOLINE(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, cleanup);
|
|
ADDOP(c, ROT_TWO);
|
|
ADDOP(c, POP_TOP);
|
|
compiler_use_next_block(c, end);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static PyTypeObject *
|
|
infer_type(expr_ty e)
|
|
{
|
|
switch (e->kind) {
|
|
case Tuple_kind:
|
|
return &PyTuple_Type;
|
|
case List_kind:
|
|
case ListComp_kind:
|
|
return &PyList_Type;
|
|
case Dict_kind:
|
|
case DictComp_kind:
|
|
return &PyDict_Type;
|
|
case Set_kind:
|
|
case SetComp_kind:
|
|
return &PySet_Type;
|
|
case GeneratorExp_kind:
|
|
return &PyGen_Type;
|
|
case Lambda_kind:
|
|
return &PyFunction_Type;
|
|
case JoinedStr_kind:
|
|
case FormattedValue_kind:
|
|
return &PyUnicode_Type;
|
|
case Constant_kind:
|
|
return Py_TYPE(e->v.Constant.value);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_caller(struct compiler *c, expr_ty e)
|
|
{
|
|
switch (e->kind) {
|
|
case Constant_kind:
|
|
case Tuple_kind:
|
|
case List_kind:
|
|
case ListComp_kind:
|
|
case Dict_kind:
|
|
case DictComp_kind:
|
|
case Set_kind:
|
|
case SetComp_kind:
|
|
case GeneratorExp_kind:
|
|
case JoinedStr_kind:
|
|
case FormattedValue_kind:
|
|
return compiler_warn(c, "'%.200s' object is not callable; "
|
|
"perhaps you missed a comma?",
|
|
infer_type(e)->tp_name);
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_subscripter(struct compiler *c, expr_ty e)
|
|
{
|
|
PyObject *v;
|
|
|
|
switch (e->kind) {
|
|
case Constant_kind:
|
|
v = e->v.Constant.value;
|
|
if (!(v == Py_None || v == Py_Ellipsis ||
|
|
PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) ||
|
|
PyAnySet_Check(v)))
|
|
{
|
|
return 1;
|
|
}
|
|
/* fall through */
|
|
case Set_kind:
|
|
case SetComp_kind:
|
|
case GeneratorExp_kind:
|
|
case Lambda_kind:
|
|
return compiler_warn(c, "'%.200s' object is not subscriptable; "
|
|
"perhaps you missed a comma?",
|
|
infer_type(e)->tp_name);
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_index(struct compiler *c, expr_ty e, expr_ty s)
|
|
{
|
|
PyObject *v;
|
|
|
|
PyTypeObject *index_type = infer_type(s);
|
|
if (index_type == NULL
|
|
|| PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS)
|
|
|| index_type == &PySlice_Type) {
|
|
return 1;
|
|
}
|
|
|
|
switch (e->kind) {
|
|
case Constant_kind:
|
|
v = e->v.Constant.value;
|
|
if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) {
|
|
return 1;
|
|
}
|
|
/* fall through */
|
|
case Tuple_kind:
|
|
case List_kind:
|
|
case ListComp_kind:
|
|
case JoinedStr_kind:
|
|
case FormattedValue_kind:
|
|
return compiler_warn(c, "%.200s indices must be integers or slices, "
|
|
"not %.200s; "
|
|
"perhaps you missed a comma?",
|
|
infer_type(e)->tp_name,
|
|
index_type->tp_name);
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Return 1 if the method call was optimized, -1 if not, and 0 on error.
|
|
static int
|
|
maybe_optimize_method_call(struct compiler *c, expr_ty e)
|
|
{
|
|
Py_ssize_t argsl, i;
|
|
expr_ty meth = e->v.Call.func;
|
|
asdl_expr_seq *args = e->v.Call.args;
|
|
|
|
/* Check that the call node is an attribute access, and that
|
|
the call doesn't have keyword parameters. */
|
|
if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load ||
|
|
asdl_seq_LEN(e->v.Call.keywords))
|
|
return -1;
|
|
|
|
/* Check that there are no *varargs types of arguments. */
|
|
argsl = asdl_seq_LEN(args);
|
|
for (i = 0; i < argsl; i++) {
|
|
expr_ty elt = asdl_seq_GET(args, i);
|
|
if (elt->kind == Starred_kind) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Alright, we can optimize the code. */
|
|
VISIT(c, expr, meth->v.Attribute.value);
|
|
int old_lineno = c->u->u_lineno;
|
|
c->u->u_lineno = meth->end_lineno;
|
|
ADDOP_NAME(c, LOAD_METHOD, meth->v.Attribute.attr, names);
|
|
VISIT_SEQ(c, expr, e->v.Call.args);
|
|
ADDOP_I(c, CALL_METHOD, asdl_seq_LEN(e->v.Call.args));
|
|
c->u->u_lineno = old_lineno;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
validate_keywords(struct compiler *c, asdl_keyword_seq *keywords)
|
|
{
|
|
Py_ssize_t nkeywords = asdl_seq_LEN(keywords);
|
|
for (Py_ssize_t i = 0; i < nkeywords; i++) {
|
|
keyword_ty key = ((keyword_ty)asdl_seq_GET(keywords, i));
|
|
if (key->arg == NULL) {
|
|
continue;
|
|
}
|
|
if (forbidden_name(c, key->arg, Store)) {
|
|
return -1;
|
|
}
|
|
for (Py_ssize_t j = i + 1; j < nkeywords; j++) {
|
|
keyword_ty other = ((keyword_ty)asdl_seq_GET(keywords, j));
|
|
if (other->arg && !PyUnicode_Compare(key->arg, other->arg)) {
|
|
c->u->u_col_offset = other->col_offset;
|
|
compiler_error(c, "keyword argument repeated: %U", key->arg);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
compiler_call(struct compiler *c, expr_ty e)
|
|
{
|
|
int ret = maybe_optimize_method_call(c, e);
|
|
if (ret >= 0) {
|
|
return ret;
|
|
}
|
|
if (!check_caller(c, e->v.Call.func)) {
|
|
return 0;
|
|
}
|
|
VISIT(c, expr, e->v.Call.func);
|
|
return compiler_call_helper(c, 0,
|
|
e->v.Call.args,
|
|
e->v.Call.keywords);
|
|
}
|
|
|
|
static int
|
|
compiler_joined_str(struct compiler *c, expr_ty e)
|
|
{
|
|
VISIT_SEQ(c, expr, e->v.JoinedStr.values);
|
|
if (asdl_seq_LEN(e->v.JoinedStr.values) != 1)
|
|
ADDOP_I(c, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values));
|
|
return 1;
|
|
}
|
|
|
|
/* Used to implement f-strings. Format a single value. */
|
|
static int
|
|
compiler_formatted_value(struct compiler *c, expr_ty e)
|
|
{
|
|
/* Our oparg encodes 2 pieces of information: the conversion
|
|
character, and whether or not a format_spec was provided.
|
|
|
|
Convert the conversion char to 3 bits:
|
|
: 000 0x0 FVC_NONE The default if nothing specified.
|
|
!s : 001 0x1 FVC_STR
|
|
!r : 010 0x2 FVC_REPR
|
|
!a : 011 0x3 FVC_ASCII
|
|
|
|
next bit is whether or not we have a format spec:
|
|
yes : 100 0x4
|
|
no : 000 0x0
|
|
*/
|
|
|
|
int conversion = e->v.FormattedValue.conversion;
|
|
int oparg;
|
|
|
|
/* The expression to be formatted. */
|
|
VISIT(c, expr, e->v.FormattedValue.value);
|
|
|
|
switch (conversion) {
|
|
case 's': oparg = FVC_STR; break;
|
|
case 'r': oparg = FVC_REPR; break;
|
|
case 'a': oparg = FVC_ASCII; break;
|
|
case -1: oparg = FVC_NONE; break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"Unrecognized conversion character %d", conversion);
|
|
return 0;
|
|
}
|
|
if (e->v.FormattedValue.format_spec) {
|
|
/* Evaluate the format spec, and update our opcode arg. */
|
|
VISIT(c, expr, e->v.FormattedValue.format_spec);
|
|
oparg |= FVS_HAVE_SPEC;
|
|
}
|
|
|
|
/* And push our opcode and oparg */
|
|
ADDOP_I(c, FORMAT_VALUE, oparg);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_subkwargs(struct compiler *c, asdl_keyword_seq *keywords, Py_ssize_t begin, Py_ssize_t end)
|
|
{
|
|
Py_ssize_t i, n = end - begin;
|
|
keyword_ty kw;
|
|
PyObject *keys, *key;
|
|
assert(n > 0);
|
|
if (n > 1) {
|
|
for (i = begin; i < end; i++) {
|
|
kw = asdl_seq_GET(keywords, i);
|
|
VISIT(c, expr, kw->value);
|
|
}
|
|
keys = PyTuple_New(n);
|
|
if (keys == NULL) {
|
|
return 0;
|
|
}
|
|
for (i = begin; i < end; i++) {
|
|
key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg;
|
|
Py_INCREF(key);
|
|
PyTuple_SET_ITEM(keys, i - begin, key);
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, keys);
|
|
ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
|
|
}
|
|
else {
|
|
/* a for loop only executes once */
|
|
for (i = begin; i < end; i++) {
|
|
kw = asdl_seq_GET(keywords, i);
|
|
ADDOP_LOAD_CONST(c, kw->arg);
|
|
VISIT(c, expr, kw->value);
|
|
}
|
|
ADDOP_I(c, BUILD_MAP, n);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* shared code between compiler_call and compiler_class */
|
|
static int
|
|
compiler_call_helper(struct compiler *c,
|
|
int n, /* Args already pushed */
|
|
asdl_expr_seq *args,
|
|
asdl_keyword_seq *keywords)
|
|
{
|
|
Py_ssize_t i, nseen, nelts, nkwelts;
|
|
|
|
if (validate_keywords(c, keywords) == -1) {
|
|
return 0;
|
|
}
|
|
|
|
nelts = asdl_seq_LEN(args);
|
|
nkwelts = asdl_seq_LEN(keywords);
|
|
|
|
for (i = 0; i < nelts; i++) {
|
|
expr_ty elt = asdl_seq_GET(args, i);
|
|
if (elt->kind == Starred_kind) {
|
|
goto ex_call;
|
|
}
|
|
}
|
|
for (i = 0; i < nkwelts; i++) {
|
|
keyword_ty kw = asdl_seq_GET(keywords, i);
|
|
if (kw->arg == NULL) {
|
|
goto ex_call;
|
|
}
|
|
}
|
|
|
|
/* No * or ** args, so can use faster calling sequence */
|
|
for (i = 0; i < nelts; i++) {
|
|
expr_ty elt = asdl_seq_GET(args, i);
|
|
assert(elt->kind != Starred_kind);
|
|
VISIT(c, expr, elt);
|
|
}
|
|
if (nkwelts) {
|
|
PyObject *names;
|
|
VISIT_SEQ(c, keyword, keywords);
|
|
names = PyTuple_New(nkwelts);
|
|
if (names == NULL) {
|
|
return 0;
|
|
}
|
|
for (i = 0; i < nkwelts; i++) {
|
|
keyword_ty kw = asdl_seq_GET(keywords, i);
|
|
Py_INCREF(kw->arg);
|
|
PyTuple_SET_ITEM(names, i, kw->arg);
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, names);
|
|
ADDOP_I(c, CALL_FUNCTION_KW, n + nelts + nkwelts);
|
|
return 1;
|
|
}
|
|
else {
|
|
ADDOP_I(c, CALL_FUNCTION, n + nelts);
|
|
return 1;
|
|
}
|
|
|
|
ex_call:
|
|
|
|
/* Do positional arguments. */
|
|
if (n ==0 && nelts == 1 && ((expr_ty)asdl_seq_GET(args, 0))->kind == Starred_kind) {
|
|
VISIT(c, expr, ((expr_ty)asdl_seq_GET(args, 0))->v.Starred.value);
|
|
}
|
|
else if (starunpack_helper(c, args, n, BUILD_LIST,
|
|
LIST_APPEND, LIST_EXTEND, 1) == 0) {
|
|
return 0;
|
|
}
|
|
/* Then keyword arguments */
|
|
if (nkwelts) {
|
|
/* Has a new dict been pushed */
|
|
int have_dict = 0;
|
|
|
|
nseen = 0; /* the number of keyword arguments on the stack following */
|
|
for (i = 0; i < nkwelts; i++) {
|
|
keyword_ty kw = asdl_seq_GET(keywords, i);
|
|
if (kw->arg == NULL) {
|
|
/* A keyword argument unpacking. */
|
|
if (nseen) {
|
|
if (!compiler_subkwargs(c, keywords, i - nseen, i)) {
|
|
return 0;
|
|
}
|
|
if (have_dict) {
|
|
ADDOP_I(c, DICT_MERGE, 1);
|
|
}
|
|
have_dict = 1;
|
|
nseen = 0;
|
|
}
|
|
if (!have_dict) {
|
|
ADDOP_I(c, BUILD_MAP, 0);
|
|
have_dict = 1;
|
|
}
|
|
VISIT(c, expr, kw->value);
|
|
ADDOP_I(c, DICT_MERGE, 1);
|
|
}
|
|
else {
|
|
nseen++;
|
|
}
|
|
}
|
|
if (nseen) {
|
|
/* Pack up any trailing keyword arguments. */
|
|
if (!compiler_subkwargs(c, keywords, nkwelts - nseen, nkwelts)) {
|
|
return 0;
|
|
}
|
|
if (have_dict) {
|
|
ADDOP_I(c, DICT_MERGE, 1);
|
|
}
|
|
have_dict = 1;
|
|
}
|
|
assert(have_dict);
|
|
}
|
|
ADDOP_I(c, CALL_FUNCTION_EX, nkwelts > 0);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* List and set comprehensions and generator expressions work by creating a
|
|
nested function to perform the actual iteration. This means that the
|
|
iteration variables don't leak into the current scope.
|
|
The defined function is called immediately following its definition, with the
|
|
result of that call being the result of the expression.
|
|
The LC/SC version returns the populated container, while the GE version is
|
|
flagged in symtable.c as a generator, so it returns the generator object
|
|
when the function is called.
|
|
|
|
Possible cleanups:
|
|
- iterate over the generator sequence instead of using recursion
|
|
*/
|
|
|
|
|
|
static int
|
|
compiler_comprehension_generator(struct compiler *c,
|
|
asdl_comprehension_seq *generators, int gen_index,
|
|
int depth,
|
|
expr_ty elt, expr_ty val, int type)
|
|
{
|
|
comprehension_ty gen;
|
|
gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
|
|
if (gen->is_async) {
|
|
return compiler_async_comprehension_generator(
|
|
c, generators, gen_index, depth, elt, val, type);
|
|
} else {
|
|
return compiler_sync_comprehension_generator(
|
|
c, generators, gen_index, depth, elt, val, type);
|
|
}
|
|
}
|
|
|
|
static int
|
|
compiler_sync_comprehension_generator(struct compiler *c,
|
|
asdl_comprehension_seq *generators, int gen_index,
|
|
int depth,
|
|
expr_ty elt, expr_ty val, int type)
|
|
{
|
|
/* generate code for the iterator, then each of the ifs,
|
|
and then write to the element */
|
|
|
|
comprehension_ty gen;
|
|
basicblock *start, *anchor, *skip, *if_cleanup;
|
|
Py_ssize_t i, n;
|
|
|
|
start = compiler_new_block(c);
|
|
skip = compiler_new_block(c);
|
|
if_cleanup = compiler_new_block(c);
|
|
anchor = compiler_new_block(c);
|
|
|
|
if (start == NULL || skip == NULL || if_cleanup == NULL ||
|
|
anchor == NULL)
|
|
return 0;
|
|
|
|
gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
|
|
|
|
if (gen_index == 0) {
|
|
/* Receive outermost iter as an implicit argument */
|
|
c->u->u_argcount = 1;
|
|
ADDOP_I(c, LOAD_FAST, 0);
|
|
}
|
|
else {
|
|
/* Sub-iter - calculate on the fly */
|
|
/* Fast path for the temporary variable assignment idiom:
|
|
for y in [f(x)]
|
|
*/
|
|
asdl_expr_seq *elts;
|
|
switch (gen->iter->kind) {
|
|
case List_kind:
|
|
elts = gen->iter->v.List.elts;
|
|
break;
|
|
case Tuple_kind:
|
|
elts = gen->iter->v.Tuple.elts;
|
|
break;
|
|
default:
|
|
elts = NULL;
|
|
}
|
|
if (asdl_seq_LEN(elts) == 1) {
|
|
expr_ty elt = asdl_seq_GET(elts, 0);
|
|
if (elt->kind != Starred_kind) {
|
|
VISIT(c, expr, elt);
|
|
start = NULL;
|
|
}
|
|
}
|
|
if (start) {
|
|
VISIT(c, expr, gen->iter);
|
|
ADDOP(c, GET_ITER);
|
|
}
|
|
}
|
|
if (start) {
|
|
depth++;
|
|
compiler_use_next_block(c, start);
|
|
ADDOP_JUMP(c, FOR_ITER, anchor);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
VISIT(c, expr, gen->target);
|
|
|
|
/* XXX this needs to be cleaned up...a lot! */
|
|
n = asdl_seq_LEN(gen->ifs);
|
|
for (i = 0; i < n; i++) {
|
|
expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
|
|
if (!compiler_jump_if(c, e, if_cleanup, 0))
|
|
return 0;
|
|
NEXT_BLOCK(c);
|
|
}
|
|
|
|
if (++gen_index < asdl_seq_LEN(generators))
|
|
if (!compiler_comprehension_generator(c,
|
|
generators, gen_index, depth,
|
|
elt, val, type))
|
|
return 0;
|
|
|
|
/* only append after the last for generator */
|
|
if (gen_index >= asdl_seq_LEN(generators)) {
|
|
/* comprehension specific code */
|
|
switch (type) {
|
|
case COMP_GENEXP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP(c, YIELD_VALUE);
|
|
ADDOP(c, POP_TOP);
|
|
break;
|
|
case COMP_LISTCOMP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_I(c, LIST_APPEND, depth + 1);
|
|
break;
|
|
case COMP_SETCOMP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_I(c, SET_ADD, depth + 1);
|
|
break;
|
|
case COMP_DICTCOMP:
|
|
/* With '{k: v}', k is evaluated before v, so we do
|
|
the same. */
|
|
VISIT(c, expr, elt);
|
|
VISIT(c, expr, val);
|
|
ADDOP_I(c, MAP_ADD, depth + 1);
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
compiler_use_next_block(c, skip);
|
|
}
|
|
compiler_use_next_block(c, if_cleanup);
|
|
if (start) {
|
|
ADDOP_JUMP(c, JUMP_ABSOLUTE, start);
|
|
compiler_use_next_block(c, anchor);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_async_comprehension_generator(struct compiler *c,
|
|
asdl_comprehension_seq *generators, int gen_index,
|
|
int depth,
|
|
expr_ty elt, expr_ty val, int type)
|
|
{
|
|
comprehension_ty gen;
|
|
basicblock *start, *if_cleanup, *except;
|
|
Py_ssize_t i, n;
|
|
start = compiler_new_block(c);
|
|
except = compiler_new_block(c);
|
|
if_cleanup = compiler_new_block(c);
|
|
|
|
if (start == NULL || if_cleanup == NULL || except == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
|
|
|
|
if (gen_index == 0) {
|
|
/* Receive outermost iter as an implicit argument */
|
|
c->u->u_argcount = 1;
|
|
ADDOP_I(c, LOAD_FAST, 0);
|
|
}
|
|
else {
|
|
/* Sub-iter - calculate on the fly */
|
|
VISIT(c, expr, gen->iter);
|
|
ADDOP(c, GET_AITER);
|
|
}
|
|
|
|
compiler_use_next_block(c, start);
|
|
|
|
ADDOP_JUMP(c, SETUP_FINALLY, except);
|
|
ADDOP(c, GET_ANEXT);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, YIELD_FROM);
|
|
ADDOP(c, POP_BLOCK);
|
|
VISIT(c, expr, gen->target);
|
|
|
|
n = asdl_seq_LEN(gen->ifs);
|
|
for (i = 0; i < n; i++) {
|
|
expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
|
|
if (!compiler_jump_if(c, e, if_cleanup, 0))
|
|
return 0;
|
|
NEXT_BLOCK(c);
|
|
}
|
|
|
|
depth++;
|
|
if (++gen_index < asdl_seq_LEN(generators))
|
|
if (!compiler_comprehension_generator(c,
|
|
generators, gen_index, depth,
|
|
elt, val, type))
|
|
return 0;
|
|
|
|
/* only append after the last for generator */
|
|
if (gen_index >= asdl_seq_LEN(generators)) {
|
|
/* comprehension specific code */
|
|
switch (type) {
|
|
case COMP_GENEXP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP(c, YIELD_VALUE);
|
|
ADDOP(c, POP_TOP);
|
|
break;
|
|
case COMP_LISTCOMP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_I(c, LIST_APPEND, depth + 1);
|
|
break;
|
|
case COMP_SETCOMP:
|
|
VISIT(c, expr, elt);
|
|
ADDOP_I(c, SET_ADD, depth + 1);
|
|
break;
|
|
case COMP_DICTCOMP:
|
|
/* With '{k: v}', k is evaluated before v, so we do
|
|
the same. */
|
|
VISIT(c, expr, elt);
|
|
VISIT(c, expr, val);
|
|
ADDOP_I(c, MAP_ADD, depth + 1);
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
compiler_use_next_block(c, if_cleanup);
|
|
ADDOP_JUMP(c, JUMP_ABSOLUTE, start);
|
|
|
|
compiler_use_next_block(c, except);
|
|
ADDOP(c, END_ASYNC_FOR);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_comprehension(struct compiler *c, expr_ty e, int type,
|
|
identifier name, asdl_comprehension_seq *generators, expr_ty elt,
|
|
expr_ty val)
|
|
{
|
|
PyCodeObject *co = NULL;
|
|
comprehension_ty outermost;
|
|
PyObject *qualname = NULL;
|
|
int is_async_generator = 0;
|
|
int top_level_await = IS_TOP_LEVEL_AWAIT(c);
|
|
|
|
|
|
int is_async_function = c->u->u_ste->ste_coroutine;
|
|
|
|
outermost = (comprehension_ty) asdl_seq_GET(generators, 0);
|
|
if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
|
|
(void *)e, e->lineno))
|
|
{
|
|
goto error;
|
|
}
|
|
|
|
is_async_generator = c->u->u_ste->ste_coroutine;
|
|
|
|
if (is_async_generator && !is_async_function && type != COMP_GENEXP && !top_level_await) {
|
|
compiler_error(c, "asynchronous comprehension outside of "
|
|
"an asynchronous function");
|
|
goto error_in_scope;
|
|
}
|
|
|
|
if (type != COMP_GENEXP) {
|
|
int op;
|
|
switch (type) {
|
|
case COMP_LISTCOMP:
|
|
op = BUILD_LIST;
|
|
break;
|
|
case COMP_SETCOMP:
|
|
op = BUILD_SET;
|
|
break;
|
|
case COMP_DICTCOMP:
|
|
op = BUILD_MAP;
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"unknown comprehension type %d", type);
|
|
goto error_in_scope;
|
|
}
|
|
|
|
ADDOP_I(c, op, 0);
|
|
}
|
|
|
|
if (!compiler_comprehension_generator(c, generators, 0, 0, elt,
|
|
val, type))
|
|
goto error_in_scope;
|
|
|
|
if (type != COMP_GENEXP) {
|
|
ADDOP(c, RETURN_VALUE);
|
|
}
|
|
|
|
co = assemble(c, 1);
|
|
qualname = c->u->u_qualname;
|
|
Py_INCREF(qualname);
|
|
compiler_exit_scope(c);
|
|
if (top_level_await && is_async_generator){
|
|
c->u->u_ste->ste_coroutine = 1;
|
|
}
|
|
if (co == NULL)
|
|
goto error;
|
|
|
|
if (!compiler_make_closure(c, co, 0, qualname)) {
|
|
goto error;
|
|
}
|
|
Py_DECREF(qualname);
|
|
Py_DECREF(co);
|
|
|
|
VISIT(c, expr, outermost->iter);
|
|
|
|
if (outermost->is_async) {
|
|
ADDOP(c, GET_AITER);
|
|
} else {
|
|
ADDOP(c, GET_ITER);
|
|
}
|
|
|
|
ADDOP_I(c, CALL_FUNCTION, 1);
|
|
|
|
if (is_async_generator && type != COMP_GENEXP) {
|
|
ADDOP(c, GET_AWAITABLE);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, YIELD_FROM);
|
|
}
|
|
|
|
return 1;
|
|
error_in_scope:
|
|
compiler_exit_scope(c);
|
|
error:
|
|
Py_XDECREF(qualname);
|
|
Py_XDECREF(co);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
compiler_genexp(struct compiler *c, expr_ty e)
|
|
{
|
|
static identifier name;
|
|
if (!name) {
|
|
name = PyUnicode_InternFromString("<genexpr>");
|
|
if (!name)
|
|
return 0;
|
|
}
|
|
assert(e->kind == GeneratorExp_kind);
|
|
return compiler_comprehension(c, e, COMP_GENEXP, name,
|
|
e->v.GeneratorExp.generators,
|
|
e->v.GeneratorExp.elt, NULL);
|
|
}
|
|
|
|
static int
|
|
compiler_listcomp(struct compiler *c, expr_ty e)
|
|
{
|
|
static identifier name;
|
|
if (!name) {
|
|
name = PyUnicode_InternFromString("<listcomp>");
|
|
if (!name)
|
|
return 0;
|
|
}
|
|
assert(e->kind == ListComp_kind);
|
|
return compiler_comprehension(c, e, COMP_LISTCOMP, name,
|
|
e->v.ListComp.generators,
|
|
e->v.ListComp.elt, NULL);
|
|
}
|
|
|
|
static int
|
|
compiler_setcomp(struct compiler *c, expr_ty e)
|
|
{
|
|
static identifier name;
|
|
if (!name) {
|
|
name = PyUnicode_InternFromString("<setcomp>");
|
|
if (!name)
|
|
return 0;
|
|
}
|
|
assert(e->kind == SetComp_kind);
|
|
return compiler_comprehension(c, e, COMP_SETCOMP, name,
|
|
e->v.SetComp.generators,
|
|
e->v.SetComp.elt, NULL);
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_dictcomp(struct compiler *c, expr_ty e)
|
|
{
|
|
static identifier name;
|
|
if (!name) {
|
|
name = PyUnicode_InternFromString("<dictcomp>");
|
|
if (!name)
|
|
return 0;
|
|
}
|
|
assert(e->kind == DictComp_kind);
|
|
return compiler_comprehension(c, e, COMP_DICTCOMP, name,
|
|
e->v.DictComp.generators,
|
|
e->v.DictComp.key, e->v.DictComp.value);
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_visit_keyword(struct compiler *c, keyword_ty k)
|
|
{
|
|
VISIT(c, expr, k->value);
|
|
return 1;
|
|
}
|
|
|
|
/* Test whether expression is constant. For constants, report
|
|
whether they are true or false.
|
|
|
|
Return values: 1 for true, 0 for false, -1 for non-constant.
|
|
*/
|
|
|
|
static int
|
|
compiler_with_except_finish(struct compiler *c) {
|
|
basicblock *exit;
|
|
exit = compiler_new_block(c);
|
|
if (exit == NULL)
|
|
return 0;
|
|
ADDOP_JUMP(c, POP_JUMP_IF_TRUE, exit);
|
|
NEXT_BLOCK(c);
|
|
ADDOP_I(c, RERAISE, 1);
|
|
compiler_use_next_block(c, exit);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP(c, POP_EXCEPT);
|
|
ADDOP(c, POP_TOP);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
Implements the async with statement.
|
|
|
|
The semantics outlined in that PEP are as follows:
|
|
|
|
async with EXPR as VAR:
|
|
BLOCK
|
|
|
|
It is implemented roughly as:
|
|
|
|
context = EXPR
|
|
exit = context.__aexit__ # not calling it
|
|
value = await context.__aenter__()
|
|
try:
|
|
VAR = value # if VAR present in the syntax
|
|
BLOCK
|
|
finally:
|
|
if an exception was raised:
|
|
exc = copy of (exception, instance, traceback)
|
|
else:
|
|
exc = (None, None, None)
|
|
if not (await exit(*exc)):
|
|
raise
|
|
*/
|
|
static int
|
|
compiler_async_with(struct compiler *c, stmt_ty s, int pos)
|
|
{
|
|
basicblock *block, *final, *exit;
|
|
withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);
|
|
|
|
assert(s->kind == AsyncWith_kind);
|
|
if (IS_TOP_LEVEL_AWAIT(c)){
|
|
c->u->u_ste->ste_coroutine = 1;
|
|
} else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){
|
|
return compiler_error(c, "'async with' outside async function");
|
|
}
|
|
|
|
block = compiler_new_block(c);
|
|
final = compiler_new_block(c);
|
|
exit = compiler_new_block(c);
|
|
if (!block || !final || !exit)
|
|
return 0;
|
|
|
|
/* Evaluate EXPR */
|
|
VISIT(c, expr, item->context_expr);
|
|
|
|
ADDOP(c, BEFORE_ASYNC_WITH);
|
|
ADDOP(c, GET_AWAITABLE);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, YIELD_FROM);
|
|
|
|
ADDOP_JUMP(c, SETUP_ASYNC_WITH, final);
|
|
|
|
/* SETUP_ASYNC_WITH pushes a finally block. */
|
|
compiler_use_next_block(c, block);
|
|
if (!compiler_push_fblock(c, ASYNC_WITH, block, final, NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
if (item->optional_vars) {
|
|
VISIT(c, expr, item->optional_vars);
|
|
}
|
|
else {
|
|
/* Discard result from context.__aenter__() */
|
|
ADDOP(c, POP_TOP);
|
|
}
|
|
|
|
pos++;
|
|
if (pos == asdl_seq_LEN(s->v.AsyncWith.items))
|
|
/* BLOCK code */
|
|
VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
|
|
else if (!compiler_async_with(c, s, pos))
|
|
return 0;
|
|
|
|
compiler_pop_fblock(c, ASYNC_WITH, block);
|
|
ADDOP(c, POP_BLOCK);
|
|
/* End of body; start the cleanup */
|
|
|
|
/* For successful outcome:
|
|
* call __exit__(None, None, None)
|
|
*/
|
|
if(!compiler_call_exit_with_nones(c))
|
|
return 0;
|
|
ADDOP(c, GET_AWAITABLE);
|
|
ADDOP_O(c, LOAD_CONST, Py_None, consts);
|
|
ADDOP(c, YIELD_FROM);
|
|
|
|
ADDOP(c, POP_TOP);
|
|
|
|
ADDOP_JUMP(c, JUMP_ABSOLUTE, exit);
|
|
|
|
/* For exceptional outcome: */
|
|
compiler_use_next_block(c, final);
|
|
|
|
ADDOP(c, WITH_EXCEPT_START);
|
|
ADDOP(c, GET_AWAITABLE);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, YIELD_FROM);
|
|
compiler_with_except_finish(c);
|
|
|
|
compiler_use_next_block(c, exit);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Implements the with statement from PEP 343.
|
|
with EXPR as VAR:
|
|
BLOCK
|
|
is implemented as:
|
|
<code for EXPR>
|
|
SETUP_WITH E
|
|
<code to store to VAR> or POP_TOP
|
|
<code for BLOCK>
|
|
LOAD_CONST (None, None, None)
|
|
CALL_FUNCTION_EX 0
|
|
JUMP_FORWARD EXIT
|
|
E: WITH_EXCEPT_START (calls EXPR.__exit__)
|
|
POP_JUMP_IF_TRUE T:
|
|
RERAISE
|
|
T: POP_TOP * 3 (remove exception from stack)
|
|
POP_EXCEPT
|
|
POP_TOP
|
|
EXIT:
|
|
*/
|
|
|
|
static int
|
|
compiler_with(struct compiler *c, stmt_ty s, int pos)
|
|
{
|
|
basicblock *block, *final, *exit;
|
|
withitem_ty item = asdl_seq_GET(s->v.With.items, pos);
|
|
|
|
assert(s->kind == With_kind);
|
|
|
|
block = compiler_new_block(c);
|
|
final = compiler_new_block(c);
|
|
exit = compiler_new_block(c);
|
|
if (!block || !final || !exit)
|
|
return 0;
|
|
|
|
/* Evaluate EXPR */
|
|
VISIT(c, expr, item->context_expr);
|
|
/* Will push bound __exit__ */
|
|
ADDOP_JUMP(c, SETUP_WITH, final);
|
|
|
|
/* SETUP_WITH pushes a finally block. */
|
|
compiler_use_next_block(c, block);
|
|
if (!compiler_push_fblock(c, WITH, block, final, NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
if (item->optional_vars) {
|
|
VISIT(c, expr, item->optional_vars);
|
|
}
|
|
else {
|
|
/* Discard result from context.__enter__() */
|
|
ADDOP(c, POP_TOP);
|
|
}
|
|
|
|
pos++;
|
|
if (pos == asdl_seq_LEN(s->v.With.items))
|
|
/* BLOCK code */
|
|
VISIT_SEQ(c, stmt, s->v.With.body)
|
|
else if (!compiler_with(c, s, pos))
|
|
return 0;
|
|
|
|
|
|
/* Mark all following code as artificial */
|
|
c->u->u_lineno = -1;
|
|
ADDOP(c, POP_BLOCK);
|
|
compiler_pop_fblock(c, WITH, block);
|
|
|
|
/* End of body; start the cleanup. */
|
|
|
|
/* For successful outcome:
|
|
* call __exit__(None, None, None)
|
|
*/
|
|
if (!compiler_call_exit_with_nones(c))
|
|
return 0;
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, exit);
|
|
|
|
/* For exceptional outcome: */
|
|
compiler_use_next_block(c, final);
|
|
|
|
ADDOP(c, WITH_EXCEPT_START);
|
|
compiler_with_except_finish(c);
|
|
|
|
compiler_use_next_block(c, exit);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_expr1(struct compiler *c, expr_ty e)
|
|
{
|
|
switch (e->kind) {
|
|
case NamedExpr_kind:
|
|
VISIT(c, expr, e->v.NamedExpr.value);
|
|
ADDOP(c, DUP_TOP);
|
|
VISIT(c, expr, e->v.NamedExpr.target);
|
|
break;
|
|
case BoolOp_kind:
|
|
return compiler_boolop(c, e);
|
|
case BinOp_kind:
|
|
VISIT(c, expr, e->v.BinOp.left);
|
|
VISIT(c, expr, e->v.BinOp.right);
|
|
ADDOP(c, binop(e->v.BinOp.op));
|
|
break;
|
|
case UnaryOp_kind:
|
|
VISIT(c, expr, e->v.UnaryOp.operand);
|
|
ADDOP(c, unaryop(e->v.UnaryOp.op));
|
|
break;
|
|
case Lambda_kind:
|
|
return compiler_lambda(c, e);
|
|
case IfExp_kind:
|
|
return compiler_ifexp(c, e);
|
|
case Dict_kind:
|
|
return compiler_dict(c, e);
|
|
case Set_kind:
|
|
return compiler_set(c, e);
|
|
case GeneratorExp_kind:
|
|
return compiler_genexp(c, e);
|
|
case ListComp_kind:
|
|
return compiler_listcomp(c, e);
|
|
case SetComp_kind:
|
|
return compiler_setcomp(c, e);
|
|
case DictComp_kind:
|
|
return compiler_dictcomp(c, e);
|
|
case Yield_kind:
|
|
if (c->u->u_ste->ste_type != FunctionBlock)
|
|
return compiler_error(c, "'yield' outside function");
|
|
if (e->v.Yield.value) {
|
|
VISIT(c, expr, e->v.Yield.value);
|
|
}
|
|
else {
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
}
|
|
ADDOP(c, YIELD_VALUE);
|
|
break;
|
|
case YieldFrom_kind:
|
|
if (c->u->u_ste->ste_type != FunctionBlock)
|
|
return compiler_error(c, "'yield' outside function");
|
|
|
|
if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION)
|
|
return compiler_error(c, "'yield from' inside async function");
|
|
|
|
VISIT(c, expr, e->v.YieldFrom.value);
|
|
ADDOP(c, GET_YIELD_FROM_ITER);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, YIELD_FROM);
|
|
break;
|
|
case Await_kind:
|
|
if (!IS_TOP_LEVEL_AWAIT(c)){
|
|
if (c->u->u_ste->ste_type != FunctionBlock){
|
|
return compiler_error(c, "'await' outside function");
|
|
}
|
|
|
|
if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
|
|
c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION){
|
|
return compiler_error(c, "'await' outside async function");
|
|
}
|
|
}
|
|
|
|
VISIT(c, expr, e->v.Await.value);
|
|
ADDOP(c, GET_AWAITABLE);
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, YIELD_FROM);
|
|
break;
|
|
case Compare_kind:
|
|
return compiler_compare(c, e);
|
|
case Call_kind:
|
|
return compiler_call(c, e);
|
|
case Constant_kind:
|
|
ADDOP_LOAD_CONST(c, e->v.Constant.value);
|
|
break;
|
|
case JoinedStr_kind:
|
|
return compiler_joined_str(c, e);
|
|
case FormattedValue_kind:
|
|
return compiler_formatted_value(c, e);
|
|
/* The following exprs can be assignment targets. */
|
|
case Attribute_kind:
|
|
VISIT(c, expr, e->v.Attribute.value);
|
|
switch (e->v.Attribute.ctx) {
|
|
case Load:
|
|
{
|
|
int old_lineno = c->u->u_lineno;
|
|
c->u->u_lineno = e->end_lineno;
|
|
ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
|
|
c->u->u_lineno = old_lineno;
|
|
break;
|
|
}
|
|
case Store:
|
|
if (forbidden_name(c, e->v.Attribute.attr, e->v.Attribute.ctx)) {
|
|
return 0;
|
|
}
|
|
int old_lineno = c->u->u_lineno;
|
|
c->u->u_lineno = e->end_lineno;
|
|
ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
|
|
c->u->u_lineno = old_lineno;
|
|
break;
|
|
case Del:
|
|
ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names);
|
|
break;
|
|
}
|
|
break;
|
|
case Subscript_kind:
|
|
return compiler_subscript(c, e);
|
|
case Starred_kind:
|
|
switch (e->v.Starred.ctx) {
|
|
case Store:
|
|
/* In all legitimate cases, the Starred node was already replaced
|
|
* by compiler_list/compiler_tuple. XXX: is that okay? */
|
|
return compiler_error(c,
|
|
"starred assignment target must be in a list or tuple");
|
|
default:
|
|
return compiler_error(c,
|
|
"can't use starred expression here");
|
|
}
|
|
break;
|
|
case Slice_kind:
|
|
return compiler_slice(c, e);
|
|
case Name_kind:
|
|
return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx);
|
|
/* child nodes of List and Tuple will have expr_context set */
|
|
case List_kind:
|
|
return compiler_list(c, e);
|
|
case Tuple_kind:
|
|
return compiler_tuple(c, e);
|
|
case MatchAs_kind:
|
|
case MatchOr_kind:
|
|
// Can only occur in patterns, which are handled elsewhere.
|
|
Py_UNREACHABLE();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_visit_expr(struct compiler *c, expr_ty e)
|
|
{
|
|
int old_lineno = c->u->u_lineno;
|
|
int old_col_offset = c->u->u_col_offset;
|
|
SET_LOC(c, e);
|
|
int res = compiler_visit_expr1(c, e);
|
|
c->u->u_lineno = old_lineno;
|
|
c->u->u_col_offset = old_col_offset;
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
compiler_augassign(struct compiler *c, stmt_ty s)
|
|
{
|
|
assert(s->kind == AugAssign_kind);
|
|
expr_ty e = s->v.AugAssign.target;
|
|
|
|
int old_lineno = c->u->u_lineno;
|
|
int old_col_offset = c->u->u_col_offset;
|
|
SET_LOC(c, e);
|
|
|
|
switch (e->kind) {
|
|
case Attribute_kind:
|
|
VISIT(c, expr, e->v.Attribute.value);
|
|
ADDOP(c, DUP_TOP);
|
|
int old_lineno = c->u->u_lineno;
|
|
c->u->u_lineno = e->end_lineno;
|
|
ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
|
|
c->u->u_lineno = old_lineno;
|
|
break;
|
|
case Subscript_kind:
|
|
VISIT(c, expr, e->v.Subscript.value);
|
|
VISIT(c, expr, e->v.Subscript.slice);
|
|
ADDOP(c, DUP_TOP_TWO);
|
|
ADDOP(c, BINARY_SUBSCR);
|
|
break;
|
|
case Name_kind:
|
|
if (!compiler_nameop(c, e->v.Name.id, Load))
|
|
return 0;
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"invalid node type (%d) for augmented assignment",
|
|
e->kind);
|
|
return 0;
|
|
}
|
|
|
|
c->u->u_lineno = old_lineno;
|
|
c->u->u_col_offset = old_col_offset;
|
|
|
|
VISIT(c, expr, s->v.AugAssign.value);
|
|
ADDOP(c, inplace_binop(s->v.AugAssign.op));
|
|
|
|
SET_LOC(c, e);
|
|
|
|
switch (e->kind) {
|
|
case Attribute_kind:
|
|
c->u->u_lineno = e->end_lineno;
|
|
ADDOP(c, ROT_TWO);
|
|
ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
|
|
break;
|
|
case Subscript_kind:
|
|
ADDOP(c, ROT_THREE);
|
|
ADDOP(c, STORE_SUBSCR);
|
|
break;
|
|
case Name_kind:
|
|
return compiler_nameop(c, e->v.Name.id, Store);
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
check_ann_expr(struct compiler *c, expr_ty e)
|
|
{
|
|
VISIT(c, expr, e);
|
|
ADDOP(c, POP_TOP);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
check_annotation(struct compiler *c, stmt_ty s)
|
|
{
|
|
/* Annotations are only evaluated in a module or class. */
|
|
if (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
|
|
c->u->u_scope_type == COMPILER_SCOPE_CLASS) {
|
|
return check_ann_expr(c, s->v.AnnAssign.annotation);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
check_ann_subscr(struct compiler *c, expr_ty e)
|
|
{
|
|
/* We check that everything in a subscript is defined at runtime. */
|
|
switch (e->kind) {
|
|
case Slice_kind:
|
|
if (e->v.Slice.lower && !check_ann_expr(c, e->v.Slice.lower)) {
|
|
return 0;
|
|
}
|
|
if (e->v.Slice.upper && !check_ann_expr(c, e->v.Slice.upper)) {
|
|
return 0;
|
|
}
|
|
if (e->v.Slice.step && !check_ann_expr(c, e->v.Slice.step)) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
case Tuple_kind: {
|
|
/* extended slice */
|
|
asdl_expr_seq *elts = e->v.Tuple.elts;
|
|
Py_ssize_t i, n = asdl_seq_LEN(elts);
|
|
for (i = 0; i < n; i++) {
|
|
if (!check_ann_subscr(c, asdl_seq_GET(elts, i))) {
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
default:
|
|
return check_ann_expr(c, e);
|
|
}
|
|
}
|
|
|
|
static int
|
|
compiler_annassign(struct compiler *c, stmt_ty s)
|
|
{
|
|
expr_ty targ = s->v.AnnAssign.target;
|
|
PyObject* mangled;
|
|
|
|
assert(s->kind == AnnAssign_kind);
|
|
|
|
/* We perform the actual assignment first. */
|
|
if (s->v.AnnAssign.value) {
|
|
VISIT(c, expr, s->v.AnnAssign.value);
|
|
VISIT(c, expr, targ);
|
|
}
|
|
switch (targ->kind) {
|
|
case Name_kind:
|
|
if (forbidden_name(c, targ->v.Name.id, Store))
|
|
return 0;
|
|
/* If we have a simple name in a module or class, store annotation. */
|
|
if (s->v.AnnAssign.simple &&
|
|
(c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
|
|
c->u->u_scope_type == COMPILER_SCOPE_CLASS)) {
|
|
VISIT(c, annexpr, s->v.AnnAssign.annotation);
|
|
ADDOP_NAME(c, LOAD_NAME, __annotations__, names);
|
|
mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id);
|
|
ADDOP_LOAD_CONST_NEW(c, mangled);
|
|
ADDOP(c, STORE_SUBSCR);
|
|
}
|
|
break;
|
|
case Attribute_kind:
|
|
if (forbidden_name(c, targ->v.Attribute.attr, Store))
|
|
return 0;
|
|
if (!s->v.AnnAssign.value &&
|
|
!check_ann_expr(c, targ->v.Attribute.value)) {
|
|
return 0;
|
|
}
|
|
break;
|
|
case Subscript_kind:
|
|
if (!s->v.AnnAssign.value &&
|
|
(!check_ann_expr(c, targ->v.Subscript.value) ||
|
|
!check_ann_subscr(c, targ->v.Subscript.slice))) {
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
PyErr_Format(PyExc_SystemError,
|
|
"invalid node type (%d) for annotated assignment",
|
|
targ->kind);
|
|
return 0;
|
|
}
|
|
/* Annotation is evaluated last. */
|
|
if (!s->v.AnnAssign.simple && !check_annotation(c, s)) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Raises a SyntaxError and returns 0.
|
|
If something goes wrong, a different exception may be raised.
|
|
*/
|
|
|
|
static int
|
|
compiler_error(struct compiler *c, const char *format, ...)
|
|
{
|
|
va_list vargs;
|
|
#ifdef HAVE_STDARG_PROTOTYPES
|
|
va_start(vargs, format);
|
|
#else
|
|
va_start(vargs);
|
|
#endif
|
|
PyObject *msg = PyUnicode_FromFormatV(format, vargs);
|
|
va_end(vargs);
|
|
if (msg == NULL) {
|
|
return 0;
|
|
}
|
|
PyObject *loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno);
|
|
if (loc == NULL) {
|
|
Py_INCREF(Py_None);
|
|
loc = Py_None;
|
|
}
|
|
PyObject *args = Py_BuildValue("O(OiiO)", msg, c->c_filename,
|
|
c->u->u_lineno, c->u->u_col_offset + 1, loc);
|
|
Py_DECREF(msg);
|
|
if (args == NULL) {
|
|
goto exit;
|
|
}
|
|
PyErr_SetObject(PyExc_SyntaxError, args);
|
|
exit:
|
|
Py_DECREF(loc);
|
|
Py_XDECREF(args);
|
|
return 0;
|
|
}
|
|
|
|
/* Emits a SyntaxWarning and returns 1 on success.
|
|
If a SyntaxWarning raised as error, replaces it with a SyntaxError
|
|
and returns 0.
|
|
*/
|
|
static int
|
|
compiler_warn(struct compiler *c, const char *format, ...)
|
|
{
|
|
va_list vargs;
|
|
#ifdef HAVE_STDARG_PROTOTYPES
|
|
va_start(vargs, format);
|
|
#else
|
|
va_start(vargs);
|
|
#endif
|
|
PyObject *msg = PyUnicode_FromFormatV(format, vargs);
|
|
va_end(vargs);
|
|
if (msg == NULL) {
|
|
return 0;
|
|
}
|
|
if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename,
|
|
c->u->u_lineno, NULL, NULL) < 0)
|
|
{
|
|
if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
|
|
/* Replace the SyntaxWarning exception with a SyntaxError
|
|
to get a more accurate error report */
|
|
PyErr_Clear();
|
|
assert(PyUnicode_AsUTF8(msg) != NULL);
|
|
compiler_error(c, PyUnicode_AsUTF8(msg));
|
|
}
|
|
Py_DECREF(msg);
|
|
return 0;
|
|
}
|
|
Py_DECREF(msg);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_subscript(struct compiler *c, expr_ty e)
|
|
{
|
|
expr_context_ty ctx = e->v.Subscript.ctx;
|
|
int op = 0;
|
|
|
|
if (ctx == Load) {
|
|
if (!check_subscripter(c, e->v.Subscript.value)) {
|
|
return 0;
|
|
}
|
|
if (!check_index(c, e->v.Subscript.value, e->v.Subscript.slice)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
switch (ctx) {
|
|
case Load: op = BINARY_SUBSCR; break;
|
|
case Store: op = STORE_SUBSCR; break;
|
|
case Del: op = DELETE_SUBSCR; break;
|
|
}
|
|
assert(op);
|
|
VISIT(c, expr, e->v.Subscript.value);
|
|
VISIT(c, expr, e->v.Subscript.slice);
|
|
ADDOP(c, op);
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
compiler_slice(struct compiler *c, expr_ty s)
|
|
{
|
|
int n = 2;
|
|
assert(s->kind == Slice_kind);
|
|
|
|
/* only handles the cases where BUILD_SLICE is emitted */
|
|
if (s->v.Slice.lower) {
|
|
VISIT(c, expr, s->v.Slice.lower);
|
|
}
|
|
else {
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
}
|
|
|
|
if (s->v.Slice.upper) {
|
|
VISIT(c, expr, s->v.Slice.upper);
|
|
}
|
|
else {
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
}
|
|
|
|
if (s->v.Slice.step) {
|
|
n++;
|
|
VISIT(c, expr, s->v.Slice.step);
|
|
}
|
|
ADDOP_I(c, BUILD_SLICE, n);
|
|
return 1;
|
|
}
|
|
|
|
|
|
// PEP 634: Structural Pattern Matching
|
|
|
|
// To keep things simple, all compiler_pattern_* routines follow the convention
|
|
// of replacing TOS (the subject for the given pattern) with either True (match)
|
|
// or False (no match). We do this even for irrefutable patterns; the idea is
|
|
// that it's much easier to smooth out any redundant pushing, popping, and
|
|
// jumping in the peephole optimizer than to detect or predict it here.
|
|
|
|
|
|
#define WILDCARD_CHECK(N) \
|
|
((N)->kind == Name_kind && \
|
|
_PyUnicode_EqualToASCIIString((N)->v.Name.id, "_"))
|
|
|
|
|
|
static int
|
|
pattern_helper_store_name(struct compiler *c, identifier n, pattern_context *pc)
|
|
{
|
|
assert(!_PyUnicode_EqualToASCIIString(n, "_"));
|
|
// Can't assign to the same name twice:
|
|
if (pc->stores == NULL) {
|
|
RETURN_IF_FALSE(pc->stores = PySet_New(NULL));
|
|
}
|
|
else {
|
|
int duplicate = PySet_Contains(pc->stores, n);
|
|
if (duplicate < 0) {
|
|
return 0;
|
|
}
|
|
if (duplicate) {
|
|
const char *e = "multiple assignments to name %R in pattern";
|
|
return compiler_error(c, e, n);
|
|
}
|
|
}
|
|
RETURN_IF_FALSE(!PySet_Add(pc->stores, n));
|
|
RETURN_IF_FALSE(compiler_nameop(c, n, Store));
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
pattern_helper_sequence_unpack(struct compiler *c, asdl_expr_seq *values,
|
|
Py_ssize_t star, pattern_context *pc)
|
|
{
|
|
RETURN_IF_FALSE(unpack_helper(c, values));
|
|
// We've now got a bunch of new subjects on the stack. If any of them fail
|
|
// to match, we need to pop everything else off, then finally push False.
|
|
// fails is an array of blocks that correspond to the necessary amount of
|
|
// popping for each element:
|
|
basicblock **fails;
|
|
Py_ssize_t size = asdl_seq_LEN(values);
|
|
fails = (basicblock **)PyObject_Malloc(sizeof(basicblock*) * size);
|
|
if (fails == NULL) {
|
|
PyErr_NoMemory();
|
|
return 0;
|
|
}
|
|
// NOTE: Can't use our nice returning macros anymore: they'll leak memory!
|
|
// goto error on error.
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
fails[i] = compiler_new_block(c);
|
|
if (fails[i] == NULL) {
|
|
goto error;
|
|
}
|
|
}
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
expr_ty value = asdl_seq_GET(values, i);
|
|
if (i == star) {
|
|
assert(value->kind == Starred_kind);
|
|
value = value->v.Starred.value;
|
|
}
|
|
if (!compiler_pattern_subpattern(c, value, pc) ||
|
|
!compiler_addop_j(c, POP_JUMP_IF_FALSE, fails[i]) ||
|
|
compiler_next_block(c) == NULL)
|
|
{
|
|
goto error;
|
|
}
|
|
}
|
|
// Success!
|
|
basicblock *end = compiler_new_block(c);
|
|
if (end == NULL ||
|
|
!compiler_addop_load_const(c, Py_True) ||
|
|
!compiler_addop_j(c, JUMP_FORWARD, end))
|
|
{
|
|
goto error;
|
|
}
|
|
// This is where we handle failed sub-patterns. For a sequence pattern like
|
|
// [a, b, c, d], this will look like:
|
|
// fails[0]: POP_TOP
|
|
// fails[1]: POP_TOP
|
|
// fails[2]: POP_TOP
|
|
// fails[3]: LOAD_CONST False
|
|
for (Py_ssize_t i = 0; i < size - 1; i++) {
|
|
compiler_use_next_block(c, fails[i]);
|
|
if (!compiler_addop(c, POP_TOP)) {
|
|
goto error;
|
|
}
|
|
}
|
|
compiler_use_next_block(c, fails[size - 1]);
|
|
if (!compiler_addop_load_const(c, Py_False)) {
|
|
goto error;
|
|
}
|
|
compiler_use_next_block(c, end);
|
|
PyObject_Free(fails);
|
|
return 1;
|
|
error:
|
|
PyObject_Free(fails);
|
|
return 0;
|
|
}
|
|
|
|
// Like pattern_helper_sequence_unpack, but uses BINARY_SUBSCR instead of
|
|
// UNPACK_SEQUENCE / UNPACK_EX. This is more efficient for patterns with a
|
|
// starred wildcard like [first, *_] / [first, *_, last] / [*_, last] / etc.
|
|
static int
|
|
pattern_helper_sequence_subscr(struct compiler *c, asdl_expr_seq *values,
|
|
Py_ssize_t star, pattern_context *pc)
|
|
{
|
|
basicblock *end, *fail_pop_1;
|
|
RETURN_IF_FALSE(end = compiler_new_block(c));
|
|
RETURN_IF_FALSE(fail_pop_1 = compiler_new_block(c));
|
|
Py_ssize_t size = asdl_seq_LEN(values);
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
expr_ty value = asdl_seq_GET(values, i);
|
|
if (WILDCARD_CHECK(value)) {
|
|
continue;
|
|
}
|
|
if (i == star) {
|
|
assert(value->kind == Starred_kind);
|
|
assert(WILDCARD_CHECK(value->v.Starred.value));
|
|
continue;
|
|
}
|
|
ADDOP(c, DUP_TOP);
|
|
if (i < star) {
|
|
ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(i));
|
|
}
|
|
else {
|
|
// The subject may not support negative indexing! Compute a
|
|
// nonnegative index:
|
|
ADDOP(c, GET_LEN);
|
|
ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - i));
|
|
ADDOP(c, BINARY_SUBTRACT);
|
|
}
|
|
ADDOP(c, BINARY_SUBSCR);
|
|
RETURN_IF_FALSE(compiler_pattern_subpattern(c, value, pc));
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, fail_pop_1);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_False);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
|
|
// Like compiler_pattern, but turn off checks for irrefutability.
|
|
static int
|
|
compiler_pattern_subpattern(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
int allow_irrefutable = pc->allow_irrefutable;
|
|
pc->allow_irrefutable = 1;
|
|
RETURN_IF_FALSE(compiler_pattern(c, p, pc));
|
|
pc->allow_irrefutable = allow_irrefutable;
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_as(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchAs_kind);
|
|
basicblock *end, *fail_pop_1;
|
|
RETURN_IF_FALSE(end = compiler_new_block(c));
|
|
RETURN_IF_FALSE(fail_pop_1 = compiler_new_block(c));
|
|
// Need to make a copy for (possibly) storing later:
|
|
ADDOP(c, DUP_TOP);
|
|
RETURN_IF_FALSE(compiler_pattern(c, p->v.MatchAs.pattern, pc));
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
RETURN_IF_FALSE(pattern_helper_store_name(c, p->v.MatchAs.name, pc));
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, fail_pop_1);
|
|
// Need to pop that unused copy from before:
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_False);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_capture(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == Name_kind);
|
|
assert(p->v.Name.ctx == Store);
|
|
assert(!WILDCARD_CHECK(p));
|
|
if (!pc->allow_irrefutable) {
|
|
// Whoops, can't have a name capture here!
|
|
const char *e = "name capture %R makes remaining patterns unreachable";
|
|
return compiler_error(c, e, p->v.Name.id);
|
|
}
|
|
RETURN_IF_FALSE(pattern_helper_store_name(c, p->v.Name.id, pc));
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_class(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
asdl_expr_seq *args = p->v.Call.args;
|
|
asdl_keyword_seq *kwargs = p->v.Call.keywords;
|
|
Py_ssize_t nargs = asdl_seq_LEN(args);
|
|
Py_ssize_t nkwargs = asdl_seq_LEN(kwargs);
|
|
if (INT_MAX < nargs || INT_MAX < nargs + nkwargs - 1) {
|
|
const char *e = "too many sub-patterns in class pattern %R";
|
|
return compiler_error(c, e, p->v.Call.func);
|
|
}
|
|
RETURN_IF_FALSE(!validate_keywords(c, kwargs));
|
|
basicblock *end, *fail_pop_1;
|
|
RETURN_IF_FALSE(end = compiler_new_block(c));
|
|
RETURN_IF_FALSE(fail_pop_1 = compiler_new_block(c));
|
|
VISIT(c, expr, p->v.Call.func);
|
|
PyObject *kwnames;
|
|
RETURN_IF_FALSE(kwnames = PyTuple_New(nkwargs));
|
|
Py_ssize_t i;
|
|
for (i = 0; i < nkwargs; i++) {
|
|
PyObject *name = ((keyword_ty) asdl_seq_GET(kwargs, i))->arg;
|
|
Py_INCREF(name);
|
|
PyTuple_SET_ITEM(kwnames, i, name);
|
|
}
|
|
ADDOP_LOAD_CONST_NEW(c, kwnames);
|
|
ADDOP_I(c, MATCH_CLASS, nargs);
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
// TOS is now a tuple of (nargs + nkwargs) attributes.
|
|
for (i = 0; i < nargs + nkwargs; i++) {
|
|
expr_ty arg;
|
|
if (i < nargs) {
|
|
// Positional:
|
|
arg = asdl_seq_GET(args, i);
|
|
}
|
|
else {
|
|
// Keyword:
|
|
arg = ((keyword_ty) asdl_seq_GET(kwargs, i - nargs))->value;
|
|
}
|
|
if (WILDCARD_CHECK(arg)) {
|
|
continue;
|
|
}
|
|
// Get the i-th attribute, and match it against the i-th pattern:
|
|
ADDOP(c, DUP_TOP);
|
|
ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(i));
|
|
ADDOP(c, BINARY_SUBSCR);
|
|
RETURN_IF_FALSE(compiler_pattern_subpattern(c, arg, pc));
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
// Success! Pop the tuple of attributes:
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, fail_pop_1);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_False);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_literal(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == Constant_kind);
|
|
PyObject *v = p->v.Constant.value;
|
|
ADDOP_LOAD_CONST(c, v);
|
|
// Literal True, False, and None are compared by identity. All others use
|
|
// equality:
|
|
ADDOP_COMPARE(c, (v == Py_None || PyBool_Check(v)) ? Is : Eq);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_mapping(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
basicblock *end, *fail_pop_1, *fail_pop_3;
|
|
RETURN_IF_FALSE(end = compiler_new_block(c));
|
|
RETURN_IF_FALSE(fail_pop_1 = compiler_new_block(c));
|
|
RETURN_IF_FALSE(fail_pop_3 = compiler_new_block(c));
|
|
asdl_expr_seq *keys = p->v.Dict.keys;
|
|
asdl_expr_seq *values = p->v.Dict.values;
|
|
Py_ssize_t size = asdl_seq_LEN(values);
|
|
// A starred pattern will be a keyless value. It is guaranteed to be last:
|
|
int star = size ? !asdl_seq_GET(keys, size - 1) : 0;
|
|
ADDOP(c, MATCH_MAPPING);
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
if (!size) {
|
|
// If the pattern is just "{}", we're done!
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, fail_pop_1);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_False);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
if (size - star) {
|
|
// If the pattern has any keys in it, perform a length check:
|
|
ADDOP(c, GET_LEN);
|
|
ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - star));
|
|
ADDOP_COMPARE(c, GtE);
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
if (INT_MAX < size - star - 1) {
|
|
return compiler_error(c, "too many sub-patterns in mapping pattern");
|
|
}
|
|
// Collect all of the keys into a tuple for MATCH_KEYS and
|
|
// COPY_DICT_WITHOUT_KEYS. They can either be dotted names or literals:
|
|
for (Py_ssize_t i = 0; i < size - star; i++) {
|
|
expr_ty key = asdl_seq_GET(keys, i);
|
|
if (key == NULL) {
|
|
const char *e = "can't use starred name here "
|
|
"(consider moving to end)";
|
|
return compiler_error(c, e);
|
|
}
|
|
VISIT(c, expr, key);
|
|
}
|
|
ADDOP_I(c, BUILD_TUPLE, size - star);
|
|
ADDOP(c, MATCH_KEYS);
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_3);
|
|
NEXT_BLOCK(c);
|
|
// So far so good. There's now a tuple of values on the stack to match
|
|
// sub-patterns against:
|
|
for (Py_ssize_t i = 0; i < size - star; i++) {
|
|
expr_ty value = asdl_seq_GET(values, i);
|
|
if (WILDCARD_CHECK(value)) {
|
|
continue;
|
|
}
|
|
ADDOP(c, DUP_TOP);
|
|
ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(i));
|
|
ADDOP(c, BINARY_SUBSCR);
|
|
RETURN_IF_FALSE(compiler_pattern_subpattern(c, value, pc));
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_3);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
// If we get this far, it's a match! We're done with that tuple of values.
|
|
ADDOP(c, POP_TOP);
|
|
if (star) {
|
|
// If we had a starred name, bind a dict of remaining items to it:
|
|
ADDOP(c, COPY_DICT_WITHOUT_KEYS);
|
|
PyObject *id = asdl_seq_GET(values, size - 1)->v.Name.id;
|
|
RETURN_IF_FALSE(pattern_helper_store_name(c, id, pc));
|
|
}
|
|
else {
|
|
// Otherwise, we don't care about this tuple of keys anymore:
|
|
ADDOP(c, POP_TOP);
|
|
}
|
|
// Pop the subject:
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
// The top two items are a tuple of values or None, followed by a tuple of
|
|
// keys. Pop them both:
|
|
compiler_use_next_block(c, fail_pop_3);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP(c, POP_TOP);
|
|
compiler_use_next_block(c, fail_pop_1);
|
|
// Pop the subject:
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_False);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_or(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == MatchOr_kind);
|
|
// control is the set of names bound by the first alternative. If all of the
|
|
// others bind the same names (they should), then this becomes pc->stores.
|
|
PyObject *control = NULL;
|
|
basicblock *end, *pass_pop_1;
|
|
RETURN_IF_FALSE(end = compiler_new_block(c));
|
|
RETURN_IF_FALSE(pass_pop_1 = compiler_new_block(c));
|
|
Py_ssize_t size = asdl_seq_LEN(p->v.MatchOr.patterns);
|
|
assert(size > 1);
|
|
// We're going to be messing with pc. Keep the original info handy:
|
|
PyObject *stores_init = pc->stores;
|
|
int allow_irrefutable = pc->allow_irrefutable;
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
// NOTE: Can't use our nice returning macros in here: they'll leak sets!
|
|
expr_ty alt = asdl_seq_GET(p->v.MatchOr.patterns, i);
|
|
pc->stores = PySet_New(stores_init);
|
|
// An irrefutable sub-pattern must be last, if it is allowed at all:
|
|
int is_last = i == size - 1;
|
|
pc->allow_irrefutable = allow_irrefutable && is_last;
|
|
SET_LOC(c, alt);
|
|
if (pc->stores == NULL ||
|
|
// Only copy the subject if we're *not* on the last alternative:
|
|
(!is_last && !compiler_addop(c, DUP_TOP)) ||
|
|
!compiler_pattern(c, alt, pc) ||
|
|
// Only jump if we're *not* on the last alternative:
|
|
(!is_last && !compiler_addop_j(c, POP_JUMP_IF_TRUE, pass_pop_1)) ||
|
|
!compiler_next_block(c))
|
|
{
|
|
goto fail;
|
|
}
|
|
if (!i) {
|
|
// If this is the first alternative, save its stores as a "control"
|
|
// for the others (they can't bind a different set of names):
|
|
control = pc->stores;
|
|
continue;
|
|
}
|
|
if (PySet_GET_SIZE(pc->stores) || PySet_GET_SIZE(control)) {
|
|
// Otherwise, check to see if we differ from the control set:
|
|
PyObject *diff = PyNumber_InPlaceXor(pc->stores, control);
|
|
if (diff == NULL) {
|
|
goto fail;
|
|
}
|
|
if (PySet_GET_SIZE(diff)) {
|
|
// The names differ! Raise.
|
|
Py_DECREF(diff);
|
|
compiler_error(c, "alternative patterns bind different names");
|
|
goto fail;
|
|
}
|
|
Py_DECREF(diff);
|
|
}
|
|
Py_DECREF(pc->stores);
|
|
}
|
|
Py_XDECREF(stores_init);
|
|
// Update pc->stores and restore pc->allow_irrefutable:
|
|
pc->stores = control;
|
|
pc->allow_irrefutable = allow_irrefutable;
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, pass_pop_1);
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
fail:
|
|
Py_XDECREF(stores_init);
|
|
Py_XDECREF(control);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_sequence(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == List_kind || p->kind == Tuple_kind);
|
|
asdl_expr_seq *values = (p->kind == Tuple_kind) ? p->v.Tuple.elts
|
|
: p->v.List.elts;
|
|
Py_ssize_t size = asdl_seq_LEN(values);
|
|
Py_ssize_t star = -1;
|
|
int only_wildcard = 1;
|
|
int star_wildcard = 0;
|
|
// Find a starred name, if it exists. There may be at most one:
|
|
for (Py_ssize_t i = 0; i < size; i++) {
|
|
expr_ty value = asdl_seq_GET(values, i);
|
|
if (value->kind == Starred_kind) {
|
|
value = value->v.Starred.value;
|
|
if (star >= 0) {
|
|
const char *e = "multiple starred names in sequence pattern";
|
|
return compiler_error(c, e);
|
|
}
|
|
star_wildcard = WILDCARD_CHECK(value);
|
|
star = i;
|
|
}
|
|
only_wildcard &= WILDCARD_CHECK(value);
|
|
}
|
|
basicblock *end, *fail_pop_1;
|
|
RETURN_IF_FALSE(end = compiler_new_block(c));
|
|
RETURN_IF_FALSE(fail_pop_1 = compiler_new_block(c));
|
|
ADDOP(c, MATCH_SEQUENCE);
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
if (star < 0) {
|
|
// No star: len(subject) == size
|
|
ADDOP(c, GET_LEN);
|
|
ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size));
|
|
ADDOP_COMPARE(c, Eq);
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
else if (size > 1) {
|
|
// Star: len(subject) >= size - 1
|
|
ADDOP(c, GET_LEN);
|
|
ADDOP_LOAD_CONST_NEW(c, PyLong_FromSsize_t(size - 1));
|
|
ADDOP_COMPARE(c, GtE);
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, fail_pop_1);
|
|
NEXT_BLOCK(c);
|
|
}
|
|
if (only_wildcard) {
|
|
// Patterns like: [] / [_] / [_, _] / [*_] / [_, *_] / [_, _, *_] / etc.
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
}
|
|
else if (star_wildcard) {
|
|
RETURN_IF_FALSE(pattern_helper_sequence_subscr(c, values, star, pc));
|
|
}
|
|
else {
|
|
RETURN_IF_FALSE(pattern_helper_sequence_unpack(c, values, star, pc));
|
|
}
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, fail_pop_1);
|
|
ADDOP(c, POP_TOP)
|
|
ADDOP_LOAD_CONST(c, Py_False);
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_value(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == Attribute_kind);
|
|
assert(p->v.Attribute.ctx == Load);
|
|
VISIT(c, expr, p);
|
|
ADDOP_COMPARE(c, Eq);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern_wildcard(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
assert(p->kind == Name_kind);
|
|
assert(p->v.Name.ctx == Store);
|
|
assert(WILDCARD_CHECK(p));
|
|
if (!pc->allow_irrefutable) {
|
|
// Whoops, can't have a wildcard here!
|
|
const char *e = "wildcard makes remaining patterns unreachable";
|
|
return compiler_error(c, e);
|
|
}
|
|
ADDOP(c, POP_TOP);
|
|
ADDOP_LOAD_CONST(c, Py_True);
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_pattern(struct compiler *c, expr_ty p, pattern_context *pc)
|
|
{
|
|
SET_LOC(c, p);
|
|
switch (p->kind) {
|
|
case Attribute_kind:
|
|
return compiler_pattern_value(c, p, pc);
|
|
case BinOp_kind:
|
|
// Because we allow "2+2j", things like "2+2" make it this far:
|
|
return compiler_error(c, "patterns cannot include operators");
|
|
case Call_kind:
|
|
return compiler_pattern_class(c, p, pc);
|
|
case Constant_kind:
|
|
return compiler_pattern_literal(c, p, pc);
|
|
case Dict_kind:
|
|
return compiler_pattern_mapping(c, p, pc);
|
|
case JoinedStr_kind:
|
|
// Because we allow strings, f-strings make it this far:
|
|
return compiler_error(c, "patterns cannot include f-strings");
|
|
case List_kind:
|
|
case Tuple_kind:
|
|
return compiler_pattern_sequence(c, p, pc);
|
|
case MatchAs_kind:
|
|
return compiler_pattern_as(c, p, pc);
|
|
case MatchOr_kind:
|
|
return compiler_pattern_or(c, p, pc);
|
|
case Name_kind:
|
|
if (WILDCARD_CHECK(p)) {
|
|
return compiler_pattern_wildcard(c, p, pc);
|
|
}
|
|
return compiler_pattern_capture(c, p, pc);
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
compiler_match(struct compiler *c, stmt_ty s)
|
|
{
|
|
VISIT(c, expr, s->v.Match.subject);
|
|
basicblock *next, *end;
|
|
RETURN_IF_FALSE(end = compiler_new_block(c));
|
|
Py_ssize_t cases = asdl_seq_LEN(s->v.Match.cases);
|
|
assert(cases);
|
|
pattern_context pc;
|
|
// We use pc.stores to track:
|
|
// - Repeated name assignments in the same pattern.
|
|
// - Different name assignments in alternatives.
|
|
// It's a set of names, but we don't create it until it's needed:
|
|
pc.stores = NULL;
|
|
match_case_ty m = asdl_seq_GET(s->v.Match.cases, cases - 1);
|
|
int has_default = WILDCARD_CHECK(m->pattern) && 1 < cases;
|
|
for (Py_ssize_t i = 0; i < cases - has_default; i++) {
|
|
m = asdl_seq_GET(s->v.Match.cases, i);
|
|
SET_LOC(c, m->pattern);
|
|
RETURN_IF_FALSE(next = compiler_new_block(c));
|
|
// If pc.allow_irrefutable is 0, any name captures against our subject
|
|
// will raise. Irrefutable cases must be either guarded, last, or both:
|
|
pc.allow_irrefutable = m->guard != NULL || i == cases - 1;
|
|
// Only copy the subject if we're *not* on the last case:
|
|
if (i != cases - has_default - 1) {
|
|
ADDOP(c, DUP_TOP);
|
|
}
|
|
int result = compiler_pattern(c, m->pattern, &pc);
|
|
Py_CLEAR(pc.stores);
|
|
RETURN_IF_FALSE(result);
|
|
ADDOP_JUMP(c, POP_JUMP_IF_FALSE, next);
|
|
NEXT_BLOCK(c);
|
|
if (m->guard) {
|
|
RETURN_IF_FALSE(compiler_jump_if(c, m->guard, next, 0));
|
|
}
|
|
// Success! Pop the subject off, we're done with it:
|
|
if (i != cases - has_default - 1) {
|
|
ADDOP(c, POP_TOP);
|
|
}
|
|
VISIT_SEQ(c, stmt, m->body);
|
|
ADDOP_JUMP(c, JUMP_FORWARD, end);
|
|
compiler_use_next_block(c, next);
|
|
}
|
|
if (has_default) {
|
|
if (cases == 1) {
|
|
// No matches. Done with the subject:
|
|
ADDOP(c, POP_TOP);
|
|
}
|
|
// A trailing "case _" is common, and lets us save a bit of redundant
|
|
// pushing and popping in the loop above:
|
|
m = asdl_seq_GET(s->v.Match.cases, cases - 1);
|
|
SET_LOC(c, m->pattern);
|
|
if (m->guard) {
|
|
RETURN_IF_FALSE(compiler_jump_if(c, m->guard, end, 0));
|
|
}
|
|
VISIT_SEQ(c, stmt, m->body);
|
|
}
|
|
compiler_use_next_block(c, end);
|
|
return 1;
|
|
}
|
|
|
|
|
|
#undef WILDCARD_CHECK
|
|
|
|
|
|
/* End of the compiler section, beginning of the assembler section */
|
|
|
|
/* do depth-first search of basic block graph, starting with block.
|
|
post records the block indices in post-order.
|
|
|
|
XXX must handle implicit jumps from one block to next
|
|
*/
|
|
|
|
struct assembler {
|
|
PyObject *a_bytecode; /* string containing bytecode */
|
|
int a_offset; /* offset into bytecode */
|
|
int a_nblocks; /* number of reachable blocks */
|
|
PyObject *a_lnotab; /* string containing lnotab */
|
|
int a_lnotab_off; /* offset into lnotab */
|
|
int a_prevlineno; /* lineno of last emitted line in line table */
|
|
int a_lineno; /* lineno of last emitted instruction */
|
|
int a_lineno_start; /* bytecode start offset of current lineno */
|
|
basicblock *a_entry;
|
|
};
|
|
|
|
Py_LOCAL_INLINE(void)
|
|
stackdepth_push(basicblock ***sp, basicblock *b, int depth)
|
|
{
|
|
assert(b->b_startdepth < 0 || b->b_startdepth == depth);
|
|
if (b->b_startdepth < depth && b->b_startdepth < 100) {
|
|
assert(b->b_startdepth < 0);
|
|
b->b_startdepth = depth;
|
|
*(*sp)++ = b;
|
|
}
|
|
}
|
|
|
|
/* Find the flow path that needs the largest stack. We assume that
|
|
* cycles in the flow graph have no net effect on the stack depth.
|
|
*/
|
|
static int
|
|
stackdepth(struct compiler *c)
|
|
{
|
|
basicblock *b, *entryblock = NULL;
|
|
basicblock **stack, **sp;
|
|
int nblocks = 0, maxdepth = 0;
|
|
for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
|
|
b->b_startdepth = INT_MIN;
|
|
entryblock = b;
|
|
nblocks++;
|
|
}
|
|
if (!entryblock)
|
|
return 0;
|
|
stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * nblocks);
|
|
if (!stack) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
|
|
sp = stack;
|
|
stackdepth_push(&sp, entryblock, 0);
|
|
while (sp != stack) {
|
|
b = *--sp;
|
|
int depth = b->b_startdepth;
|
|
assert(depth >= 0);
|
|
basicblock *next = b->b_next;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
struct instr *instr = &b->b_instr[i];
|
|
int effect = stack_effect(instr->i_opcode, instr->i_oparg, 0);
|
|
if (effect == PY_INVALID_STACK_EFFECT) {
|
|
PyErr_Format(PyExc_SystemError,
|
|
"compiler stack_effect(opcode=%d, arg=%i) failed",
|
|
instr->i_opcode, instr->i_oparg);
|
|
return -1;
|
|
}
|
|
int new_depth = depth + effect;
|
|
if (new_depth > maxdepth) {
|
|
maxdepth = new_depth;
|
|
}
|
|
assert(depth >= 0); /* invalid code or bug in stackdepth() */
|
|
if (is_jump(instr)) {
|
|
effect = stack_effect(instr->i_opcode, instr->i_oparg, 1);
|
|
assert(effect != PY_INVALID_STACK_EFFECT);
|
|
int target_depth = depth + effect;
|
|
if (target_depth > maxdepth) {
|
|
maxdepth = target_depth;
|
|
}
|
|
assert(target_depth >= 0); /* invalid code or bug in stackdepth() */
|
|
stackdepth_push(&sp, instr->i_target, target_depth);
|
|
}
|
|
depth = new_depth;
|
|
if (instr->i_opcode == JUMP_ABSOLUTE ||
|
|
instr->i_opcode == JUMP_FORWARD ||
|
|
instr->i_opcode == RETURN_VALUE ||
|
|
instr->i_opcode == RAISE_VARARGS ||
|
|
instr->i_opcode == RERAISE)
|
|
{
|
|
/* remaining code is dead */
|
|
next = NULL;
|
|
break;
|
|
}
|
|
}
|
|
if (next != NULL) {
|
|
assert(b->b_nofallthrough == 0);
|
|
stackdepth_push(&sp, next, depth);
|
|
}
|
|
}
|
|
PyObject_Free(stack);
|
|
return maxdepth;
|
|
}
|
|
|
|
static int
|
|
assemble_init(struct assembler *a, int nblocks, int firstlineno)
|
|
{
|
|
memset(a, 0, sizeof(struct assembler));
|
|
a->a_prevlineno = a->a_lineno = firstlineno;
|
|
a->a_lnotab = NULL;
|
|
a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE);
|
|
if (a->a_bytecode == NULL) {
|
|
goto error;
|
|
}
|
|
a->a_lnotab = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE);
|
|
if (a->a_lnotab == NULL) {
|
|
goto error;
|
|
}
|
|
if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) {
|
|
PyErr_NoMemory();
|
|
goto error;
|
|
}
|
|
return 1;
|
|
error:
|
|
Py_XDECREF(a->a_bytecode);
|
|
Py_XDECREF(a->a_lnotab);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
assemble_free(struct assembler *a)
|
|
{
|
|
Py_XDECREF(a->a_bytecode);
|
|
Py_XDECREF(a->a_lnotab);
|
|
}
|
|
|
|
static int
|
|
blocksize(basicblock *b)
|
|
{
|
|
int i;
|
|
int size = 0;
|
|
|
|
for (i = 0; i < b->b_iused; i++)
|
|
size += instrsize(b->b_instr[i].i_oparg);
|
|
return size;
|
|
}
|
|
|
|
static int
|
|
assemble_emit_linetable_pair(struct assembler *a, int bdelta, int ldelta)
|
|
{
|
|
Py_ssize_t len = PyBytes_GET_SIZE(a->a_lnotab);
|
|
if (a->a_lnotab_off + 2 >= len) {
|
|
if (_PyBytes_Resize(&a->a_lnotab, len * 2) < 0)
|
|
return 0;
|
|
}
|
|
unsigned char *lnotab = (unsigned char *) PyBytes_AS_STRING(a->a_lnotab);
|
|
lnotab += a->a_lnotab_off;
|
|
a->a_lnotab_off += 2;
|
|
*lnotab++ = bdelta;
|
|
*lnotab++ = ldelta;
|
|
return 1;
|
|
}
|
|
|
|
/* Appends a range to the end of the line number table. See
|
|
* Objects/lnotab_notes.txt for the description of the line number table. */
|
|
|
|
static int
|
|
assemble_line_range(struct assembler *a)
|
|
{
|
|
int ldelta, bdelta;
|
|
bdelta = (a->a_offset - a->a_lineno_start) * 2;
|
|
if (bdelta == 0) {
|
|
return 1;
|
|
}
|
|
if (a->a_lineno < 0) {
|
|
ldelta = -128;
|
|
}
|
|
else {
|
|
ldelta = a->a_lineno - a->a_prevlineno;
|
|
a->a_prevlineno = a->a_lineno;
|
|
while (ldelta > 127) {
|
|
if (!assemble_emit_linetable_pair(a, 0, 127)) {
|
|
return 0;
|
|
}
|
|
ldelta -= 127;
|
|
}
|
|
while (ldelta < -127) {
|
|
if (!assemble_emit_linetable_pair(a, 0, -127)) {
|
|
return 0;
|
|
}
|
|
ldelta += 127;
|
|
}
|
|
}
|
|
assert(-128 <= ldelta && ldelta < 128);
|
|
while (bdelta > 254) {
|
|
if (!assemble_emit_linetable_pair(a, 254, ldelta)) {
|
|
return 0;
|
|
}
|
|
ldelta = a->a_lineno < 0 ? -128 : 0;
|
|
bdelta -= 254;
|
|
}
|
|
if (!assemble_emit_linetable_pair(a, bdelta, ldelta)) {
|
|
return 0;
|
|
}
|
|
a->a_lineno_start = a->a_offset;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
assemble_lnotab(struct assembler *a, struct instr *i)
|
|
{
|
|
if (i->i_lineno == a->a_lineno) {
|
|
return 1;
|
|
}
|
|
if (!assemble_line_range(a)) {
|
|
return 0;
|
|
}
|
|
a->a_lineno = i->i_lineno;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* assemble_emit()
|
|
Extend the bytecode with a new instruction.
|
|
Update lnotab if necessary.
|
|
*/
|
|
|
|
static int
|
|
assemble_emit(struct assembler *a, struct instr *i)
|
|
{
|
|
int size, arg = 0;
|
|
Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode);
|
|
_Py_CODEUNIT *code;
|
|
|
|
arg = i->i_oparg;
|
|
size = instrsize(arg);
|
|
if (i->i_lineno && !assemble_lnotab(a, i))
|
|
return 0;
|
|
if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) {
|
|
if (len > PY_SSIZE_T_MAX / 2)
|
|
return 0;
|
|
if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0)
|
|
return 0;
|
|
}
|
|
code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset;
|
|
a->a_offset += size;
|
|
write_op_arg(code, i->i_opcode, arg, size);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
assemble_jump_offsets(struct assembler *a, struct compiler *c)
|
|
{
|
|
basicblock *b;
|
|
int bsize, totsize, extended_arg_recompile;
|
|
int i;
|
|
|
|
/* Compute the size of each block and fixup jump args.
|
|
Replace block pointer with position in bytecode. */
|
|
do {
|
|
totsize = 0;
|
|
for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
|
|
bsize = blocksize(b);
|
|
b->b_offset = totsize;
|
|
totsize += bsize;
|
|
}
|
|
extended_arg_recompile = 0;
|
|
for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
|
|
bsize = b->b_offset;
|
|
for (i = 0; i < b->b_iused; i++) {
|
|
struct instr *instr = &b->b_instr[i];
|
|
int isize = instrsize(instr->i_oparg);
|
|
/* Relative jumps are computed relative to
|
|
the instruction pointer after fetching
|
|
the jump instruction.
|
|
*/
|
|
bsize += isize;
|
|
if (is_jump(instr)) {
|
|
instr->i_oparg = instr->i_target->b_offset;
|
|
if (is_relative_jump(instr)) {
|
|
instr->i_oparg -= bsize;
|
|
}
|
|
if (instrsize(instr->i_oparg) != isize) {
|
|
extended_arg_recompile = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* XXX: This is an awful hack that could hurt performance, but
|
|
on the bright side it should work until we come up
|
|
with a better solution.
|
|
|
|
The issue is that in the first loop blocksize() is called
|
|
which calls instrsize() which requires i_oparg be set
|
|
appropriately. There is a bootstrap problem because
|
|
i_oparg is calculated in the second loop above.
|
|
|
|
So we loop until we stop seeing new EXTENDED_ARGs.
|
|
The only EXTENDED_ARGs that could be popping up are
|
|
ones in jump instructions. So this should converge
|
|
fairly quickly.
|
|
*/
|
|
} while (extended_arg_recompile);
|
|
}
|
|
|
|
static PyObject *
|
|
dict_keys_inorder(PyObject *dict, Py_ssize_t offset)
|
|
{
|
|
PyObject *tuple, *k, *v;
|
|
Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
|
|
|
|
tuple = PyTuple_New(size);
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
while (PyDict_Next(dict, &pos, &k, &v)) {
|
|
i = PyLong_AS_LONG(v);
|
|
Py_INCREF(k);
|
|
assert((i - offset) < size);
|
|
assert((i - offset) >= 0);
|
|
PyTuple_SET_ITEM(tuple, i - offset, k);
|
|
}
|
|
return tuple;
|
|
}
|
|
|
|
static PyObject *
|
|
consts_dict_keys_inorder(PyObject *dict)
|
|
{
|
|
PyObject *consts, *k, *v;
|
|
Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);
|
|
|
|
consts = PyList_New(size); /* PyCode_Optimize() requires a list */
|
|
if (consts == NULL)
|
|
return NULL;
|
|
while (PyDict_Next(dict, &pos, &k, &v)) {
|
|
i = PyLong_AS_LONG(v);
|
|
/* The keys of the dictionary can be tuples wrapping a contant.
|
|
* (see compiler_add_o and _PyCode_ConstantKey). In that case
|
|
* the object we want is always second. */
|
|
if (PyTuple_CheckExact(k)) {
|
|
k = PyTuple_GET_ITEM(k, 1);
|
|
}
|
|
Py_INCREF(k);
|
|
assert(i < size);
|
|
assert(i >= 0);
|
|
PyList_SET_ITEM(consts, i, k);
|
|
}
|
|
return consts;
|
|
}
|
|
|
|
static int
|
|
compute_code_flags(struct compiler *c)
|
|
{
|
|
PySTEntryObject *ste = c->u->u_ste;
|
|
int flags = 0;
|
|
if (ste->ste_type == FunctionBlock) {
|
|
flags |= CO_NEWLOCALS | CO_OPTIMIZED;
|
|
if (ste->ste_nested)
|
|
flags |= CO_NESTED;
|
|
if (ste->ste_generator && !ste->ste_coroutine)
|
|
flags |= CO_GENERATOR;
|
|
if (!ste->ste_generator && ste->ste_coroutine)
|
|
flags |= CO_COROUTINE;
|
|
if (ste->ste_generator && ste->ste_coroutine)
|
|
flags |= CO_ASYNC_GENERATOR;
|
|
if (ste->ste_varargs)
|
|
flags |= CO_VARARGS;
|
|
if (ste->ste_varkeywords)
|
|
flags |= CO_VARKEYWORDS;
|
|
}
|
|
|
|
/* (Only) inherit compilerflags in PyCF_MASK */
|
|
flags |= (c->c_flags->cf_flags & PyCF_MASK);
|
|
|
|
if ((IS_TOP_LEVEL_AWAIT(c)) &&
|
|
ste->ste_coroutine &&
|
|
!ste->ste_generator) {
|
|
flags |= CO_COROUTINE;
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
// Merge *obj* with constant cache.
|
|
// Unlike merge_consts_recursive(), this function doesn't work recursively.
|
|
static int
|
|
merge_const_one(struct compiler *c, PyObject **obj)
|
|
{
|
|
PyObject *key = _PyCode_ConstantKey(*obj);
|
|
if (key == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
// t is borrowed reference
|
|
PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key);
|
|
Py_DECREF(key);
|
|
if (t == NULL) {
|
|
return 0;
|
|
}
|
|
if (t == key) { // obj is new constant.
|
|
return 1;
|
|
}
|
|
|
|
if (PyTuple_CheckExact(t)) {
|
|
// t is still borrowed reference
|
|
t = PyTuple_GET_ITEM(t, 1);
|
|
}
|
|
|
|
Py_INCREF(t);
|
|
Py_DECREF(*obj);
|
|
*obj = t;
|
|
return 1;
|
|
}
|
|
|
|
static PyCodeObject *
|
|
makecode(struct compiler *c, struct assembler *a, PyObject *consts)
|
|
{
|
|
PyCodeObject *co = NULL;
|
|
PyObject *names = NULL;
|
|
PyObject *varnames = NULL;
|
|
PyObject *name = NULL;
|
|
PyObject *freevars = NULL;
|
|
PyObject *cellvars = NULL;
|
|
Py_ssize_t nlocals;
|
|
int nlocals_int;
|
|
int flags;
|
|
int posorkeywordargcount, posonlyargcount, kwonlyargcount, maxdepth;
|
|
|
|
names = dict_keys_inorder(c->u->u_names, 0);
|
|
varnames = dict_keys_inorder(c->u->u_varnames, 0);
|
|
if (!names || !varnames) {
|
|
goto error;
|
|
}
|
|
cellvars = dict_keys_inorder(c->u->u_cellvars, 0);
|
|
if (!cellvars)
|
|
goto error;
|
|
freevars = dict_keys_inorder(c->u->u_freevars, PyTuple_GET_SIZE(cellvars));
|
|
if (!freevars)
|
|
goto error;
|
|
|
|
if (!merge_const_one(c, &names) ||
|
|
!merge_const_one(c, &varnames) ||
|
|
!merge_const_one(c, &cellvars) ||
|
|
!merge_const_one(c, &freevars))
|
|
{
|
|
goto error;
|
|
}
|
|
|
|
nlocals = PyDict_GET_SIZE(c->u->u_varnames);
|
|
assert(nlocals < INT_MAX);
|
|
nlocals_int = Py_SAFE_DOWNCAST(nlocals, Py_ssize_t, int);
|
|
|
|
flags = compute_code_flags(c);
|
|
if (flags < 0)
|
|
goto error;
|
|
|
|
consts = PyList_AsTuple(consts); /* PyCode_New requires a tuple */
|
|
if (consts == NULL) {
|
|
goto error;
|
|
}
|
|
if (!merge_const_one(c, &consts)) {
|
|
Py_DECREF(consts);
|
|
goto error;
|
|
}
|
|
|
|
posonlyargcount = Py_SAFE_DOWNCAST(c->u->u_posonlyargcount, Py_ssize_t, int);
|
|
posorkeywordargcount = Py_SAFE_DOWNCAST(c->u->u_argcount, Py_ssize_t, int);
|
|
kwonlyargcount = Py_SAFE_DOWNCAST(c->u->u_kwonlyargcount, Py_ssize_t, int);
|
|
maxdepth = stackdepth(c);
|
|
if (maxdepth < 0) {
|
|
Py_DECREF(consts);
|
|
goto error;
|
|
}
|
|
co = PyCode_NewWithPosOnlyArgs(posonlyargcount+posorkeywordargcount,
|
|
posonlyargcount, kwonlyargcount, nlocals_int,
|
|
maxdepth, flags, a->a_bytecode, consts, names,
|
|
varnames, freevars, cellvars, c->c_filename,
|
|
c->u->u_name, c->u->u_firstlineno, a->a_lnotab);
|
|
Py_DECREF(consts);
|
|
error:
|
|
Py_XDECREF(names);
|
|
Py_XDECREF(varnames);
|
|
Py_XDECREF(name);
|
|
Py_XDECREF(freevars);
|
|
Py_XDECREF(cellvars);
|
|
return co;
|
|
}
|
|
|
|
|
|
/* For debugging purposes only */
|
|
#if 0
|
|
static void
|
|
dump_instr(const struct instr *i)
|
|
{
|
|
const char *jrel = (is_relative_jump(instr)) ? "jrel " : "";
|
|
const char *jabs = (is_jump(instr) && !is_relative_jump(instr))? "jabs " : "";
|
|
char arg[128];
|
|
|
|
*arg = '\0';
|
|
if (HAS_ARG(i->i_opcode)) {
|
|
sprintf(arg, "arg: %d ", i->i_oparg);
|
|
}
|
|
fprintf(stderr, "line: %d, opcode: %d %s%s%s\n",
|
|
i->i_lineno, i->i_opcode, arg, jabs, jrel);
|
|
}
|
|
|
|
static void
|
|
dump_basicblock(const basicblock *b)
|
|
{
|
|
const char *b_return = b->b_return ? "return " : "";
|
|
fprintf(stderr, "used: %d, depth: %d, offset: %d %s\n",
|
|
b->b_iused, b->b_startdepth, b->b_offset, b_return);
|
|
if (b->b_instr) {
|
|
int i;
|
|
for (i = 0; i < b->b_iused; i++) {
|
|
fprintf(stderr, " [%02d] ", i);
|
|
dump_instr(b->b_instr + i);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
static int
|
|
normalize_basic_block(basicblock *bb);
|
|
|
|
static int
|
|
optimize_cfg(struct assembler *a, PyObject *consts);
|
|
|
|
static int
|
|
ensure_exits_have_lineno(struct compiler *c);
|
|
|
|
static PyCodeObject *
|
|
assemble(struct compiler *c, int addNone)
|
|
{
|
|
basicblock *b, *entryblock;
|
|
struct assembler a;
|
|
int j, nblocks;
|
|
PyCodeObject *co = NULL;
|
|
PyObject *consts = NULL;
|
|
|
|
/* Make sure every block that falls off the end returns None.
|
|
XXX NEXT_BLOCK() isn't quite right, because if the last
|
|
block ends with a jump or return b_next shouldn't set.
|
|
*/
|
|
if (!c->u->u_curblock->b_return) {
|
|
c->u->u_lineno = -1;
|
|
if (addNone)
|
|
ADDOP_LOAD_CONST(c, Py_None);
|
|
ADDOP(c, RETURN_VALUE);
|
|
}
|
|
|
|
for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
|
|
if (normalize_basic_block(b)) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (ensure_exits_have_lineno(c)) {
|
|
return NULL;
|
|
}
|
|
|
|
nblocks = 0;
|
|
entryblock = NULL;
|
|
for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
|
|
nblocks++;
|
|
entryblock = b;
|
|
}
|
|
|
|
/* Set firstlineno if it wasn't explicitly set. */
|
|
if (!c->u->u_firstlineno) {
|
|
if (entryblock && entryblock->b_instr && entryblock->b_instr->i_lineno)
|
|
c->u->u_firstlineno = entryblock->b_instr->i_lineno;
|
|
else
|
|
c->u->u_firstlineno = 1;
|
|
}
|
|
|
|
if (!assemble_init(&a, nblocks, c->u->u_firstlineno))
|
|
goto error;
|
|
a.a_entry = entryblock;
|
|
a.a_nblocks = nblocks;
|
|
|
|
consts = consts_dict_keys_inorder(c->u->u_consts);
|
|
if (consts == NULL) {
|
|
goto error;
|
|
}
|
|
if (optimize_cfg(&a, consts)) {
|
|
goto error;
|
|
}
|
|
|
|
/* Can't modify the bytecode after computing jump offsets. */
|
|
assemble_jump_offsets(&a, c);
|
|
|
|
/* Emit code. */
|
|
for(b = entryblock; b != NULL; b = b->b_next) {
|
|
for (j = 0; j < b->b_iused; j++)
|
|
if (!assemble_emit(&a, &b->b_instr[j]))
|
|
goto error;
|
|
}
|
|
if (!assemble_line_range(&a)) {
|
|
return 0;
|
|
}
|
|
/* Emit sentinel at end of line number table */
|
|
if (!assemble_emit_linetable_pair(&a, 255, -128)) {
|
|
goto error;
|
|
}
|
|
|
|
if (_PyBytes_Resize(&a.a_lnotab, a.a_lnotab_off) < 0) {
|
|
goto error;
|
|
}
|
|
if (!merge_const_one(c, &a.a_lnotab)) {
|
|
goto error;
|
|
}
|
|
if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0) {
|
|
goto error;
|
|
}
|
|
if (!merge_const_one(c, &a.a_bytecode)) {
|
|
goto error;
|
|
}
|
|
|
|
co = makecode(c, &a, consts);
|
|
error:
|
|
Py_XDECREF(consts);
|
|
assemble_free(&a);
|
|
return co;
|
|
}
|
|
|
|
/* Replace LOAD_CONST c1, LOAD_CONST c2 ... LOAD_CONST cn, BUILD_TUPLE n
|
|
with LOAD_CONST (c1, c2, ... cn).
|
|
The consts table must still be in list form so that the
|
|
new constant (c1, c2, ... cn) can be appended.
|
|
Called with codestr pointing to the first LOAD_CONST.
|
|
*/
|
|
static int
|
|
fold_tuple_on_constants(struct instr *inst,
|
|
int n, PyObject *consts)
|
|
{
|
|
/* Pre-conditions */
|
|
assert(PyList_CheckExact(consts));
|
|
assert(inst[n].i_opcode == BUILD_TUPLE);
|
|
assert(inst[n].i_oparg == n);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
if (inst[i].i_opcode != LOAD_CONST) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Buildup new tuple of constants */
|
|
PyObject *newconst = PyTuple_New(n);
|
|
if (newconst == NULL) {
|
|
return -1;
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
int arg = inst[i].i_oparg;
|
|
PyObject *constant = PyList_GET_ITEM(consts, arg);
|
|
Py_INCREF(constant);
|
|
PyTuple_SET_ITEM(newconst, i, constant);
|
|
}
|
|
Py_ssize_t index = PyList_GET_SIZE(consts);
|
|
if ((size_t)index >= (size_t)INT_MAX - 1) {
|
|
Py_DECREF(newconst);
|
|
PyErr_SetString(PyExc_OverflowError, "too many constants");
|
|
return -1;
|
|
}
|
|
if (PyList_Append(consts, newconst)) {
|
|
Py_DECREF(newconst);
|
|
return -1;
|
|
}
|
|
Py_DECREF(newconst);
|
|
for (int i = 0; i < n; i++) {
|
|
inst[i].i_opcode = NOP;
|
|
}
|
|
inst[n].i_opcode = LOAD_CONST;
|
|
inst[n].i_oparg = (int)index;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
eliminate_jump_to_jump(basicblock *bb, int opcode) {
|
|
assert (bb->b_iused > 0);
|
|
struct instr *inst = &bb->b_instr[bb->b_iused-1];
|
|
assert (is_jump(inst));
|
|
assert (inst->i_target->b_iused > 0);
|
|
struct instr *target = &inst->i_target->b_instr[0];
|
|
if (inst->i_target == target->i_target) {
|
|
/* Nothing to do */
|
|
return 0;
|
|
}
|
|
int lineno = target->i_lineno;
|
|
if (add_jump_to_block(bb, opcode, lineno, target->i_target) == 0) {
|
|
return -1;
|
|
}
|
|
assert (bb->b_iused >= 2);
|
|
bb->b_instr[bb->b_iused-2].i_opcode = NOP;
|
|
return 0;
|
|
}
|
|
|
|
/* Maximum size of basic block that should be copied in optimizer */
|
|
#define MAX_COPY_SIZE 4
|
|
|
|
/* Optimization */
|
|
static int
|
|
optimize_basic_block(basicblock *bb, PyObject *consts)
|
|
{
|
|
assert(PyList_CheckExact(consts));
|
|
struct instr nop;
|
|
nop.i_opcode = NOP;
|
|
struct instr *target;
|
|
for (int i = 0; i < bb->b_iused; i++) {
|
|
struct instr *inst = &bb->b_instr[i];
|
|
int oparg = inst->i_oparg;
|
|
int nextop = i+1 < bb->b_iused ? bb->b_instr[i+1].i_opcode : 0;
|
|
if (is_jump(inst)) {
|
|
/* Skip over empty basic blocks. */
|
|
while (inst->i_target->b_iused == 0) {
|
|
inst->i_target = inst->i_target->b_next;
|
|
}
|
|
target = &inst->i_target->b_instr[0];
|
|
}
|
|
else {
|
|
target = &nop;
|
|
}
|
|
switch (inst->i_opcode) {
|
|
/* Remove LOAD_CONST const; conditional jump */
|
|
case LOAD_CONST:
|
|
{
|
|
PyObject* cnt;
|
|
int is_true;
|
|
int jump_if_true;
|
|
switch(nextop) {
|
|
case POP_JUMP_IF_FALSE:
|
|
case POP_JUMP_IF_TRUE:
|
|
cnt = PyList_GET_ITEM(consts, oparg);
|
|
is_true = PyObject_IsTrue(cnt);
|
|
if (is_true == -1) {
|
|
goto error;
|
|
}
|
|
inst->i_opcode = NOP;
|
|
jump_if_true = nextop == POP_JUMP_IF_TRUE;
|
|
if (is_true == jump_if_true) {
|
|
bb->b_instr[i+1].i_opcode = JUMP_ABSOLUTE;
|
|
bb->b_nofallthrough = 1;
|
|
}
|
|
else {
|
|
bb->b_instr[i+1].i_opcode = NOP;
|
|
}
|
|
break;
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
cnt = PyList_GET_ITEM(consts, oparg);
|
|
is_true = PyObject_IsTrue(cnt);
|
|
if (is_true == -1) {
|
|
goto error;
|
|
}
|
|
jump_if_true = nextop == JUMP_IF_TRUE_OR_POP;
|
|
if (is_true == jump_if_true) {
|
|
bb->b_instr[i+1].i_opcode = JUMP_ABSOLUTE;
|
|
bb->b_nofallthrough = 1;
|
|
}
|
|
else {
|
|
inst->i_opcode = NOP;
|
|
bb->b_instr[i+1].i_opcode = NOP;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Try to fold tuples of constants.
|
|
Skip over BUILD_SEQN 1 UNPACK_SEQN 1.
|
|
Replace BUILD_SEQN 2 UNPACK_SEQN 2 with ROT2.
|
|
Replace BUILD_SEQN 3 UNPACK_SEQN 3 with ROT3 ROT2. */
|
|
case BUILD_TUPLE:
|
|
if (nextop == UNPACK_SEQUENCE && oparg == bb->b_instr[i+1].i_oparg) {
|
|
switch(oparg) {
|
|
case 1:
|
|
inst->i_opcode = NOP;
|
|
bb->b_instr[i+1].i_opcode = NOP;
|
|
break;
|
|
case 2:
|
|
inst->i_opcode = ROT_TWO;
|
|
bb->b_instr[i+1].i_opcode = NOP;
|
|
break;
|
|
case 3:
|
|
inst->i_opcode = ROT_THREE;
|
|
bb->b_instr[i+1].i_opcode = ROT_TWO;
|
|
}
|
|
break;
|
|
}
|
|
if (i >= oparg) {
|
|
if (fold_tuple_on_constants(inst-oparg, oparg, consts)) {
|
|
goto error;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Simplify conditional jump to conditional jump where the
|
|
result of the first test implies the success of a similar
|
|
test or the failure of the opposite test.
|
|
Arises in code like:
|
|
"a and b or c"
|
|
"(a and b) and c"
|
|
"(a or b) or c"
|
|
"(a or b) and c"
|
|
x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_FALSE_OR_POP z
|
|
--> x:JUMP_IF_FALSE_OR_POP z
|
|
x:JUMP_IF_FALSE_OR_POP y y:JUMP_IF_TRUE_OR_POP z
|
|
--> x:POP_JUMP_IF_FALSE y+1
|
|
where y+1 is the instruction following the second test.
|
|
*/
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
switch(target->i_opcode) {
|
|
case POP_JUMP_IF_FALSE:
|
|
if (inst->i_lineno == target->i_lineno) {
|
|
*inst = *target;
|
|
i--;
|
|
}
|
|
break;
|
|
case JUMP_ABSOLUTE:
|
|
case JUMP_FORWARD:
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
if (inst->i_lineno == target->i_lineno &&
|
|
inst->i_target != target->i_target) {
|
|
inst->i_target = target->i_target;
|
|
i--;
|
|
}
|
|
break;
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
assert (inst->i_target->b_iused == 1);
|
|
if (inst->i_lineno == target->i_lineno) {
|
|
inst->i_opcode = POP_JUMP_IF_FALSE;
|
|
inst->i_target = inst->i_target->b_next;
|
|
--i;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
switch(target->i_opcode) {
|
|
case POP_JUMP_IF_TRUE:
|
|
if (inst->i_lineno == target->i_lineno) {
|
|
*inst = *target;
|
|
i--;
|
|
}
|
|
break;
|
|
case JUMP_ABSOLUTE:
|
|
case JUMP_FORWARD:
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
if (inst->i_lineno == target->i_lineno &&
|
|
inst->i_target != target->i_target) {
|
|
inst->i_target = target->i_target;
|
|
i--;
|
|
}
|
|
break;
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
assert (inst->i_target->b_iused == 1);
|
|
if (inst->i_lineno == target->i_lineno) {
|
|
inst->i_opcode = POP_JUMP_IF_TRUE;
|
|
inst->i_target = inst->i_target->b_next;
|
|
--i;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case POP_JUMP_IF_FALSE:
|
|
switch(target->i_opcode) {
|
|
case JUMP_ABSOLUTE:
|
|
case JUMP_FORWARD:
|
|
if (inst->i_lineno == target->i_lineno) {
|
|
inst->i_target = target->i_target;
|
|
i--;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case POP_JUMP_IF_TRUE:
|
|
switch(target->i_opcode) {
|
|
case JUMP_ABSOLUTE:
|
|
case JUMP_FORWARD:
|
|
if (inst->i_lineno == target->i_lineno) {
|
|
inst->i_target = target->i_target;
|
|
i--;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case JUMP_ABSOLUTE:
|
|
case JUMP_FORWARD:
|
|
assert (i == bb->b_iused-1);
|
|
switch(target->i_opcode) {
|
|
case JUMP_FORWARD:
|
|
if (eliminate_jump_to_jump(bb, inst->i_opcode)) {
|
|
goto error;
|
|
}
|
|
break;
|
|
|
|
case JUMP_ABSOLUTE:
|
|
if (eliminate_jump_to_jump(bb, JUMP_ABSOLUTE)) {
|
|
goto error;
|
|
}
|
|
break;
|
|
default:
|
|
if (inst->i_target->b_exit && inst->i_target->b_iused <= MAX_COPY_SIZE) {
|
|
basicblock *to_copy = inst->i_target;
|
|
inst->i_opcode = NOP;
|
|
for (i = 0; i < to_copy->b_iused; i++) {
|
|
int index = compiler_next_instr(bb);
|
|
if (index < 0) {
|
|
return -1;
|
|
}
|
|
bb->b_instr[index] = to_copy->b_instr[i];
|
|
}
|
|
bb->b_exit = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
error:
|
|
return -1;
|
|
}
|
|
|
|
|
|
static void
|
|
clean_basic_block(basicblock *bb, int prev_lineno) {
|
|
/* Remove NOPs when legal to do so. */
|
|
int dest = 0;
|
|
for (int src = 0; src < bb->b_iused; src++) {
|
|
int lineno = bb->b_instr[src].i_lineno;
|
|
if (bb->b_instr[src].i_opcode == NOP) {
|
|
/* Eliminate no-op if it doesn't have a line number */
|
|
if (lineno < 0) {
|
|
continue;
|
|
}
|
|
/* or, if the previous instruction had the same line number. */
|
|
if (prev_lineno == lineno) {
|
|
continue;
|
|
}
|
|
/* or, if the next instruction has same line number or no line number */
|
|
if (src < bb->b_iused - 1) {
|
|
int next_lineno = bb->b_instr[src+1].i_lineno;
|
|
if (next_lineno < 0 || next_lineno == lineno) {
|
|
bb->b_instr[src+1].i_lineno = lineno;
|
|
continue;
|
|
}
|
|
}
|
|
else {
|
|
basicblock* next = bb->b_next;
|
|
while (next && next->b_iused == 0) {
|
|
next = next->b_next;
|
|
}
|
|
/* or if last instruction in BB and next BB has same line number */
|
|
if (next) {
|
|
if (lineno == next->b_instr[0].i_lineno) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
if (dest != src) {
|
|
bb->b_instr[dest] = bb->b_instr[src];
|
|
}
|
|
dest++;
|
|
prev_lineno = lineno;
|
|
}
|
|
assert(dest <= bb->b_iused);
|
|
bb->b_iused = dest;
|
|
}
|
|
|
|
static int
|
|
normalize_basic_block(basicblock *bb) {
|
|
/* Mark blocks as exit and/or nofallthrough.
|
|
Raise SystemError if CFG is malformed. */
|
|
for (int i = 0; i < bb->b_iused; i++) {
|
|
switch(bb->b_instr[i].i_opcode) {
|
|
case RETURN_VALUE:
|
|
case RAISE_VARARGS:
|
|
case RERAISE:
|
|
bb->b_exit = 1;
|
|
bb->b_nofallthrough = 1;
|
|
break;
|
|
case JUMP_ABSOLUTE:
|
|
case JUMP_FORWARD:
|
|
bb->b_nofallthrough = 1;
|
|
/* fall through */
|
|
case POP_JUMP_IF_FALSE:
|
|
case POP_JUMP_IF_TRUE:
|
|
case JUMP_IF_FALSE_OR_POP:
|
|
case JUMP_IF_TRUE_OR_POP:
|
|
case FOR_ITER:
|
|
if (i != bb->b_iused-1) {
|
|
PyErr_SetString(PyExc_SystemError, "malformed control flow graph.");
|
|
return -1;
|
|
}
|
|
/* Skip over empty basic blocks. */
|
|
while (bb->b_instr[i].i_target->b_iused == 0) {
|
|
bb->b_instr[i].i_target = bb->b_instr[i].i_target->b_next;
|
|
}
|
|
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mark_reachable(struct assembler *a) {
|
|
basicblock **stack, **sp;
|
|
sp = stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * a->a_nblocks);
|
|
if (stack == NULL) {
|
|
return -1;
|
|
}
|
|
a->a_entry->b_predecessors = 1;
|
|
*sp++ = a->a_entry;
|
|
while (sp > stack) {
|
|
basicblock *b = *(--sp);
|
|
if (b->b_next && !b->b_nofallthrough) {
|
|
if (b->b_next->b_predecessors == 0) {
|
|
*sp++ = b->b_next;
|
|
}
|
|
b->b_next->b_predecessors++;
|
|
}
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
basicblock *target;
|
|
if (is_jump(&b->b_instr[i])) {
|
|
target = b->b_instr[i].i_target;
|
|
if (target->b_predecessors == 0) {
|
|
*sp++ = target;
|
|
}
|
|
target->b_predecessors++;
|
|
}
|
|
}
|
|
}
|
|
PyObject_Free(stack);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eliminate_empty_basic_blocks(basicblock *entry) {
|
|
/* Eliminate empty blocks */
|
|
for (basicblock *b = entry; b != NULL; b = b->b_next) {
|
|
basicblock *next = b->b_next;
|
|
if (next) {
|
|
while (next->b_iused == 0 && next->b_next) {
|
|
next = next->b_next;
|
|
}
|
|
b->b_next = next;
|
|
}
|
|
}
|
|
for (basicblock *b = entry; b != NULL; b = b->b_next) {
|
|
if (b->b_iused == 0) {
|
|
continue;
|
|
}
|
|
if (is_jump(&b->b_instr[b->b_iused-1])) {
|
|
basicblock *target = b->b_instr[b->b_iused-1].i_target;
|
|
while (target->b_iused == 0) {
|
|
target = target->b_next;
|
|
}
|
|
b->b_instr[b->b_iused-1].i_target = target;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* If an instruction has no line number, but it's predecessor in the BB does,
|
|
* then copy the line number. If a successor block has no line number, and only
|
|
* one predecessor, then inherit the line number.
|
|
* This ensures that all exit blocks (with one predecessor) receive a line number.
|
|
* Also reduces the size of the line number table,
|
|
* but has no impact on the generated line number events.
|
|
*/
|
|
static void
|
|
propogate_line_numbers(struct assembler *a) {
|
|
for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
|
|
if (b->b_iused == 0) {
|
|
continue;
|
|
}
|
|
int prev_lineno = -1;
|
|
for (int i = 0; i < b->b_iused; i++) {
|
|
if (b->b_instr[i].i_lineno < 0) {
|
|
b->b_instr[i].i_lineno = prev_lineno;
|
|
}
|
|
else {
|
|
prev_lineno = b->b_instr[i].i_lineno;
|
|
}
|
|
}
|
|
if (!b->b_nofallthrough && b->b_next->b_predecessors == 1) {
|
|
assert(b->b_next->b_iused);
|
|
if (b->b_next->b_instr[0].i_lineno < 0) {
|
|
b->b_next->b_instr[0].i_lineno = prev_lineno;
|
|
}
|
|
}
|
|
if (is_jump(&b->b_instr[b->b_iused-1])) {
|
|
switch (b->b_instr[b->b_iused-1].i_opcode) {
|
|
/* Note: Only actual jumps, not exception handlers */
|
|
case SETUP_ASYNC_WITH:
|
|
case SETUP_WITH:
|
|
case SETUP_FINALLY:
|
|
continue;
|
|
}
|
|
basicblock *target = b->b_instr[b->b_iused-1].i_target;
|
|
if (target->b_predecessors == 1) {
|
|
if (target->b_instr[0].i_lineno < 0) {
|
|
target->b_instr[0].i_lineno = prev_lineno;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Perform optimizations on a control flow graph.
|
|
The consts object should still be in list form to allow new constants
|
|
to be appended.
|
|
|
|
All transformations keep the code size the same or smaller.
|
|
For those that reduce size, the gaps are initially filled with
|
|
NOPs. Later those NOPs are removed.
|
|
*/
|
|
|
|
static int
|
|
optimize_cfg(struct assembler *a, PyObject *consts)
|
|
{
|
|
for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
|
|
if (optimize_basic_block(b, consts)) {
|
|
return -1;
|
|
}
|
|
clean_basic_block(b, -1);
|
|
assert(b->b_predecessors == 0);
|
|
}
|
|
if (mark_reachable(a)) {
|
|
return -1;
|
|
}
|
|
/* Delete unreachable instructions */
|
|
for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
|
|
if (b->b_predecessors == 0) {
|
|
b->b_iused = 0;
|
|
b->b_nofallthrough = 0;
|
|
}
|
|
}
|
|
basicblock *pred = NULL;
|
|
for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
|
|
int prev_lineno = -1;
|
|
if (pred && pred->b_iused) {
|
|
prev_lineno = pred->b_instr[pred->b_iused-1].i_lineno;
|
|
}
|
|
clean_basic_block(b, prev_lineno);
|
|
pred = b->b_nofallthrough ? NULL : b;
|
|
}
|
|
eliminate_empty_basic_blocks(a->a_entry);
|
|
/* Delete jump instructions made redundant by previous step. If a non-empty
|
|
block ends with a jump instruction, check if the next non-empty block
|
|
reached through normal flow control is the target of that jump. If it
|
|
is, then the jump instruction is redundant and can be deleted.
|
|
*/
|
|
int maybe_empty_blocks = 0;
|
|
for (basicblock *b = a->a_entry; b != NULL; b = b->b_next) {
|
|
if (b->b_iused > 0) {
|
|
struct instr *b_last_instr = &b->b_instr[b->b_iused - 1];
|
|
if (b_last_instr->i_opcode == JUMP_ABSOLUTE ||
|
|
b_last_instr->i_opcode == JUMP_FORWARD) {
|
|
if (b_last_instr->i_target == b->b_next) {
|
|
assert(b->b_next->b_iused);
|
|
b->b_nofallthrough = 0;
|
|
b_last_instr->i_opcode = NOP;
|
|
clean_basic_block(b, -1);
|
|
maybe_empty_blocks = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (maybe_empty_blocks) {
|
|
eliminate_empty_basic_blocks(a->a_entry);
|
|
}
|
|
propogate_line_numbers(a);
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
is_exit_without_lineno(basicblock *b) {
|
|
return b->b_exit && b->b_instr[0].i_lineno < 0;
|
|
}
|
|
|
|
/* PEP 626 mandates that the f_lineno of a frame is correct
|
|
* after a frame terminates. It would be prohibitively expensive
|
|
* to continuously update the f_lineno field at runtime,
|
|
* so we make sure that all exiting instruction (raises and returns)
|
|
* have a valid line number, allowing us to compute f_lineno lazily.
|
|
* We can do this by duplicating the exit blocks without line number
|
|
* so that none have more than one predecessor. We can then safely
|
|
* copy the line number from the sole predecessor block.
|
|
*/
|
|
static int
|
|
ensure_exits_have_lineno(struct compiler *c)
|
|
{
|
|
basicblock *entry = NULL;
|
|
/* Copy all exit blocks without line number that are targets of a jump.
|
|
*/
|
|
for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
|
|
if (b->b_iused > 0 && is_jump(&b->b_instr[b->b_iused-1])) {
|
|
switch (b->b_instr[b->b_iused-1].i_opcode) {
|
|
/* Note: Only actual jumps, not exception handlers */
|
|
case SETUP_ASYNC_WITH:
|
|
case SETUP_WITH:
|
|
case SETUP_FINALLY:
|
|
continue;
|
|
}
|
|
basicblock *target = b->b_instr[b->b_iused-1].i_target;
|
|
if (is_exit_without_lineno(target)) {
|
|
basicblock *new_target = compiler_copy_block(c, target);
|
|
if (new_target == NULL) {
|
|
return -1;
|
|
}
|
|
new_target->b_instr[0].i_lineno = b->b_instr[b->b_iused-1].i_lineno;
|
|
b->b_instr[b->b_iused-1].i_target = new_target;
|
|
}
|
|
}
|
|
entry = b;
|
|
}
|
|
assert(entry != NULL);
|
|
if (is_exit_without_lineno(entry)) {
|
|
entry->b_instr[0].i_lineno = c->u->u_firstlineno;
|
|
}
|
|
/* Eliminate empty blocks */
|
|
for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
|
|
while (b->b_next && b->b_next->b_iused == 0) {
|
|
b->b_next = b->b_next->b_next;
|
|
}
|
|
}
|
|
/* Any remaining reachable exit blocks without line number can only be reached by
|
|
* fall through, and thus can only have a single predecessor */
|
|
for (basicblock *b = c->u->u_blocks; b != NULL; b = b->b_list) {
|
|
if (!b->b_nofallthrough && b->b_next && b->b_iused > 0) {
|
|
if (is_exit_without_lineno(b->b_next)) {
|
|
assert(b->b_next->b_iused > 0);
|
|
b->b_next->b_instr[0].i_lineno = b->b_instr[b->b_iused-1].i_lineno;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Retained for API compatibility.
|
|
* Optimization is now done in optimize_cfg */
|
|
|
|
PyObject *
|
|
PyCode_Optimize(PyObject *code, PyObject* Py_UNUSED(consts),
|
|
PyObject *Py_UNUSED(names), PyObject *Py_UNUSED(lnotab_obj))
|
|
{
|
|
Py_INCREF(code);
|
|
return code;
|
|
}
|