mirror of https://github.com/python/cpython
120 lines
4.0 KiB
Python
120 lines
4.0 KiB
Python
"""Unittests for heapq."""
|
|
|
|
from heapq import heappush, heappop, heapify, heapreplace, nlargest, nsmallest
|
|
import random
|
|
import unittest
|
|
from test import test_support
|
|
import sys
|
|
|
|
|
|
def heapiter(heap):
|
|
# An iterator returning a heap's elements, smallest-first.
|
|
try:
|
|
while 1:
|
|
yield heappop(heap)
|
|
except IndexError:
|
|
pass
|
|
|
|
class TestHeap(unittest.TestCase):
|
|
|
|
def test_push_pop(self):
|
|
# 1) Push 256 random numbers and pop them off, verifying all's OK.
|
|
heap = []
|
|
data = []
|
|
self.check_invariant(heap)
|
|
for i in range(256):
|
|
item = random.random()
|
|
data.append(item)
|
|
heappush(heap, item)
|
|
self.check_invariant(heap)
|
|
results = []
|
|
while heap:
|
|
item = heappop(heap)
|
|
self.check_invariant(heap)
|
|
results.append(item)
|
|
data_sorted = data[:]
|
|
data_sorted.sort()
|
|
self.assertEqual(data_sorted, results)
|
|
# 2) Check that the invariant holds for a sorted array
|
|
self.check_invariant(results)
|
|
|
|
def check_invariant(self, heap):
|
|
# Check the heap invariant.
|
|
for pos, item in enumerate(heap):
|
|
if pos: # pos 0 has no parent
|
|
parentpos = (pos-1) >> 1
|
|
self.assert_(heap[parentpos] <= item)
|
|
|
|
def test_heapify(self):
|
|
for size in range(30):
|
|
heap = [random.random() for dummy in range(size)]
|
|
heapify(heap)
|
|
self.check_invariant(heap)
|
|
|
|
def test_naive_nbest(self):
|
|
data = [random.randrange(2000) for i in range(1000)]
|
|
heap = []
|
|
for item in data:
|
|
heappush(heap, item)
|
|
if len(heap) > 10:
|
|
heappop(heap)
|
|
heap.sort()
|
|
self.assertEqual(heap, sorted(data)[-10:])
|
|
|
|
def test_nbest(self):
|
|
# Less-naive "N-best" algorithm, much faster (if len(data) is big
|
|
# enough <wink>) than sorting all of data. However, if we had a max
|
|
# heap instead of a min heap, it could go faster still via
|
|
# heapify'ing all of data (linear time), then doing 10 heappops
|
|
# (10 log-time steps).
|
|
data = [random.randrange(2000) for i in range(1000)]
|
|
heap = data[:10]
|
|
heapify(heap)
|
|
for item in data[10:]:
|
|
if item > heap[0]: # this gets rarer the longer we run
|
|
heapreplace(heap, item)
|
|
self.assertEqual(list(heapiter(heap)), sorted(data)[-10:])
|
|
|
|
def test_heapsort(self):
|
|
# Exercise everything with repeated heapsort checks
|
|
for trial in xrange(100):
|
|
size = random.randrange(50)
|
|
data = [random.randrange(25) for i in range(size)]
|
|
if trial & 1: # Half of the time, use heapify
|
|
heap = data[:]
|
|
heapify(heap)
|
|
else: # The rest of the time, use heappush
|
|
heap = []
|
|
for item in data:
|
|
heappush(heap, item)
|
|
heap_sorted = [heappop(heap) for i in range(size)]
|
|
self.assertEqual(heap_sorted, sorted(data))
|
|
|
|
def test_nsmallest(self):
|
|
data = [random.randrange(2000) for i in range(1000)]
|
|
for n in (0, 1, 2, 10, 100, 400, 999, 1000, 1100):
|
|
self.assertEqual(nsmallest(n, data), sorted(data)[:n])
|
|
|
|
def test_largest(self):
|
|
data = [random.randrange(2000) for i in range(1000)]
|
|
for n in (0, 1, 2, 10, 100, 400, 999, 1000, 1100):
|
|
self.assertEqual(nlargest(n, data), sorted(data, reverse=True)[:n])
|
|
|
|
def test_main(verbose=None):
|
|
test_classes = [TestHeap]
|
|
test_support.run_unittest(*test_classes)
|
|
|
|
# verify reference counting
|
|
if verbose and hasattr(sys, "gettotalrefcount"):
|
|
import gc
|
|
counts = [None] * 5
|
|
for i in xrange(len(counts)):
|
|
test_support.run_unittest(*test_classes)
|
|
gc.collect()
|
|
counts[i] = sys.gettotalrefcount()
|
|
print counts
|
|
|
|
if __name__ == "__main__":
|
|
test_main(verbose=True)
|
|
|