cpython/Modules/_sqlite/cursor.c

1044 lines
30 KiB
C

/* cursor.c - the cursor type
*
* Copyright (C) 2004-2010 Gerhard Häring <gh@ghaering.de>
*
* This file is part of pysqlite.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "cursor.h"
#include "module.h"
#include "util.h"
#define clinic_state() (pysqlite_get_state_by_type(Py_TYPE(self)))
#include "clinic/cursor.c.h"
#undef clinic_state
/*[clinic input]
module _sqlite3
class _sqlite3.Cursor "pysqlite_Cursor *" "clinic_state()->CursorType"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=3c5b8115c5cf30f1]*/
/*[clinic input]
_sqlite3.Cursor.__init__ as pysqlite_cursor_init
connection: object(type='pysqlite_Connection *', subclass_of='clinic_state()->ConnectionType')
/
[clinic start generated code]*/
static int
pysqlite_cursor_init_impl(pysqlite_Cursor *self,
pysqlite_Connection *connection)
/*[clinic end generated code: output=ac59dce49a809ca8 input=23d4265b534989fb]*/
{
Py_INCREF(connection);
Py_XSETREF(self->connection, connection);
Py_CLEAR(self->statement);
Py_CLEAR(self->row_cast_map);
Py_INCREF(Py_None);
Py_XSETREF(self->description, Py_None);
Py_INCREF(Py_None);
Py_XSETREF(self->lastrowid, Py_None);
self->arraysize = 1;
self->closed = 0;
self->rowcount = -1L;
Py_INCREF(Py_None);
Py_XSETREF(self->row_factory, Py_None);
if (!pysqlite_check_thread(self->connection)) {
return -1;
}
if (!pysqlite_connection_register_cursor(connection, (PyObject*)self)) {
return -1;
}
self->initialized = 1;
return 0;
}
static int
cursor_traverse(pysqlite_Cursor *self, visitproc visit, void *arg)
{
Py_VISIT(Py_TYPE(self));
Py_VISIT(self->connection);
Py_VISIT(self->description);
Py_VISIT(self->row_cast_map);
Py_VISIT(self->lastrowid);
Py_VISIT(self->row_factory);
Py_VISIT(self->statement);
return 0;
}
static int
cursor_clear(pysqlite_Cursor *self)
{
Py_CLEAR(self->connection);
Py_CLEAR(self->description);
Py_CLEAR(self->row_cast_map);
Py_CLEAR(self->lastrowid);
Py_CLEAR(self->row_factory);
if (self->statement) {
/* Reset the statement if the user has not closed the cursor */
pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
}
return 0;
}
static void
cursor_dealloc(pysqlite_Cursor *self)
{
PyTypeObject *tp = Py_TYPE(self);
PyObject_GC_UnTrack(self);
if (self->in_weakreflist != NULL) {
PyObject_ClearWeakRefs((PyObject*)self);
}
tp->tp_clear((PyObject *)self);
tp->tp_free(self);
Py_DECREF(tp);
}
static PyObject *
_pysqlite_get_converter(pysqlite_state *state, const char *keystr,
Py_ssize_t keylen)
{
PyObject *key;
PyObject *upcase_key;
PyObject *retval;
_Py_IDENTIFIER(upper);
key = PyUnicode_FromStringAndSize(keystr, keylen);
if (!key) {
return NULL;
}
upcase_key = _PyObject_CallMethodIdNoArgs(key, &PyId_upper);
Py_DECREF(key);
if (!upcase_key) {
return NULL;
}
retval = PyDict_GetItemWithError(state->converters, upcase_key);
Py_DECREF(upcase_key);
return retval;
}
static int
pysqlite_build_row_cast_map(pysqlite_Cursor* self)
{
int i;
const char* pos;
const char* decltype;
PyObject* converter;
if (!self->connection->detect_types) {
return 0;
}
Py_XSETREF(self->row_cast_map, PyList_New(0));
if (!self->row_cast_map) {
return -1;
}
for (i = 0; i < sqlite3_column_count(self->statement->st); i++) {
converter = NULL;
if (self->connection->detect_types & PARSE_COLNAMES) {
const char *colname = sqlite3_column_name(self->statement->st, i);
if (colname == NULL) {
PyErr_NoMemory();
Py_CLEAR(self->row_cast_map);
return -1;
}
const char *type_start = NULL;
for (pos = colname; *pos != 0; pos++) {
if (*pos == '[') {
type_start = pos + 1;
}
else if (*pos == ']' && type_start != NULL) {
pysqlite_state *state = self->connection->state;
converter = _pysqlite_get_converter(state, type_start,
pos - type_start);
if (!converter && PyErr_Occurred()) {
Py_CLEAR(self->row_cast_map);
return -1;
}
break;
}
}
}
if (!converter && self->connection->detect_types & PARSE_DECLTYPES) {
decltype = sqlite3_column_decltype(self->statement->st, i);
if (decltype) {
for (pos = decltype;;pos++) {
/* Converter names are split at '(' and blanks.
* This allows 'INTEGER NOT NULL' to be treated as 'INTEGER' and
* 'NUMBER(10)' to be treated as 'NUMBER', for example.
* In other words, it will work as people expect it to work.*/
if (*pos == ' ' || *pos == '(' || *pos == 0) {
pysqlite_state *state = self->connection->state;
converter = _pysqlite_get_converter(state, decltype,
pos - decltype);
if (!converter && PyErr_Occurred()) {
Py_CLEAR(self->row_cast_map);
return -1;
}
break;
}
}
}
}
if (!converter) {
converter = Py_None;
}
if (PyList_Append(self->row_cast_map, converter) != 0) {
Py_CLEAR(self->row_cast_map);
return -1;
}
}
return 0;
}
static PyObject *
_pysqlite_build_column_name(pysqlite_Cursor *self, const char *colname)
{
const char* pos;
Py_ssize_t len;
if (self->connection->detect_types & PARSE_COLNAMES) {
for (pos = colname; *pos; pos++) {
if (*pos == '[') {
if ((pos != colname) && (*(pos-1) == ' ')) {
pos--;
}
break;
}
}
len = pos - colname;
}
else {
len = strlen(colname);
}
return PyUnicode_FromStringAndSize(colname, len);
}
/*
* Returns a row from the currently active SQLite statement
*
* Precondidition:
* - sqlite3_step() has been called before and it returned SQLITE_ROW.
*/
static PyObject *
_pysqlite_fetch_one_row(pysqlite_Cursor* self)
{
int i, numcols;
PyObject* row;
int coltype;
PyObject* converter;
PyObject* converted;
Py_ssize_t nbytes;
char buf[200];
const char* colname;
PyObject* error_msg;
Py_BEGIN_ALLOW_THREADS
numcols = sqlite3_data_count(self->statement->st);
Py_END_ALLOW_THREADS
row = PyTuple_New(numcols);
if (!row)
return NULL;
sqlite3 *db = self->connection->db;
for (i = 0; i < numcols; i++) {
if (self->connection->detect_types
&& self->row_cast_map != NULL
&& i < PyList_GET_SIZE(self->row_cast_map))
{
converter = PyList_GET_ITEM(self->row_cast_map, i);
}
else {
converter = Py_None;
}
/*
* Note, sqlite3_column_bytes() must come after sqlite3_column_blob()
* or sqlite3_column_text().
*
* See https://sqlite.org/c3ref/column_blob.html for details.
*/
if (converter != Py_None) {
const void *blob = sqlite3_column_blob(self->statement->st, i);
if (blob == NULL) {
if (sqlite3_errcode(db) == SQLITE_NOMEM) {
PyErr_NoMemory();
goto error;
}
converted = Py_NewRef(Py_None);
}
else {
nbytes = sqlite3_column_bytes(self->statement->st, i);
PyObject *item = PyBytes_FromStringAndSize(blob, nbytes);
if (item == NULL) {
goto error;
}
converted = PyObject_CallOneArg(converter, item);
Py_DECREF(item);
}
} else {
Py_BEGIN_ALLOW_THREADS
coltype = sqlite3_column_type(self->statement->st, i);
Py_END_ALLOW_THREADS
if (coltype == SQLITE_NULL) {
converted = Py_NewRef(Py_None);
} else if (coltype == SQLITE_INTEGER) {
converted = PyLong_FromLongLong(sqlite3_column_int64(self->statement->st, i));
} else if (coltype == SQLITE_FLOAT) {
converted = PyFloat_FromDouble(sqlite3_column_double(self->statement->st, i));
} else if (coltype == SQLITE_TEXT) {
const char *text = (const char*)sqlite3_column_text(self->statement->st, i);
if (text == NULL && sqlite3_errcode(db) == SQLITE_NOMEM) {
PyErr_NoMemory();
goto error;
}
nbytes = sqlite3_column_bytes(self->statement->st, i);
if (self->connection->text_factory == (PyObject*)&PyUnicode_Type) {
converted = PyUnicode_FromStringAndSize(text, nbytes);
if (!converted && PyErr_ExceptionMatches(PyExc_UnicodeDecodeError)) {
PyErr_Clear();
colname = sqlite3_column_name(self->statement->st, i);
if (colname == NULL) {
PyErr_NoMemory();
goto error;
}
PyOS_snprintf(buf, sizeof(buf) - 1, "Could not decode to UTF-8 column '%s' with text '%s'",
colname , text);
error_msg = PyUnicode_Decode(buf, strlen(buf), "ascii", "replace");
PyObject *exc = self->connection->OperationalError;
if (!error_msg) {
PyErr_SetString(exc, "Could not decode to UTF-8");
} else {
PyErr_SetObject(exc, error_msg);
Py_DECREF(error_msg);
}
}
} else if (self->connection->text_factory == (PyObject*)&PyBytes_Type) {
converted = PyBytes_FromStringAndSize(text, nbytes);
} else if (self->connection->text_factory == (PyObject*)&PyByteArray_Type) {
converted = PyByteArray_FromStringAndSize(text, nbytes);
} else {
converted = PyObject_CallFunction(self->connection->text_factory, "y#", text, nbytes);
}
} else {
/* coltype == SQLITE_BLOB */
const void *blob = sqlite3_column_blob(self->statement->st, i);
if (blob == NULL && sqlite3_errcode(db) == SQLITE_NOMEM) {
PyErr_NoMemory();
goto error;
}
nbytes = sqlite3_column_bytes(self->statement->st, i);
converted = PyBytes_FromStringAndSize(blob, nbytes);
}
}
if (!converted) {
goto error;
}
PyTuple_SET_ITEM(row, i, converted);
}
if (PyErr_Occurred())
goto error;
return row;
error:
Py_DECREF(row);
return NULL;
}
/*
* Checks if a cursor object is usable.
*
* 0 => error; 1 => ok
*/
static int check_cursor(pysqlite_Cursor* cur)
{
if (!cur->initialized) {
pysqlite_state *state = pysqlite_get_state_by_type(Py_TYPE(cur));
PyErr_SetString(state->ProgrammingError,
"Base Cursor.__init__ not called.");
return 0;
}
if (cur->closed) {
PyErr_SetString(cur->connection->state->ProgrammingError,
"Cannot operate on a closed cursor.");
return 0;
}
if (cur->locked) {
PyErr_SetString(cur->connection->state->ProgrammingError,
"Recursive use of cursors not allowed.");
return 0;
}
return pysqlite_check_thread(cur->connection) && pysqlite_check_connection(cur->connection);
}
static int
begin_transaction(pysqlite_Connection *self)
{
assert(self->isolation_level != NULL);
int rc;
Py_BEGIN_ALLOW_THREADS
sqlite3_stmt *statement;
char begin_stmt[16] = "BEGIN ";
#ifdef Py_DEBUG
size_t len = strlen(self->isolation_level);
assert(len <= 9);
#endif
(void)strcat(begin_stmt, self->isolation_level);
rc = sqlite3_prepare_v2(self->db, begin_stmt, -1, &statement, NULL);
if (rc == SQLITE_OK) {
(void)sqlite3_step(statement);
rc = sqlite3_finalize(statement);
}
Py_END_ALLOW_THREADS
if (rc != SQLITE_OK) {
(void)_pysqlite_seterror(self->state, self->db);
return -1;
}
return 0;
}
static PyObject *
get_statement_from_cache(pysqlite_Cursor *self, PyObject *operation)
{
PyObject *args[] = { NULL, operation, }; // Borrowed ref.
PyObject *cache = self->connection->statement_cache;
size_t nargsf = 1 | PY_VECTORCALL_ARGUMENTS_OFFSET;
return PyObject_Vectorcall(cache, args + 1, nargsf, NULL);
}
static PyObject *
_pysqlite_query_execute(pysqlite_Cursor* self, int multiple, PyObject* operation, PyObject* second_argument)
{
PyObject* parameters_list = NULL;
PyObject* parameters_iter = NULL;
PyObject* parameters = NULL;
int i;
int rc;
int numcols;
PyObject* column_name;
if (!check_cursor(self)) {
goto error;
}
self->locked = 1;
if (multiple) {
if (PyIter_Check(second_argument)) {
/* iterator */
parameters_iter = Py_NewRef(second_argument);
} else {
/* sequence */
parameters_iter = PyObject_GetIter(second_argument);
if (!parameters_iter) {
goto error;
}
}
} else {
parameters_list = PyList_New(0);
if (!parameters_list) {
goto error;
}
if (second_argument == NULL) {
second_argument = PyTuple_New(0);
if (!second_argument) {
goto error;
}
} else {
Py_INCREF(second_argument);
}
if (PyList_Append(parameters_list, second_argument) != 0) {
Py_DECREF(second_argument);
goto error;
}
Py_DECREF(second_argument);
parameters_iter = PyObject_GetIter(parameters_list);
if (!parameters_iter) {
goto error;
}
}
if (self->statement != NULL) {
/* There is an active statement */
pysqlite_statement_reset(self->statement);
}
/* reset description and rowcount */
Py_INCREF(Py_None);
Py_SETREF(self->description, Py_None);
self->rowcount = 0L;
if (self->statement) {
(void)pysqlite_statement_reset(self->statement);
}
PyObject *stmt = get_statement_from_cache(self, operation);
Py_XSETREF(self->statement, (pysqlite_Statement *)stmt);
if (!self->statement) {
goto error;
}
pysqlite_state *state = self->connection->state;
if (multiple && sqlite3_stmt_readonly(self->statement->st)) {
PyErr_SetString(state->ProgrammingError,
"executemany() can only execute DML statements.");
goto error;
}
if (self->statement->in_use) {
Py_SETREF(self->statement,
pysqlite_statement_create(self->connection, operation));
if (self->statement == NULL) {
goto error;
}
}
pysqlite_statement_reset(self->statement);
pysqlite_statement_mark_dirty(self->statement);
/* We start a transaction implicitly before a DML statement.
SELECT is the only exception. See #9924. */
if (self->connection->isolation_level
&& self->statement->is_dml
&& sqlite3_get_autocommit(self->connection->db))
{
if (begin_transaction(self->connection) < 0) {
goto error;
}
}
while (1) {
parameters = PyIter_Next(parameters_iter);
if (!parameters) {
break;
}
pysqlite_statement_mark_dirty(self->statement);
pysqlite_statement_bind_parameters(state, self->statement, parameters);
if (PyErr_Occurred()) {
goto error;
}
rc = pysqlite_step(self->statement->st);
if (rc != SQLITE_DONE && rc != SQLITE_ROW) {
if (PyErr_Occurred()) {
/* there was an error that occurred in a user-defined callback */
if (state->enable_callback_tracebacks) {
PyErr_Print();
} else {
PyErr_Clear();
}
}
(void)pysqlite_statement_reset(self->statement);
_pysqlite_seterror(state, self->connection->db);
goto error;
}
if (pysqlite_build_row_cast_map(self) != 0) {
_PyErr_FormatFromCause(state->OperationalError,
"Error while building row_cast_map");
goto error;
}
assert(rc == SQLITE_ROW || rc == SQLITE_DONE);
Py_BEGIN_ALLOW_THREADS
numcols = sqlite3_column_count(self->statement->st);
Py_END_ALLOW_THREADS
if (self->description == Py_None && numcols > 0) {
Py_SETREF(self->description, PyTuple_New(numcols));
if (!self->description) {
goto error;
}
for (i = 0; i < numcols; i++) {
const char *colname;
colname = sqlite3_column_name(self->statement->st, i);
if (colname == NULL) {
PyErr_NoMemory();
goto error;
}
column_name = _pysqlite_build_column_name(self, colname);
if (column_name == NULL) {
goto error;
}
PyObject *descriptor = PyTuple_Pack(7, column_name,
Py_None, Py_None, Py_None,
Py_None, Py_None, Py_None);
Py_DECREF(column_name);
if (descriptor == NULL) {
goto error;
}
PyTuple_SET_ITEM(self->description, i, descriptor);
}
}
if (self->statement->is_dml) {
self->rowcount += (long)sqlite3_changes(self->connection->db);
} else {
self->rowcount= -1L;
}
if (rc == SQLITE_DONE && !multiple) {
pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
}
if (multiple) {
pysqlite_statement_reset(self->statement);
}
Py_XDECREF(parameters);
}
if (!multiple) {
sqlite_int64 lastrowid;
Py_BEGIN_ALLOW_THREADS
lastrowid = sqlite3_last_insert_rowid(self->connection->db);
Py_END_ALLOW_THREADS
Py_SETREF(self->lastrowid, PyLong_FromLongLong(lastrowid));
// Fall through on error.
}
error:
Py_XDECREF(parameters);
Py_XDECREF(parameters_iter);
Py_XDECREF(parameters_list);
self->locked = 0;
if (PyErr_Occurred()) {
self->rowcount = -1L;
return NULL;
} else {
return Py_NewRef((PyObject *)self);
}
}
/*[clinic input]
_sqlite3.Cursor.execute as pysqlite_cursor_execute
sql: unicode
parameters: object(c_default = 'NULL') = ()
/
Executes a SQL statement.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_execute_impl(pysqlite_Cursor *self, PyObject *sql,
PyObject *parameters)
/*[clinic end generated code: output=d81b4655c7c0bbad input=91d7bb36f127f597]*/
{
return _pysqlite_query_execute(self, 0, sql, parameters);
}
/*[clinic input]
_sqlite3.Cursor.executemany as pysqlite_cursor_executemany
sql: unicode
seq_of_parameters: object
/
Repeatedly executes a SQL statement.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_executemany_impl(pysqlite_Cursor *self, PyObject *sql,
PyObject *seq_of_parameters)
/*[clinic end generated code: output=2c65a3c4733fb5d8 input=440707b7af87fba8]*/
{
return _pysqlite_query_execute(self, 1, sql, seq_of_parameters);
}
/*[clinic input]
_sqlite3.Cursor.executescript as pysqlite_cursor_executescript
sql_script: str
/
Executes multiple SQL statements at once. Non-standard.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_executescript_impl(pysqlite_Cursor *self,
const char *sql_script)
/*[clinic end generated code: output=8fd726dde1c65164 input=1ac0693dc8db02a8]*/
{
if (!check_cursor(self)) {
return NULL;
}
size_t sql_len = strlen(sql_script);
int max_length = sqlite3_limit(self->connection->db,
SQLITE_LIMIT_SQL_LENGTH, -1);
if (sql_len > (unsigned)max_length) {
PyErr_SetString(self->connection->DataError,
"query string is too large");
return NULL;
}
// Commit if needed
sqlite3 *db = self->connection->db;
if (!sqlite3_get_autocommit(db)) {
int rc = SQLITE_OK;
Py_BEGIN_ALLOW_THREADS
rc = sqlite3_exec(db, "COMMIT", NULL, NULL, NULL);
Py_END_ALLOW_THREADS
if (rc != SQLITE_OK) {
goto error;
}
}
while (1) {
int rc;
const char *tail;
Py_BEGIN_ALLOW_THREADS
sqlite3_stmt *stmt;
rc = sqlite3_prepare_v2(db, sql_script, (int)sql_len + 1, &stmt,
&tail);
if (rc == SQLITE_OK) {
do {
rc = sqlite3_step(stmt);
} while (rc == SQLITE_ROW);
rc = sqlite3_finalize(stmt);
}
Py_END_ALLOW_THREADS
if (rc != SQLITE_OK) {
goto error;
}
if (*tail == (char)0) {
break;
}
sql_len -= (tail - sql_script);
sql_script = tail;
}
return Py_NewRef((PyObject *)self);
error:
_pysqlite_seterror(self->connection->state, db);
return NULL;
}
static PyObject *
pysqlite_cursor_iternext(pysqlite_Cursor *self)
{
if (!check_cursor(self)) {
return NULL;
}
if (self->statement == NULL) {
return NULL;
}
sqlite3_stmt *stmt = self->statement->st;
assert(stmt != NULL);
if (sqlite3_data_count(stmt) == 0) {
(void)pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
return NULL;
}
PyObject *row = _pysqlite_fetch_one_row(self);
if (row == NULL) {
return NULL;
}
int rc = pysqlite_step(stmt);
if (rc == SQLITE_DONE) {
(void)pysqlite_statement_reset(self->statement);
}
else if (rc != SQLITE_ROW) {
(void)_pysqlite_seterror(self->connection->state,
self->connection->db);
Py_DECREF(row);
return NULL;
}
if (!Py_IsNone(self->row_factory)) {
PyObject *factory = self->row_factory;
PyObject *args[] = { (PyObject *)self, row, };
PyObject *new_row = PyObject_Vectorcall(factory, args, 2, NULL);
Py_DECREF(row);
row = new_row;
}
return row;
}
/*[clinic input]
_sqlite3.Cursor.fetchone as pysqlite_cursor_fetchone
Fetches one row from the resultset.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_fetchone_impl(pysqlite_Cursor *self)
/*[clinic end generated code: output=4bd2eabf5baaddb0 input=e78294ec5980fdba]*/
{
PyObject* row;
row = pysqlite_cursor_iternext(self);
if (!row && !PyErr_Occurred()) {
Py_RETURN_NONE;
}
return row;
}
/*[clinic input]
_sqlite3.Cursor.fetchmany as pysqlite_cursor_fetchmany
size as maxrows: int(c_default='self->arraysize') = 1
The default value is set by the Cursor.arraysize attribute.
Fetches several rows from the resultset.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_fetchmany_impl(pysqlite_Cursor *self, int maxrows)
/*[clinic end generated code: output=a8ef31fea64d0906 input=c26e6ca3f34debd0]*/
{
PyObject* row;
PyObject* list;
int counter = 0;
list = PyList_New(0);
if (!list) {
return NULL;
}
while ((row = pysqlite_cursor_iternext(self))) {
if (PyList_Append(list, row) < 0) {
Py_DECREF(row);
break;
}
Py_DECREF(row);
if (++counter == maxrows) {
break;
}
}
if (PyErr_Occurred()) {
Py_DECREF(list);
return NULL;
} else {
return list;
}
}
/*[clinic input]
_sqlite3.Cursor.fetchall as pysqlite_cursor_fetchall
Fetches all rows from the resultset.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_fetchall_impl(pysqlite_Cursor *self)
/*[clinic end generated code: output=d5da12aca2da4b27 input=f5d401086a8df25a]*/
{
PyObject* row;
PyObject* list;
list = PyList_New(0);
if (!list) {
return NULL;
}
while ((row = pysqlite_cursor_iternext(self))) {
if (PyList_Append(list, row) < 0) {
Py_DECREF(row);
break;
}
Py_DECREF(row);
}
if (PyErr_Occurred()) {
Py_DECREF(list);
return NULL;
} else {
return list;
}
}
/*[clinic input]
_sqlite3.Cursor.setinputsizes as pysqlite_cursor_setinputsizes
sizes: object
/
Required by DB-API. Does nothing in pysqlite.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_setinputsizes(pysqlite_Cursor *self, PyObject *sizes)
/*[clinic end generated code: output=893c817afe9d08ad input=7cffbb168663bc69]*/
{
Py_RETURN_NONE;
}
/*[clinic input]
_sqlite3.Cursor.setoutputsize as pysqlite_cursor_setoutputsize
size: object
column: object = None
/
Required by DB-API. Does nothing in pysqlite.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_setoutputsize_impl(pysqlite_Cursor *self, PyObject *size,
PyObject *column)
/*[clinic end generated code: output=018d7e9129d45efe input=077b017da58b9389]*/
{
Py_RETURN_NONE;
}
/*[clinic input]
_sqlite3.Cursor.close as pysqlite_cursor_close
Closes the cursor.
[clinic start generated code]*/
static PyObject *
pysqlite_cursor_close_impl(pysqlite_Cursor *self)
/*[clinic end generated code: output=b6055e4ec6fe63b6 input=08b36552dbb9a986]*/
{
if (!self->connection) {
PyTypeObject *tp = Py_TYPE(self);
pysqlite_state *state = pysqlite_get_state_by_type(tp);
PyErr_SetString(state->ProgrammingError,
"Base Cursor.__init__ not called.");
return NULL;
}
if (!pysqlite_check_thread(self->connection) || !pysqlite_check_connection(self->connection)) {
return NULL;
}
if (self->statement) {
(void)pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
}
self->closed = 1;
Py_RETURN_NONE;
}
static PyMethodDef cursor_methods[] = {
PYSQLITE_CURSOR_CLOSE_METHODDEF
PYSQLITE_CURSOR_EXECUTEMANY_METHODDEF
PYSQLITE_CURSOR_EXECUTESCRIPT_METHODDEF
PYSQLITE_CURSOR_EXECUTE_METHODDEF
PYSQLITE_CURSOR_FETCHALL_METHODDEF
PYSQLITE_CURSOR_FETCHMANY_METHODDEF
PYSQLITE_CURSOR_FETCHONE_METHODDEF
PYSQLITE_CURSOR_SETINPUTSIZES_METHODDEF
PYSQLITE_CURSOR_SETOUTPUTSIZE_METHODDEF
{NULL, NULL}
};
static struct PyMemberDef cursor_members[] =
{
{"connection", T_OBJECT, offsetof(pysqlite_Cursor, connection), READONLY},
{"description", T_OBJECT, offsetof(pysqlite_Cursor, description), READONLY},
{"arraysize", T_INT, offsetof(pysqlite_Cursor, arraysize), 0},
{"lastrowid", T_OBJECT, offsetof(pysqlite_Cursor, lastrowid), READONLY},
{"rowcount", T_LONG, offsetof(pysqlite_Cursor, rowcount), READONLY},
{"row_factory", T_OBJECT, offsetof(pysqlite_Cursor, row_factory), 0},
{"__weaklistoffset__", T_PYSSIZET, offsetof(pysqlite_Cursor, in_weakreflist), READONLY},
{NULL}
};
static const char cursor_doc[] =
PyDoc_STR("SQLite database cursor class.");
static PyType_Slot cursor_slots[] = {
{Py_tp_dealloc, cursor_dealloc},
{Py_tp_doc, (void *)cursor_doc},
{Py_tp_iter, PyObject_SelfIter},
{Py_tp_iternext, pysqlite_cursor_iternext},
{Py_tp_methods, cursor_methods},
{Py_tp_members, cursor_members},
{Py_tp_init, pysqlite_cursor_init},
{Py_tp_traverse, cursor_traverse},
{Py_tp_clear, cursor_clear},
{0, NULL},
};
static PyType_Spec cursor_spec = {
.name = MODULE_NAME ".Cursor",
.basicsize = sizeof(pysqlite_Cursor),
.flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE),
.slots = cursor_slots,
};
int
pysqlite_cursor_setup_types(PyObject *module)
{
PyObject *type = PyType_FromModuleAndSpec(module, &cursor_spec, NULL);
if (type == NULL) {
return -1;
}
pysqlite_state *state = pysqlite_get_state(module);
state->CursorType = (PyTypeObject *)type;
return 0;
}