mirror of https://github.com/python/cpython
845 lines
30 KiB
ReStructuredText
845 lines
30 KiB
ReStructuredText
:mod:`hashlib` --- Secure hashes and message digests
|
|
====================================================
|
|
|
|
.. module:: hashlib
|
|
:synopsis: Secure hash and message digest algorithms.
|
|
|
|
.. moduleauthor:: Gregory P. Smith <greg@krypto.org>
|
|
.. sectionauthor:: Gregory P. Smith <greg@krypto.org>
|
|
|
|
**Source code:** :source:`Lib/hashlib.py`
|
|
|
|
.. index::
|
|
single: message digest, MD5
|
|
single: secure hash algorithm, SHA1, SHA2, SHA224, SHA256, SHA384, SHA512, SHA3, Shake, Blake2
|
|
|
|
.. testsetup::
|
|
|
|
import hashlib
|
|
|
|
|
|
--------------
|
|
|
|
This module implements a common interface to many different secure hash and
|
|
message digest algorithms. Included are the FIPS secure hash algorithms SHA1,
|
|
SHA224, SHA256, SHA384, SHA512, (defined in `the FIPS 180-4 standard`_),
|
|
the SHA-3 series (defined in `the FIPS 202 standard`_) as well as RSA's MD5
|
|
algorithm (defined in internet :rfc:`1321`). The terms "secure hash" and
|
|
"message digest" are interchangeable. Older algorithms were called message
|
|
digests. The modern term is secure hash.
|
|
|
|
.. note::
|
|
|
|
If you want the adler32 or crc32 hash functions, they are available in
|
|
the :mod:`zlib` module.
|
|
|
|
|
|
.. _hash-algorithms:
|
|
|
|
Hash algorithms
|
|
---------------
|
|
|
|
There is one constructor method named for each type of :dfn:`hash`. All return
|
|
a hash object with the same simple interface. For example: use :func:`sha256`
|
|
to create a SHA-256 hash object. You can now feed this object with
|
|
:term:`bytes-like objects <bytes-like object>` (normally :class:`bytes`) using
|
|
the :meth:`update<hash.update>` method. At any point you can ask it for the
|
|
:dfn:`digest` of the concatenation of the data fed to it so far using the
|
|
:meth:`digest()<hash.digest>` or :meth:`hexdigest()<hash.hexdigest>` methods.
|
|
|
|
To allow multithreading, the Python :term:`GIL` is released while computing a
|
|
hash supplied more than 2047 bytes of data at once in its constructor or
|
|
:meth:`.update<hash.update>` method.
|
|
|
|
|
|
.. index:: single: OpenSSL; (use in module hashlib)
|
|
|
|
Constructors for hash algorithms that are always present in this module are
|
|
:func:`sha1`, :func:`sha224`, :func:`sha256`, :func:`sha384`, :func:`sha512`,
|
|
:func:`sha3_224`, :func:`sha3_256`, :func:`sha3_384`, :func:`sha3_512`,
|
|
:func:`shake_128`, :func:`shake_256`, :func:`blake2b`, and :func:`blake2s`.
|
|
:func:`md5` is normally available as well, though it may be missing or blocked
|
|
if you are using a rare "FIPS compliant" build of Python.
|
|
These correspond to :data:`algorithms_guaranteed`.
|
|
|
|
Additional algorithms may also be available if your Python distribution's
|
|
:mod:`hashlib` was linked against a build of OpenSSL that provides others.
|
|
Others *are not guaranteed available* on all installations and will only be
|
|
accessible by name via :func:`new`. See :data:`algorithms_available`.
|
|
|
|
.. warning::
|
|
|
|
Some algorithms have known hash collision weaknesses (including MD5 and
|
|
SHA1). Refer to `Attacks on cryptographic hash algorithms`_ and the
|
|
`hashlib-seealso`_ section at the end of this document.
|
|
|
|
.. versionadded:: 3.6
|
|
SHA3 (Keccak) and SHAKE constructors :func:`sha3_224`, :func:`sha3_256`,
|
|
:func:`sha3_384`, :func:`sha3_512`, :func:`shake_128`, :func:`shake_256`
|
|
were added.
|
|
|
|
.. versionadded:: 3.6
|
|
:func:`blake2b` and :func:`blake2s` were added.
|
|
|
|
.. _hashlib-usedforsecurity:
|
|
|
|
.. versionchanged:: 3.9
|
|
All hashlib constructors take a keyword-only argument *usedforsecurity*
|
|
with default value ``True``. A false value allows the use of insecure and
|
|
blocked hashing algorithms in restricted environments. ``False`` indicates
|
|
that the hashing algorithm is not used in a security context, e.g. as a
|
|
non-cryptographic one-way compression function.
|
|
|
|
.. versionchanged:: 3.9
|
|
Hashlib now uses SHA3 and SHAKE from OpenSSL if it provides it.
|
|
|
|
.. versionchanged:: 3.12
|
|
For any of the MD5, SHA1, SHA2, or SHA3 algorithms that the linked
|
|
OpenSSL does not provide we fall back to a verified implementation from
|
|
the `HACL\* project`_.
|
|
|
|
Usage
|
|
-----
|
|
|
|
To obtain the digest of the byte string ``b"Nobody inspects the spammish
|
|
repetition"``::
|
|
|
|
>>> import hashlib
|
|
>>> m = hashlib.sha256()
|
|
>>> m.update(b"Nobody inspects")
|
|
>>> m.update(b" the spammish repetition")
|
|
>>> m.digest()
|
|
b'\x03\x1e\xdd}Ae\x15\x93\xc5\xfe\\\x00o\xa5u+7\xfd\xdf\xf7\xbcN\x84:\xa6\xaf\x0c\x95\x0fK\x94\x06'
|
|
>>> m.hexdigest()
|
|
'031edd7d41651593c5fe5c006fa5752b37fddff7bc4e843aa6af0c950f4b9406'
|
|
|
|
More condensed:
|
|
|
|
>>> hashlib.sha256(b"Nobody inspects the spammish repetition").hexdigest()
|
|
'031edd7d41651593c5fe5c006fa5752b37fddff7bc4e843aa6af0c950f4b9406'
|
|
|
|
Constructors
|
|
------------
|
|
|
|
.. function:: new(name[, data], \*, usedforsecurity=True)
|
|
|
|
Is a generic constructor that takes the string *name* of the desired
|
|
algorithm as its first parameter. It also exists to allow access to the
|
|
above listed hashes as well as any other algorithms that your OpenSSL
|
|
library may offer.
|
|
|
|
Using :func:`new` with an algorithm name:
|
|
|
|
>>> h = hashlib.new('sha256')
|
|
>>> h.update(b"Nobody inspects the spammish repetition")
|
|
>>> h.hexdigest()
|
|
'031edd7d41651593c5fe5c006fa5752b37fddff7bc4e843aa6af0c950f4b9406'
|
|
|
|
|
|
.. function:: md5([, data], \*, usedforsecurity=True)
|
|
.. function:: sha1([, data], \*, usedforsecurity=True)
|
|
.. function:: sha224([, data], \*, usedforsecurity=True)
|
|
.. function:: sha256([, data], \*, usedforsecurity=True)
|
|
.. function:: sha384([, data], \*, usedforsecurity=True)
|
|
.. function:: sha512([, data], \*, usedforsecurity=True)
|
|
.. function:: sha3_224([, data], \*, usedforsecurity=True)
|
|
.. function:: sha3_256([, data], \*, usedforsecurity=True)
|
|
.. function:: sha3_384([, data], \*, usedforsecurity=True)
|
|
.. function:: sha3_512([, data], \*, usedforsecurity=True)
|
|
|
|
Named constructors such as these are faster than passing an algorithm name to
|
|
:func:`new`.
|
|
|
|
Attributes
|
|
----------
|
|
|
|
Hashlib provides the following constant module attributes:
|
|
|
|
.. data:: algorithms_guaranteed
|
|
|
|
A set containing the names of the hash algorithms guaranteed to be supported
|
|
by this module on all platforms. Note that 'md5' is in this list despite
|
|
some upstream vendors offering an odd "FIPS compliant" Python build that
|
|
excludes it.
|
|
|
|
.. versionadded:: 3.2
|
|
|
|
.. data:: algorithms_available
|
|
|
|
A set containing the names of the hash algorithms that are available in the
|
|
running Python interpreter. These names will be recognized when passed to
|
|
:func:`new`. :attr:`algorithms_guaranteed` will always be a subset. The
|
|
same algorithm may appear multiple times in this set under different names
|
|
(thanks to OpenSSL).
|
|
|
|
.. versionadded:: 3.2
|
|
|
|
Hash Objects
|
|
------------
|
|
|
|
The following values are provided as constant attributes of the hash objects
|
|
returned by the constructors:
|
|
|
|
.. data:: hash.digest_size
|
|
|
|
The size of the resulting hash in bytes.
|
|
|
|
.. data:: hash.block_size
|
|
|
|
The internal block size of the hash algorithm in bytes.
|
|
|
|
A hash object has the following attributes:
|
|
|
|
.. attribute:: hash.name
|
|
|
|
The canonical name of this hash, always lowercase and always suitable as a
|
|
parameter to :func:`new` to create another hash of this type.
|
|
|
|
.. versionchanged:: 3.4
|
|
The name attribute has been present in CPython since its inception, but
|
|
until Python 3.4 was not formally specified, so may not exist on some
|
|
platforms.
|
|
|
|
A hash object has the following methods:
|
|
|
|
|
|
.. method:: hash.update(data)
|
|
|
|
Update the hash object with the :term:`bytes-like object`.
|
|
Repeated calls are equivalent to a single call with the
|
|
concatenation of all the arguments: ``m.update(a); m.update(b)`` is
|
|
equivalent to ``m.update(a+b)``.
|
|
|
|
|
|
.. method:: hash.digest()
|
|
|
|
Return the digest of the data passed to the :meth:`update` method so far.
|
|
This is a bytes object of size :attr:`digest_size` which may contain bytes in
|
|
the whole range from 0 to 255.
|
|
|
|
|
|
.. method:: hash.hexdigest()
|
|
|
|
Like :meth:`digest` except the digest is returned as a string object of
|
|
double length, containing only hexadecimal digits. This may be used to
|
|
exchange the value safely in email or other non-binary environments.
|
|
|
|
|
|
.. method:: hash.copy()
|
|
|
|
Return a copy ("clone") of the hash object. This can be used to efficiently
|
|
compute the digests of data sharing a common initial substring.
|
|
|
|
|
|
SHAKE variable length digests
|
|
-----------------------------
|
|
|
|
.. function:: shake_128([, data], \*, usedforsecurity=True)
|
|
.. function:: shake_256([, data], \*, usedforsecurity=True)
|
|
|
|
The :func:`shake_128` and :func:`shake_256` algorithms provide variable
|
|
length digests with length_in_bits//2 up to 128 or 256 bits of security.
|
|
As such, their digest methods require a length. Maximum length is not limited
|
|
by the SHAKE algorithm.
|
|
|
|
.. method:: shake.digest(length)
|
|
|
|
Return the digest of the data passed to the :meth:`~hash.update` method so far.
|
|
This is a bytes object of size *length* which may contain bytes in
|
|
the whole range from 0 to 255.
|
|
|
|
|
|
.. method:: shake.hexdigest(length)
|
|
|
|
Like :meth:`digest` except the digest is returned as a string object of
|
|
double length, containing only hexadecimal digits. This may be used to
|
|
exchange the value in email or other non-binary environments.
|
|
|
|
Example use:
|
|
|
|
>>> h = hashlib.shake_256(b'Nobody inspects the spammish repetition')
|
|
>>> h.hexdigest(20)
|
|
'44709d6fcb83d92a76dcb0b668c98e1b1d3dafe7'
|
|
|
|
File hashing
|
|
------------
|
|
|
|
The hashlib module provides a helper function for efficient hashing of
|
|
a file or file-like object.
|
|
|
|
.. function:: file_digest(fileobj, digest, /)
|
|
|
|
Return a digest object that has been updated with contents of file object.
|
|
|
|
*fileobj* must be a file-like object opened for reading in binary mode.
|
|
It accepts file objects from builtin :func:`open`, :class:`~io.BytesIO`
|
|
instances, SocketIO objects from :meth:`socket.socket.makefile`, and
|
|
similar. The function may bypass Python's I/O and use the file descriptor
|
|
from :meth:`~io.IOBase.fileno` directly. *fileobj* must be assumed to be
|
|
in an unknown state after this function returns or raises. It is up to
|
|
the caller to close *fileobj*.
|
|
|
|
*digest* must either be a hash algorithm name as a *str*, a hash
|
|
constructor, or a callable that returns a hash object.
|
|
|
|
Example:
|
|
|
|
>>> import io, hashlib, hmac
|
|
>>> with open(hashlib.__file__, "rb") as f:
|
|
... digest = hashlib.file_digest(f, "sha256")
|
|
...
|
|
>>> digest.hexdigest() # doctest: +ELLIPSIS
|
|
'...'
|
|
|
|
>>> buf = io.BytesIO(b"somedata")
|
|
>>> mac1 = hmac.HMAC(b"key", digestmod=hashlib.sha512)
|
|
>>> digest = hashlib.file_digest(buf, lambda: mac1)
|
|
|
|
>>> digest is mac1
|
|
True
|
|
>>> mac2 = hmac.HMAC(b"key", b"somedata", digestmod=hashlib.sha512)
|
|
>>> mac1.digest() == mac2.digest()
|
|
True
|
|
|
|
.. versionadded:: 3.11
|
|
|
|
|
|
Key derivation
|
|
--------------
|
|
|
|
Key derivation and key stretching algorithms are designed for secure password
|
|
hashing. Naive algorithms such as ``sha1(password)`` are not resistant against
|
|
brute-force attacks. A good password hashing function must be tunable, slow, and
|
|
include a `salt <https://en.wikipedia.org/wiki/Salt_%28cryptography%29>`_.
|
|
|
|
|
|
.. function:: pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None)
|
|
|
|
The function provides PKCS#5 password-based key derivation function 2. It
|
|
uses HMAC as pseudorandom function.
|
|
|
|
The string *hash_name* is the desired name of the hash digest algorithm for
|
|
HMAC, e.g. 'sha1' or 'sha256'. *password* and *salt* are interpreted as
|
|
buffers of bytes. Applications and libraries should limit *password* to
|
|
a sensible length (e.g. 1024). *salt* should be about 16 or more bytes from
|
|
a proper source, e.g. :func:`os.urandom`.
|
|
|
|
The number of *iterations* should be chosen based on the hash algorithm and
|
|
computing power. As of 2022, hundreds of thousands of iterations of SHA-256
|
|
are suggested. For rationale as to why and how to choose what is best for
|
|
your application, read *Appendix A.2.2* of NIST-SP-800-132_. The answers
|
|
on the `stackexchange pbkdf2 iterations question`_ explain in detail.
|
|
|
|
*dklen* is the length of the derived key. If *dklen* is ``None`` then the
|
|
digest size of the hash algorithm *hash_name* is used, e.g. 64 for SHA-512.
|
|
|
|
>>> from hashlib import pbkdf2_hmac
|
|
>>> our_app_iters = 500_000 # Application specific, read above.
|
|
>>> dk = pbkdf2_hmac('sha256', b'password', b'bad salt' * 2, our_app_iters)
|
|
>>> dk.hex()
|
|
'15530bba69924174860db778f2c6f8104d3aaf9d26241840c8c4a641c8d000a9'
|
|
|
|
Function only available when Python is compiled with OpenSSL.
|
|
|
|
.. versionadded:: 3.4
|
|
|
|
.. versionchanged:: 3.12
|
|
Function now only available when Python is built with OpenSSL. The slow
|
|
pure Python implementation has been removed.
|
|
|
|
.. function:: scrypt(password, *, salt, n, r, p, maxmem=0, dklen=64)
|
|
|
|
The function provides scrypt password-based key derivation function as
|
|
defined in :rfc:`7914`.
|
|
|
|
*password* and *salt* must be :term:`bytes-like objects
|
|
<bytes-like object>`. Applications and libraries should limit *password*
|
|
to a sensible length (e.g. 1024). *salt* should be about 16 or more
|
|
bytes from a proper source, e.g. :func:`os.urandom`.
|
|
|
|
*n* is the CPU/Memory cost factor, *r* the block size, *p* parallelization
|
|
factor and *maxmem* limits memory (OpenSSL 1.1.0 defaults to 32 MiB).
|
|
*dklen* is the length of the derived key.
|
|
|
|
.. versionadded:: 3.6
|
|
|
|
|
|
BLAKE2
|
|
------
|
|
|
|
.. sectionauthor:: Dmitry Chestnykh
|
|
|
|
.. index::
|
|
single: blake2b, blake2s
|
|
|
|
BLAKE2_ is a cryptographic hash function defined in :rfc:`7693` that comes in two
|
|
flavors:
|
|
|
|
* **BLAKE2b**, optimized for 64-bit platforms and produces digests of any size
|
|
between 1 and 64 bytes,
|
|
|
|
* **BLAKE2s**, optimized for 8- to 32-bit platforms and produces digests of any
|
|
size between 1 and 32 bytes.
|
|
|
|
BLAKE2 supports **keyed mode** (a faster and simpler replacement for HMAC_),
|
|
**salted hashing**, **personalization**, and **tree hashing**.
|
|
|
|
Hash objects from this module follow the API of standard library's
|
|
:mod:`hashlib` objects.
|
|
|
|
|
|
Creating hash objects
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
New hash objects are created by calling constructor functions:
|
|
|
|
|
|
.. function:: blake2b(data=b'', *, digest_size=64, key=b'', salt=b'', \
|
|
person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0, \
|
|
node_depth=0, inner_size=0, last_node=False, \
|
|
usedforsecurity=True)
|
|
|
|
.. function:: blake2s(data=b'', *, digest_size=32, key=b'', salt=b'', \
|
|
person=b'', fanout=1, depth=1, leaf_size=0, node_offset=0, \
|
|
node_depth=0, inner_size=0, last_node=False, \
|
|
usedforsecurity=True)
|
|
|
|
|
|
These functions return the corresponding hash objects for calculating
|
|
BLAKE2b or BLAKE2s. They optionally take these general parameters:
|
|
|
|
* *data*: initial chunk of data to hash, which must be
|
|
:term:`bytes-like object`. It can be passed only as positional argument.
|
|
|
|
* *digest_size*: size of output digest in bytes.
|
|
|
|
* *key*: key for keyed hashing (up to 64 bytes for BLAKE2b, up to 32 bytes for
|
|
BLAKE2s).
|
|
|
|
* *salt*: salt for randomized hashing (up to 16 bytes for BLAKE2b, up to 8
|
|
bytes for BLAKE2s).
|
|
|
|
* *person*: personalization string (up to 16 bytes for BLAKE2b, up to 8 bytes
|
|
for BLAKE2s).
|
|
|
|
The following table shows limits for general parameters (in bytes):
|
|
|
|
======= =========== ======== ========= ===========
|
|
Hash digest_size len(key) len(salt) len(person)
|
|
======= =========== ======== ========= ===========
|
|
BLAKE2b 64 64 16 16
|
|
BLAKE2s 32 32 8 8
|
|
======= =========== ======== ========= ===========
|
|
|
|
.. note::
|
|
|
|
BLAKE2 specification defines constant lengths for salt and personalization
|
|
parameters, however, for convenience, this implementation accepts byte
|
|
strings of any size up to the specified length. If the length of the
|
|
parameter is less than specified, it is padded with zeros, thus, for
|
|
example, ``b'salt'`` and ``b'salt\x00'`` is the same value. (This is not
|
|
the case for *key*.)
|
|
|
|
These sizes are available as module `constants`_ described below.
|
|
|
|
Constructor functions also accept the following tree hashing parameters:
|
|
|
|
* *fanout*: fanout (0 to 255, 0 if unlimited, 1 in sequential mode).
|
|
|
|
* *depth*: maximal depth of tree (1 to 255, 255 if unlimited, 1 in
|
|
sequential mode).
|
|
|
|
* *leaf_size*: maximal byte length of leaf (0 to ``2**32-1``, 0 if unlimited or in
|
|
sequential mode).
|
|
|
|
* *node_offset*: node offset (0 to ``2**64-1`` for BLAKE2b, 0 to ``2**48-1`` for
|
|
BLAKE2s, 0 for the first, leftmost, leaf, or in sequential mode).
|
|
|
|
* *node_depth*: node depth (0 to 255, 0 for leaves, or in sequential mode).
|
|
|
|
* *inner_size*: inner digest size (0 to 64 for BLAKE2b, 0 to 32 for
|
|
BLAKE2s, 0 in sequential mode).
|
|
|
|
* *last_node*: boolean indicating whether the processed node is the last
|
|
one (``False`` for sequential mode).
|
|
|
|
.. figure:: hashlib-blake2-tree.png
|
|
:alt: Explanation of tree mode parameters.
|
|
:class: invert-in-dark-mode
|
|
|
|
See section 2.10 in `BLAKE2 specification
|
|
<https://www.blake2.net/blake2_20130129.pdf>`_ for comprehensive review of tree
|
|
hashing.
|
|
|
|
|
|
Constants
|
|
^^^^^^^^^
|
|
|
|
.. data:: blake2b.SALT_SIZE
|
|
.. data:: blake2s.SALT_SIZE
|
|
|
|
Salt length (maximum length accepted by constructors).
|
|
|
|
|
|
.. data:: blake2b.PERSON_SIZE
|
|
.. data:: blake2s.PERSON_SIZE
|
|
|
|
Personalization string length (maximum length accepted by constructors).
|
|
|
|
|
|
.. data:: blake2b.MAX_KEY_SIZE
|
|
.. data:: blake2s.MAX_KEY_SIZE
|
|
|
|
Maximum key size.
|
|
|
|
|
|
.. data:: blake2b.MAX_DIGEST_SIZE
|
|
.. data:: blake2s.MAX_DIGEST_SIZE
|
|
|
|
Maximum digest size that the hash function can output.
|
|
|
|
|
|
Examples
|
|
^^^^^^^^
|
|
|
|
Simple hashing
|
|
""""""""""""""
|
|
|
|
To calculate hash of some data, you should first construct a hash object by
|
|
calling the appropriate constructor function (:func:`blake2b` or
|
|
:func:`blake2s`), then update it with the data by calling :meth:`~hash.update` on the
|
|
object, and, finally, get the digest out of the object by calling
|
|
:meth:`~hash.digest` (or :meth:`~hash.hexdigest` for hex-encoded string).
|
|
|
|
>>> from hashlib import blake2b
|
|
>>> h = blake2b()
|
|
>>> h.update(b'Hello world')
|
|
>>> h.hexdigest()
|
|
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
|
|
|
|
|
|
As a shortcut, you can pass the first chunk of data to update directly to the
|
|
constructor as the positional argument:
|
|
|
|
>>> from hashlib import blake2b
|
|
>>> blake2b(b'Hello world').hexdigest()
|
|
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
|
|
|
|
You can call :meth:`hash.update` as many times as you need to iteratively
|
|
update the hash:
|
|
|
|
>>> from hashlib import blake2b
|
|
>>> items = [b'Hello', b' ', b'world']
|
|
>>> h = blake2b()
|
|
>>> for item in items:
|
|
... h.update(item)
|
|
...
|
|
>>> h.hexdigest()
|
|
'6ff843ba685842aa82031d3f53c48b66326df7639a63d128974c5c14f31a0f33343a8c65551134ed1ae0f2b0dd2bb495dc81039e3eeb0aa1bb0388bbeac29183'
|
|
|
|
|
|
Using different digest sizes
|
|
""""""""""""""""""""""""""""
|
|
|
|
BLAKE2 has configurable size of digests up to 64 bytes for BLAKE2b and up to 32
|
|
bytes for BLAKE2s. For example, to replace SHA-1 with BLAKE2b without changing
|
|
the size of output, we can tell BLAKE2b to produce 20-byte digests:
|
|
|
|
>>> from hashlib import blake2b
|
|
>>> h = blake2b(digest_size=20)
|
|
>>> h.update(b'Replacing SHA1 with the more secure function')
|
|
>>> h.hexdigest()
|
|
'd24f26cf8de66472d58d4e1b1774b4c9158b1f4c'
|
|
>>> h.digest_size
|
|
20
|
|
>>> len(h.digest())
|
|
20
|
|
|
|
Hash objects with different digest sizes have completely different outputs
|
|
(shorter hashes are *not* prefixes of longer hashes); BLAKE2b and BLAKE2s
|
|
produce different outputs even if the output length is the same:
|
|
|
|
>>> from hashlib import blake2b, blake2s
|
|
>>> blake2b(digest_size=10).hexdigest()
|
|
'6fa1d8fcfd719046d762'
|
|
>>> blake2b(digest_size=11).hexdigest()
|
|
'eb6ec15daf9546254f0809'
|
|
>>> blake2s(digest_size=10).hexdigest()
|
|
'1bf21a98c78a1c376ae9'
|
|
>>> blake2s(digest_size=11).hexdigest()
|
|
'567004bf96e4a25773ebf4'
|
|
|
|
|
|
Keyed hashing
|
|
"""""""""""""
|
|
|
|
Keyed hashing can be used for authentication as a faster and simpler
|
|
replacement for `Hash-based message authentication code
|
|
<https://en.wikipedia.org/wiki/HMAC>`_ (HMAC).
|
|
BLAKE2 can be securely used in prefix-MAC mode thanks to the
|
|
indifferentiability property inherited from BLAKE.
|
|
|
|
This example shows how to get a (hex-encoded) 128-bit authentication code for
|
|
message ``b'message data'`` with key ``b'pseudorandom key'``::
|
|
|
|
>>> from hashlib import blake2b
|
|
>>> h = blake2b(key=b'pseudorandom key', digest_size=16)
|
|
>>> h.update(b'message data')
|
|
>>> h.hexdigest()
|
|
'3d363ff7401e02026f4a4687d4863ced'
|
|
|
|
|
|
As a practical example, a web application can symmetrically sign cookies sent
|
|
to users and later verify them to make sure they weren't tampered with::
|
|
|
|
>>> from hashlib import blake2b
|
|
>>> from hmac import compare_digest
|
|
>>>
|
|
>>> SECRET_KEY = b'pseudorandomly generated server secret key'
|
|
>>> AUTH_SIZE = 16
|
|
>>>
|
|
>>> def sign(cookie):
|
|
... h = blake2b(digest_size=AUTH_SIZE, key=SECRET_KEY)
|
|
... h.update(cookie)
|
|
... return h.hexdigest().encode('utf-8')
|
|
>>>
|
|
>>> def verify(cookie, sig):
|
|
... good_sig = sign(cookie)
|
|
... return compare_digest(good_sig, sig)
|
|
>>>
|
|
>>> cookie = b'user-alice'
|
|
>>> sig = sign(cookie)
|
|
>>> print("{0},{1}".format(cookie.decode('utf-8'), sig))
|
|
user-alice,b'43b3c982cf697e0c5ab22172d1ca7421'
|
|
>>> verify(cookie, sig)
|
|
True
|
|
>>> verify(b'user-bob', sig)
|
|
False
|
|
>>> verify(cookie, b'0102030405060708090a0b0c0d0e0f00')
|
|
False
|
|
|
|
Even though there's a native keyed hashing mode, BLAKE2 can, of course, be used
|
|
in HMAC construction with :mod:`hmac` module::
|
|
|
|
>>> import hmac, hashlib
|
|
>>> m = hmac.new(b'secret key', digestmod=hashlib.blake2s)
|
|
>>> m.update(b'message')
|
|
>>> m.hexdigest()
|
|
'e3c8102868d28b5ff85fc35dda07329970d1a01e273c37481326fe0c861c8142'
|
|
|
|
|
|
Randomized hashing
|
|
""""""""""""""""""
|
|
|
|
By setting *salt* parameter users can introduce randomization to the hash
|
|
function. Randomized hashing is useful for protecting against collision attacks
|
|
on the hash function used in digital signatures.
|
|
|
|
Randomized hashing is designed for situations where one party, the message
|
|
preparer, generates all or part of a message to be signed by a second
|
|
party, the message signer. If the message preparer is able to find
|
|
cryptographic hash function collisions (i.e., two messages producing the
|
|
same hash value), then they might prepare meaningful versions of the message
|
|
that would produce the same hash value and digital signature, but with
|
|
different results (e.g., transferring $1,000,000 to an account, rather than
|
|
$10). Cryptographic hash functions have been designed with collision
|
|
resistance as a major goal, but the current concentration on attacking
|
|
cryptographic hash functions may result in a given cryptographic hash
|
|
function providing less collision resistance than expected. Randomized
|
|
hashing offers the signer additional protection by reducing the likelihood
|
|
that a preparer can generate two or more messages that ultimately yield the
|
|
same hash value during the digital signature generation process --- even if
|
|
it is practical to find collisions for the hash function. However, the use
|
|
of randomized hashing may reduce the amount of security provided by a
|
|
digital signature when all portions of the message are prepared
|
|
by the signer.
|
|
|
|
(`NIST SP-800-106 "Randomized Hashing for Digital Signatures"
|
|
<https://csrc.nist.gov/publications/detail/sp/800-106/archive/2009-02-25>`_)
|
|
|
|
In BLAKE2 the salt is processed as a one-time input to the hash function during
|
|
initialization, rather than as an input to each compression function.
|
|
|
|
.. warning::
|
|
|
|
*Salted hashing* (or just hashing) with BLAKE2 or any other general-purpose
|
|
cryptographic hash function, such as SHA-256, is not suitable for hashing
|
|
passwords. See `BLAKE2 FAQ <https://www.blake2.net/#qa>`_ for more
|
|
information.
|
|
..
|
|
|
|
>>> import os
|
|
>>> from hashlib import blake2b
|
|
>>> msg = b'some message'
|
|
>>> # Calculate the first hash with a random salt.
|
|
>>> salt1 = os.urandom(blake2b.SALT_SIZE)
|
|
>>> h1 = blake2b(salt=salt1)
|
|
>>> h1.update(msg)
|
|
>>> # Calculate the second hash with a different random salt.
|
|
>>> salt2 = os.urandom(blake2b.SALT_SIZE)
|
|
>>> h2 = blake2b(salt=salt2)
|
|
>>> h2.update(msg)
|
|
>>> # The digests are different.
|
|
>>> h1.digest() != h2.digest()
|
|
True
|
|
|
|
|
|
Personalization
|
|
"""""""""""""""
|
|
|
|
Sometimes it is useful to force hash function to produce different digests for
|
|
the same input for different purposes. Quoting the authors of the Skein hash
|
|
function:
|
|
|
|
We recommend that all application designers seriously consider doing this;
|
|
we have seen many protocols where a hash that is computed in one part of
|
|
the protocol can be used in an entirely different part because two hash
|
|
computations were done on similar or related data, and the attacker can
|
|
force the application to make the hash inputs the same. Personalizing each
|
|
hash function used in the protocol summarily stops this type of attack.
|
|
|
|
(`The Skein Hash Function Family
|
|
<https://www.schneier.com/wp-content/uploads/2016/02/skein.pdf>`_,
|
|
p. 21)
|
|
|
|
BLAKE2 can be personalized by passing bytes to the *person* argument::
|
|
|
|
>>> from hashlib import blake2b
|
|
>>> FILES_HASH_PERSON = b'MyApp Files Hash'
|
|
>>> BLOCK_HASH_PERSON = b'MyApp Block Hash'
|
|
>>> h = blake2b(digest_size=32, person=FILES_HASH_PERSON)
|
|
>>> h.update(b'the same content')
|
|
>>> h.hexdigest()
|
|
'20d9cd024d4fb086aae819a1432dd2466de12947831b75c5a30cf2676095d3b4'
|
|
>>> h = blake2b(digest_size=32, person=BLOCK_HASH_PERSON)
|
|
>>> h.update(b'the same content')
|
|
>>> h.hexdigest()
|
|
'cf68fb5761b9c44e7878bfb2c4c9aea52264a80b75005e65619778de59f383a3'
|
|
|
|
Personalization together with the keyed mode can also be used to derive different
|
|
keys from a single one.
|
|
|
|
>>> from hashlib import blake2s
|
|
>>> from base64 import b64decode, b64encode
|
|
>>> orig_key = b64decode(b'Rm5EPJai72qcK3RGBpW3vPNfZy5OZothY+kHY6h21KM=')
|
|
>>> enc_key = blake2s(key=orig_key, person=b'kEncrypt').digest()
|
|
>>> mac_key = blake2s(key=orig_key, person=b'kMAC').digest()
|
|
>>> print(b64encode(enc_key).decode('utf-8'))
|
|
rbPb15S/Z9t+agffno5wuhB77VbRi6F9Iv2qIxU7WHw=
|
|
>>> print(b64encode(mac_key).decode('utf-8'))
|
|
G9GtHFE1YluXY1zWPlYk1e/nWfu0WSEb0KRcjhDeP/o=
|
|
|
|
Tree mode
|
|
"""""""""
|
|
|
|
Here's an example of hashing a minimal tree with two leaf nodes::
|
|
|
|
10
|
|
/ \
|
|
00 01
|
|
|
|
This example uses 64-byte internal digests, and returns the 32-byte final
|
|
digest::
|
|
|
|
>>> from hashlib import blake2b
|
|
>>>
|
|
>>> FANOUT = 2
|
|
>>> DEPTH = 2
|
|
>>> LEAF_SIZE = 4096
|
|
>>> INNER_SIZE = 64
|
|
>>>
|
|
>>> buf = bytearray(6000)
|
|
>>>
|
|
>>> # Left leaf
|
|
... h00 = blake2b(buf[0:LEAF_SIZE], fanout=FANOUT, depth=DEPTH,
|
|
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
|
|
... node_offset=0, node_depth=0, last_node=False)
|
|
>>> # Right leaf
|
|
... h01 = blake2b(buf[LEAF_SIZE:], fanout=FANOUT, depth=DEPTH,
|
|
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
|
|
... node_offset=1, node_depth=0, last_node=True)
|
|
>>> # Root node
|
|
... h10 = blake2b(digest_size=32, fanout=FANOUT, depth=DEPTH,
|
|
... leaf_size=LEAF_SIZE, inner_size=INNER_SIZE,
|
|
... node_offset=0, node_depth=1, last_node=True)
|
|
>>> h10.update(h00.digest())
|
|
>>> h10.update(h01.digest())
|
|
>>> h10.hexdigest()
|
|
'3ad2a9b37c6070e374c7a8c508fe20ca86b6ed54e286e93a0318e95e881db5aa'
|
|
|
|
Credits
|
|
^^^^^^^
|
|
|
|
BLAKE2_ was designed by *Jean-Philippe Aumasson*, *Samuel Neves*, *Zooko
|
|
Wilcox-O'Hearn*, and *Christian Winnerlein* based on SHA-3_ finalist BLAKE_
|
|
created by *Jean-Philippe Aumasson*, *Luca Henzen*, *Willi Meier*, and
|
|
*Raphael C.-W. Phan*.
|
|
|
|
It uses core algorithm from ChaCha_ cipher designed by *Daniel J. Bernstein*.
|
|
|
|
The stdlib implementation is based on pyblake2_ module. It was written by
|
|
*Dmitry Chestnykh* based on C implementation written by *Samuel Neves*. The
|
|
documentation was copied from pyblake2_ and written by *Dmitry Chestnykh*.
|
|
|
|
The C code was partly rewritten for Python by *Christian Heimes*.
|
|
|
|
The following public domain dedication applies for both C hash function
|
|
implementation, extension code, and this documentation:
|
|
|
|
To the extent possible under law, the author(s) have dedicated all copyright
|
|
and related and neighboring rights to this software to the public domain
|
|
worldwide. This software is distributed without any warranty.
|
|
|
|
You should have received a copy of the CC0 Public Domain Dedication along
|
|
with this software. If not, see
|
|
https://creativecommons.org/publicdomain/zero/1.0/.
|
|
|
|
The following people have helped with development or contributed their changes
|
|
to the project and the public domain according to the Creative Commons Public
|
|
Domain Dedication 1.0 Universal:
|
|
|
|
* *Alexandr Sokolovskiy*
|
|
|
|
.. _BLAKE2: https://www.blake2.net
|
|
.. _HMAC: https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
|
|
.. _BLAKE: https://web.archive.org/web/20200918190133/https://131002.net/blake/
|
|
.. _SHA-3: https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
|
|
.. _ChaCha: https://cr.yp.to/chacha.html
|
|
.. _pyblake2: https://pythonhosted.org/pyblake2/
|
|
.. _NIST-SP-800-132: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
|
|
.. _stackexchange pbkdf2 iterations question: https://security.stackexchange.com/questions/3959/recommended-of-iterations-when-using-pbkdf2-sha256/
|
|
.. _Attacks on cryptographic hash algorithms: https://en.wikipedia.org/wiki/Cryptographic_hash_function#Attacks_on_cryptographic_hash_algorithms
|
|
.. _the FIPS 180-4 standard: https://csrc.nist.gov/publications/detail/fips/180/4/final
|
|
.. _the FIPS 202 standard: https://csrc.nist.gov/publications/detail/fips/202/final
|
|
.. _HACL\* project: https://github.com/hacl-star/hacl-star
|
|
|
|
|
|
.. _hashlib-seealso:
|
|
|
|
.. seealso::
|
|
|
|
Module :mod:`hmac`
|
|
A module to generate message authentication codes using hashes.
|
|
|
|
Module :mod:`base64`
|
|
Another way to encode binary hashes for non-binary environments.
|
|
|
|
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf
|
|
The FIPS 180-4 publication on Secure Hash Algorithms.
|
|
|
|
https://csrc.nist.gov/publications/detail/fips/202/final
|
|
The FIPS 202 publication on the SHA-3 Standard.
|
|
|
|
https://www.blake2.net/
|
|
Official BLAKE2 website.
|
|
|
|
https://en.wikipedia.org/wiki/Cryptographic_hash_function
|
|
Wikipedia article with information on which algorithms have known issues
|
|
and what that means regarding their use.
|
|
|
|
https://www.ietf.org/rfc/rfc8018.txt
|
|
PKCS #5: Password-Based Cryptography Specification Version 2.1
|
|
|
|
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
|
|
NIST Recommendation for Password-Based Key Derivation.
|