mirror of https://github.com/python/cpython
1398 lines
47 KiB
C
1398 lines
47 KiB
C
/* MIT License
|
|
*
|
|
* Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation
|
|
* Copyright (c) 2022-2023 HACL* Contributors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
|
|
#include "internal/Hacl_Hash_Blake2b_Simd256.h"
|
|
|
|
#include "internal/Hacl_Impl_Blake2_Constants.h"
|
|
#include "internal/Hacl_Hash_Blake2b.h"
|
|
#include "lib_memzero0.h"
|
|
|
|
static inline void
|
|
update_block(
|
|
Lib_IntVector_Intrinsics_vec256 *wv,
|
|
Lib_IntVector_Intrinsics_vec256 *hash,
|
|
bool flag,
|
|
bool last_node,
|
|
FStar_UInt128_uint128 totlen,
|
|
uint8_t *d
|
|
)
|
|
{
|
|
uint64_t m_w[16U] = { 0U };
|
|
KRML_MAYBE_FOR16(i,
|
|
0U,
|
|
16U,
|
|
1U,
|
|
uint64_t *os = m_w;
|
|
uint8_t *bj = d + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
Lib_IntVector_Intrinsics_vec256 mask = Lib_IntVector_Intrinsics_vec256_zero;
|
|
uint64_t wv_14;
|
|
if (flag)
|
|
{
|
|
wv_14 = 0xFFFFFFFFFFFFFFFFULL;
|
|
}
|
|
else
|
|
{
|
|
wv_14 = 0ULL;
|
|
}
|
|
uint64_t wv_15;
|
|
if (last_node)
|
|
{
|
|
wv_15 = 0xFFFFFFFFFFFFFFFFULL;
|
|
}
|
|
else
|
|
{
|
|
wv_15 = 0ULL;
|
|
}
|
|
mask =
|
|
Lib_IntVector_Intrinsics_vec256_load64s(FStar_UInt128_uint128_to_uint64(totlen),
|
|
FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(totlen, 64U)),
|
|
wv_14,
|
|
wv_15);
|
|
memcpy(wv, hash, 4U * sizeof (Lib_IntVector_Intrinsics_vec256));
|
|
Lib_IntVector_Intrinsics_vec256 *wv3 = wv + 3U;
|
|
wv3[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv3[0U], mask);
|
|
KRML_MAYBE_FOR12(i,
|
|
0U,
|
|
12U,
|
|
1U,
|
|
uint32_t start_idx = i % 10U * 16U;
|
|
KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 m_st[4U] KRML_POST_ALIGN(32) = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256 *r0 = m_st;
|
|
Lib_IntVector_Intrinsics_vec256 *r1 = m_st + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r20 = m_st + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r30 = m_st + 3U;
|
|
uint32_t s0 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 0U];
|
|
uint32_t s1 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 1U];
|
|
uint32_t s2 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 2U];
|
|
uint32_t s3 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 3U];
|
|
uint32_t s4 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 4U];
|
|
uint32_t s5 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 5U];
|
|
uint32_t s6 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 6U];
|
|
uint32_t s7 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 7U];
|
|
uint32_t s8 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 8U];
|
|
uint32_t s9 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 9U];
|
|
uint32_t s10 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 10U];
|
|
uint32_t s11 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 11U];
|
|
uint32_t s12 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 12U];
|
|
uint32_t s13 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 13U];
|
|
uint32_t s14 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 14U];
|
|
uint32_t s15 = Hacl_Hash_Blake2b_sigmaTable[start_idx + 15U];
|
|
r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(m_w[s0], m_w[s2], m_w[s4], m_w[s6]);
|
|
r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(m_w[s1], m_w[s3], m_w[s5], m_w[s7]);
|
|
r20[0U] = Lib_IntVector_Intrinsics_vec256_load64s(m_w[s8], m_w[s10], m_w[s12], m_w[s14]);
|
|
r30[0U] = Lib_IntVector_Intrinsics_vec256_load64s(m_w[s9], m_w[s11], m_w[s13], m_w[s15]);
|
|
Lib_IntVector_Intrinsics_vec256 *x = m_st;
|
|
Lib_IntVector_Intrinsics_vec256 *y = m_st + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *z = m_st + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *w = m_st + 3U;
|
|
uint32_t a = 0U;
|
|
uint32_t b0 = 1U;
|
|
uint32_t c0 = 2U;
|
|
uint32_t d10 = 3U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a0 = wv + a * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b0 = wv + b0 * 1U;
|
|
wv_a0[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a0[0U], wv_b0[0U]);
|
|
wv_a0[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a0[0U], x[0U]);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a1 = wv + d10 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b1 = wv + a * 1U;
|
|
wv_a1[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a1[0U], wv_b1[0U]);
|
|
wv_a1[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a1[0U], 32U);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a2 = wv + c0 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b2 = wv + d10 * 1U;
|
|
wv_a2[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a2[0U], wv_b2[0U]);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a3 = wv + b0 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b3 = wv + c0 * 1U;
|
|
wv_a3[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a3[0U], wv_b3[0U]);
|
|
wv_a3[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a3[0U], 24U);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a4 = wv + a * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b4 = wv + b0 * 1U;
|
|
wv_a4[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a4[0U], wv_b4[0U]);
|
|
wv_a4[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a4[0U], y[0U]);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a5 = wv + d10 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b5 = wv + a * 1U;
|
|
wv_a5[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a5[0U], wv_b5[0U]);
|
|
wv_a5[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a5[0U], 16U);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a6 = wv + c0 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b6 = wv + d10 * 1U;
|
|
wv_a6[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a6[0U], wv_b6[0U]);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a7 = wv + b0 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b7 = wv + c0 * 1U;
|
|
wv_a7[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a7[0U], wv_b7[0U]);
|
|
wv_a7[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a7[0U], 63U);
|
|
Lib_IntVector_Intrinsics_vec256 *r10 = wv + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r21 = wv + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r31 = wv + 3U;
|
|
Lib_IntVector_Intrinsics_vec256 v00 = r10[0U];
|
|
Lib_IntVector_Intrinsics_vec256
|
|
v1 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v00, 1U);
|
|
r10[0U] = v1;
|
|
Lib_IntVector_Intrinsics_vec256 v01 = r21[0U];
|
|
Lib_IntVector_Intrinsics_vec256
|
|
v10 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v01, 2U);
|
|
r21[0U] = v10;
|
|
Lib_IntVector_Intrinsics_vec256 v02 = r31[0U];
|
|
Lib_IntVector_Intrinsics_vec256
|
|
v11 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v02, 3U);
|
|
r31[0U] = v11;
|
|
uint32_t a0 = 0U;
|
|
uint32_t b = 1U;
|
|
uint32_t c = 2U;
|
|
uint32_t d1 = 3U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a = wv + a0 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b8 = wv + b * 1U;
|
|
wv_a[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a[0U], wv_b8[0U]);
|
|
wv_a[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a[0U], z[0U]);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a8 = wv + d1 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b9 = wv + a0 * 1U;
|
|
wv_a8[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a8[0U], wv_b9[0U]);
|
|
wv_a8[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a8[0U], 32U);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a9 = wv + c * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b10 = wv + d1 * 1U;
|
|
wv_a9[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a9[0U], wv_b10[0U]);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a10 = wv + b * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b11 = wv + c * 1U;
|
|
wv_a10[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a10[0U], wv_b11[0U]);
|
|
wv_a10[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a10[0U], 24U);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a11 = wv + a0 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b12 = wv + b * 1U;
|
|
wv_a11[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a11[0U], wv_b12[0U]);
|
|
wv_a11[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a11[0U], w[0U]);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a12 = wv + d1 * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b13 = wv + a0 * 1U;
|
|
wv_a12[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a12[0U], wv_b13[0U]);
|
|
wv_a12[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a12[0U], 16U);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a13 = wv + c * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b14 = wv + d1 * 1U;
|
|
wv_a13[0U] = Lib_IntVector_Intrinsics_vec256_add64(wv_a13[0U], wv_b14[0U]);
|
|
Lib_IntVector_Intrinsics_vec256 *wv_a14 = wv + b * 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *wv_b = wv + c * 1U;
|
|
wv_a14[0U] = Lib_IntVector_Intrinsics_vec256_xor(wv_a14[0U], wv_b[0U]);
|
|
wv_a14[0U] = Lib_IntVector_Intrinsics_vec256_rotate_right64(wv_a14[0U], 63U);
|
|
Lib_IntVector_Intrinsics_vec256 *r11 = wv + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r2 = wv + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r3 = wv + 3U;
|
|
Lib_IntVector_Intrinsics_vec256 v0 = r11[0U];
|
|
Lib_IntVector_Intrinsics_vec256
|
|
v12 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v0, 3U);
|
|
r11[0U] = v12;
|
|
Lib_IntVector_Intrinsics_vec256 v03 = r2[0U];
|
|
Lib_IntVector_Intrinsics_vec256
|
|
v13 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v03, 2U);
|
|
r2[0U] = v13;
|
|
Lib_IntVector_Intrinsics_vec256 v04 = r3[0U];
|
|
Lib_IntVector_Intrinsics_vec256
|
|
v14 = Lib_IntVector_Intrinsics_vec256_rotate_right_lanes64(v04, 1U);
|
|
r3[0U] = v14;);
|
|
Lib_IntVector_Intrinsics_vec256 *s0 = hash;
|
|
Lib_IntVector_Intrinsics_vec256 *s1 = hash + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r0 = wv;
|
|
Lib_IntVector_Intrinsics_vec256 *r1 = wv + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r2 = wv + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r3 = wv + 3U;
|
|
s0[0U] = Lib_IntVector_Intrinsics_vec256_xor(s0[0U], r0[0U]);
|
|
s0[0U] = Lib_IntVector_Intrinsics_vec256_xor(s0[0U], r2[0U]);
|
|
s1[0U] = Lib_IntVector_Intrinsics_vec256_xor(s1[0U], r1[0U]);
|
|
s1[0U] = Lib_IntVector_Intrinsics_vec256_xor(s1[0U], r3[0U]);
|
|
}
|
|
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_init(Lib_IntVector_Intrinsics_vec256 *hash, uint32_t kk, uint32_t nn)
|
|
{
|
|
uint8_t salt[16U] = { 0U };
|
|
uint8_t personal[16U] = { 0U };
|
|
Hacl_Hash_Blake2b_blake2_params
|
|
p =
|
|
{
|
|
.digest_length = 64U, .key_length = 0U, .fanout = 1U, .depth = 1U, .leaf_length = 0U,
|
|
.node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt, .personal = personal
|
|
};
|
|
uint64_t tmp[8U] = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256 *r0 = hash;
|
|
Lib_IntVector_Intrinsics_vec256 *r1 = hash + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r2 = hash + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r3 = hash + 3U;
|
|
uint64_t iv0 = Hacl_Hash_Blake2b_ivTable_B[0U];
|
|
uint64_t iv1 = Hacl_Hash_Blake2b_ivTable_B[1U];
|
|
uint64_t iv2 = Hacl_Hash_Blake2b_ivTable_B[2U];
|
|
uint64_t iv3 = Hacl_Hash_Blake2b_ivTable_B[3U];
|
|
uint64_t iv4 = Hacl_Hash_Blake2b_ivTable_B[4U];
|
|
uint64_t iv5 = Hacl_Hash_Blake2b_ivTable_B[5U];
|
|
uint64_t iv6 = Hacl_Hash_Blake2b_ivTable_B[6U];
|
|
uint64_t iv7 = Hacl_Hash_Blake2b_ivTable_B[7U];
|
|
r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0, iv1, iv2, iv3);
|
|
r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4, iv5, iv6, iv7);
|
|
uint8_t kk1 = (uint8_t)kk;
|
|
uint8_t nn1 = (uint8_t)nn;
|
|
KRML_MAYBE_FOR2(i,
|
|
0U,
|
|
2U,
|
|
1U,
|
|
uint64_t *os = tmp + 4U;
|
|
uint8_t *bj = p.salt + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
KRML_MAYBE_FOR2(i,
|
|
0U,
|
|
2U,
|
|
1U,
|
|
uint64_t *os = tmp + 6U;
|
|
uint8_t *bj = p.personal + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
tmp[0U] =
|
|
(uint64_t)nn1
|
|
^
|
|
((uint64_t)kk1
|
|
<< 8U
|
|
^ ((uint64_t)p.fanout << 16U ^ ((uint64_t)p.depth << 24U ^ (uint64_t)p.leaf_length << 32U)));
|
|
tmp[1U] = p.node_offset;
|
|
tmp[2U] = (uint64_t)p.node_depth ^ (uint64_t)p.inner_length << 8U;
|
|
tmp[3U] = 0ULL;
|
|
uint64_t tmp0 = tmp[0U];
|
|
uint64_t tmp1 = tmp[1U];
|
|
uint64_t tmp2 = tmp[2U];
|
|
uint64_t tmp3 = tmp[3U];
|
|
uint64_t tmp4 = tmp[4U];
|
|
uint64_t tmp5 = tmp[5U];
|
|
uint64_t tmp6 = tmp[6U];
|
|
uint64_t tmp7 = tmp[7U];
|
|
uint64_t iv0_ = iv0 ^ tmp0;
|
|
uint64_t iv1_ = iv1 ^ tmp1;
|
|
uint64_t iv2_ = iv2 ^ tmp2;
|
|
uint64_t iv3_ = iv3 ^ tmp3;
|
|
uint64_t iv4_ = iv4 ^ tmp4;
|
|
uint64_t iv5_ = iv5 ^ tmp5;
|
|
uint64_t iv6_ = iv6 ^ tmp6;
|
|
uint64_t iv7_ = iv7 ^ tmp7;
|
|
r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0_, iv1_, iv2_, iv3_);
|
|
r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4_, iv5_, iv6_, iv7_);
|
|
}
|
|
|
|
static void
|
|
update_key(
|
|
Lib_IntVector_Intrinsics_vec256 *wv,
|
|
Lib_IntVector_Intrinsics_vec256 *hash,
|
|
uint32_t kk,
|
|
uint8_t *k,
|
|
uint32_t ll
|
|
)
|
|
{
|
|
FStar_UInt128_uint128 lb = FStar_UInt128_uint64_to_uint128((uint64_t)128U);
|
|
uint8_t b[128U] = { 0U };
|
|
memcpy(b, k, kk * sizeof (uint8_t));
|
|
if (ll == 0U)
|
|
{
|
|
update_block(wv, hash, true, false, lb, b);
|
|
}
|
|
else
|
|
{
|
|
update_block(wv, hash, false, false, lb, b);
|
|
}
|
|
Lib_Memzero0_memzero(b, 128U, uint8_t, void *);
|
|
}
|
|
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_update_multi(
|
|
uint32_t len,
|
|
Lib_IntVector_Intrinsics_vec256 *wv,
|
|
Lib_IntVector_Intrinsics_vec256 *hash,
|
|
FStar_UInt128_uint128 prev,
|
|
uint8_t *blocks,
|
|
uint32_t nb
|
|
)
|
|
{
|
|
KRML_MAYBE_UNUSED_VAR(len);
|
|
for (uint32_t i = 0U; i < nb; i++)
|
|
{
|
|
FStar_UInt128_uint128
|
|
totlen =
|
|
FStar_UInt128_add_mod(prev,
|
|
FStar_UInt128_uint64_to_uint128((uint64_t)((i + 1U) * 128U)));
|
|
uint8_t *b = blocks + i * 128U;
|
|
update_block(wv, hash, false, false, totlen, b);
|
|
}
|
|
}
|
|
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_update_last(
|
|
uint32_t len,
|
|
Lib_IntVector_Intrinsics_vec256 *wv,
|
|
Lib_IntVector_Intrinsics_vec256 *hash,
|
|
bool last_node,
|
|
FStar_UInt128_uint128 prev,
|
|
uint32_t rem,
|
|
uint8_t *d
|
|
)
|
|
{
|
|
uint8_t b[128U] = { 0U };
|
|
uint8_t *last = d + len - rem;
|
|
memcpy(b, last, rem * sizeof (uint8_t));
|
|
FStar_UInt128_uint128
|
|
totlen = FStar_UInt128_add_mod(prev, FStar_UInt128_uint64_to_uint128((uint64_t)len));
|
|
update_block(wv, hash, true, last_node, totlen, b);
|
|
Lib_Memzero0_memzero(b, 128U, uint8_t, void *);
|
|
}
|
|
|
|
static inline void
|
|
update_blocks(
|
|
uint32_t len,
|
|
Lib_IntVector_Intrinsics_vec256 *wv,
|
|
Lib_IntVector_Intrinsics_vec256 *hash,
|
|
FStar_UInt128_uint128 prev,
|
|
uint8_t *blocks
|
|
)
|
|
{
|
|
uint32_t nb0 = len / 128U;
|
|
uint32_t rem0 = len % 128U;
|
|
uint32_t nb;
|
|
if (rem0 == 0U && nb0 > 0U)
|
|
{
|
|
nb = nb0 - 1U;
|
|
}
|
|
else
|
|
{
|
|
nb = nb0;
|
|
}
|
|
uint32_t rem;
|
|
if (rem0 == 0U && nb0 > 0U)
|
|
{
|
|
rem = 128U;
|
|
}
|
|
else
|
|
{
|
|
rem = rem0;
|
|
}
|
|
Hacl_Hash_Blake2b_Simd256_update_multi(len, wv, hash, prev, blocks, nb);
|
|
Hacl_Hash_Blake2b_Simd256_update_last(len, wv, hash, false, prev, rem, blocks);
|
|
}
|
|
|
|
static inline void
|
|
update(
|
|
Lib_IntVector_Intrinsics_vec256 *wv,
|
|
Lib_IntVector_Intrinsics_vec256 *hash,
|
|
uint32_t kk,
|
|
uint8_t *k,
|
|
uint32_t ll,
|
|
uint8_t *d
|
|
)
|
|
{
|
|
FStar_UInt128_uint128 lb = FStar_UInt128_uint64_to_uint128((uint64_t)128U);
|
|
if (kk > 0U)
|
|
{
|
|
update_key(wv, hash, kk, k, ll);
|
|
if (!(ll == 0U))
|
|
{
|
|
update_blocks(ll, wv, hash, lb, d);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
update_blocks(ll, wv, hash, FStar_UInt128_uint64_to_uint128((uint64_t)0U), d);
|
|
}
|
|
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_finish(
|
|
uint32_t nn,
|
|
uint8_t *output,
|
|
Lib_IntVector_Intrinsics_vec256 *hash
|
|
)
|
|
{
|
|
uint8_t b[64U] = { 0U };
|
|
uint8_t *first = b;
|
|
uint8_t *second = b + 32U;
|
|
Lib_IntVector_Intrinsics_vec256 *row0 = hash;
|
|
Lib_IntVector_Intrinsics_vec256 *row1 = hash + 1U;
|
|
Lib_IntVector_Intrinsics_vec256_store64_le(first, row0[0U]);
|
|
Lib_IntVector_Intrinsics_vec256_store64_le(second, row1[0U]);
|
|
uint8_t *final = b;
|
|
memcpy(output, final, nn * sizeof (uint8_t));
|
|
Lib_Memzero0_memzero(b, 64U, uint8_t, void *);
|
|
}
|
|
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_load_state256b_from_state32(
|
|
Lib_IntVector_Intrinsics_vec256 *st,
|
|
uint64_t *st32
|
|
)
|
|
{
|
|
Lib_IntVector_Intrinsics_vec256 *r0 = st;
|
|
Lib_IntVector_Intrinsics_vec256 *r1 = st + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r2 = st + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r3 = st + 3U;
|
|
uint64_t *b0 = st32;
|
|
uint64_t *b1 = st32 + 4U;
|
|
uint64_t *b2 = st32 + 8U;
|
|
uint64_t *b3 = st32 + 12U;
|
|
r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(b0[0U], b0[1U], b0[2U], b0[3U]);
|
|
r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(b1[0U], b1[1U], b1[2U], b1[3U]);
|
|
r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(b2[0U], b2[1U], b2[2U], b2[3U]);
|
|
r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(b3[0U], b3[1U], b3[2U], b3[3U]);
|
|
}
|
|
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_store_state256b_to_state32(
|
|
uint64_t *st32,
|
|
Lib_IntVector_Intrinsics_vec256 *st
|
|
)
|
|
{
|
|
Lib_IntVector_Intrinsics_vec256 *r0 = st;
|
|
Lib_IntVector_Intrinsics_vec256 *r1 = st + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r2 = st + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r3 = st + 3U;
|
|
uint64_t *b0 = st32;
|
|
uint64_t *b1 = st32 + 4U;
|
|
uint64_t *b2 = st32 + 8U;
|
|
uint64_t *b3 = st32 + 12U;
|
|
uint8_t b8[32U] = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256_store64_le(b8, r0[0U]);
|
|
KRML_MAYBE_FOR4(i,
|
|
0U,
|
|
4U,
|
|
1U,
|
|
uint64_t *os = b0;
|
|
uint8_t *bj = b8 + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
uint8_t b80[32U] = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256_store64_le(b80, r1[0U]);
|
|
KRML_MAYBE_FOR4(i,
|
|
0U,
|
|
4U,
|
|
1U,
|
|
uint64_t *os = b1;
|
|
uint8_t *bj = b80 + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
uint8_t b81[32U] = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256_store64_le(b81, r2[0U]);
|
|
KRML_MAYBE_FOR4(i,
|
|
0U,
|
|
4U,
|
|
1U,
|
|
uint64_t *os = b2;
|
|
uint8_t *bj = b81 + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
uint8_t b82[32U] = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256_store64_le(b82, r3[0U]);
|
|
KRML_MAYBE_FOR4(i,
|
|
0U,
|
|
4U,
|
|
1U,
|
|
uint64_t *os = b3;
|
|
uint8_t *bj = b82 + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
}
|
|
|
|
Lib_IntVector_Intrinsics_vec256 *Hacl_Hash_Blake2b_Simd256_malloc_with_key(void)
|
|
{
|
|
Lib_IntVector_Intrinsics_vec256
|
|
*buf =
|
|
(Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32,
|
|
sizeof (Lib_IntVector_Intrinsics_vec256) * 4U);
|
|
memset(buf, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256));
|
|
return buf;
|
|
}
|
|
|
|
static Hacl_Hash_Blake2b_Simd256_state_t
|
|
*malloc_raw(Hacl_Hash_Blake2b_index kk, Hacl_Hash_Blake2b_params_and_key key)
|
|
{
|
|
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(128U, sizeof (uint8_t));
|
|
Lib_IntVector_Intrinsics_vec256
|
|
*wv =
|
|
(Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32,
|
|
sizeof (Lib_IntVector_Intrinsics_vec256) * 4U);
|
|
memset(wv, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256));
|
|
Lib_IntVector_Intrinsics_vec256
|
|
*b =
|
|
(Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32,
|
|
sizeof (Lib_IntVector_Intrinsics_vec256) * 4U);
|
|
memset(b, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256));
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t
|
|
block_state =
|
|
{
|
|
.fst = kk.key_length,
|
|
.snd = kk.digest_length,
|
|
.thd = kk.last_node,
|
|
.f3 = { .fst = wv, .snd = b }
|
|
};
|
|
uint8_t kk10 = kk.key_length;
|
|
uint32_t ite;
|
|
if (kk10 != 0U)
|
|
{
|
|
ite = 128U;
|
|
}
|
|
else
|
|
{
|
|
ite = 0U;
|
|
}
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)ite };
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
*p =
|
|
(Hacl_Hash_Blake2b_Simd256_state_t *)KRML_HOST_MALLOC(sizeof (
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
));
|
|
p[0U] = s;
|
|
Hacl_Hash_Blake2b_blake2_params *p1 = key.fst;
|
|
uint8_t kk1 = p1->key_length;
|
|
uint8_t nn = p1->digest_length;
|
|
bool last_node = block_state.thd;
|
|
Hacl_Hash_Blake2b_index i = { .key_length = kk1, .digest_length = nn, .last_node = last_node };
|
|
Lib_IntVector_Intrinsics_vec256 *h = block_state.f3.snd;
|
|
uint32_t kk20 = (uint32_t)i.key_length;
|
|
uint8_t *k_1 = key.snd;
|
|
if (!(kk20 == 0U))
|
|
{
|
|
uint8_t *sub_b = buf + kk20;
|
|
memset(sub_b, 0U, (128U - kk20) * sizeof (uint8_t));
|
|
memcpy(buf, k_1, kk20 * sizeof (uint8_t));
|
|
}
|
|
Hacl_Hash_Blake2b_blake2_params pv = p1[0U];
|
|
uint64_t tmp[8U] = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256 *r0 = h;
|
|
Lib_IntVector_Intrinsics_vec256 *r1 = h + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r2 = h + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r3 = h + 3U;
|
|
uint64_t iv0 = Hacl_Hash_Blake2b_ivTable_B[0U];
|
|
uint64_t iv1 = Hacl_Hash_Blake2b_ivTable_B[1U];
|
|
uint64_t iv2 = Hacl_Hash_Blake2b_ivTable_B[2U];
|
|
uint64_t iv3 = Hacl_Hash_Blake2b_ivTable_B[3U];
|
|
uint64_t iv4 = Hacl_Hash_Blake2b_ivTable_B[4U];
|
|
uint64_t iv5 = Hacl_Hash_Blake2b_ivTable_B[5U];
|
|
uint64_t iv6 = Hacl_Hash_Blake2b_ivTable_B[6U];
|
|
uint64_t iv7 = Hacl_Hash_Blake2b_ivTable_B[7U];
|
|
r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0, iv1, iv2, iv3);
|
|
r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4, iv5, iv6, iv7);
|
|
uint8_t kk2 = pv.key_length;
|
|
uint8_t nn1 = pv.digest_length;
|
|
KRML_MAYBE_FOR2(i0,
|
|
0U,
|
|
2U,
|
|
1U,
|
|
uint64_t *os = tmp + 4U;
|
|
uint8_t *bj = pv.salt + i0 * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r4 = u;
|
|
uint64_t x = r4;
|
|
os[i0] = x;);
|
|
KRML_MAYBE_FOR2(i0,
|
|
0U,
|
|
2U,
|
|
1U,
|
|
uint64_t *os = tmp + 6U;
|
|
uint8_t *bj = pv.personal + i0 * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r4 = u;
|
|
uint64_t x = r4;
|
|
os[i0] = x;);
|
|
tmp[0U] =
|
|
(uint64_t)nn1
|
|
^
|
|
((uint64_t)kk2
|
|
<< 8U
|
|
^ ((uint64_t)pv.fanout << 16U ^ ((uint64_t)pv.depth << 24U ^ (uint64_t)pv.leaf_length << 32U)));
|
|
tmp[1U] = pv.node_offset;
|
|
tmp[2U] = (uint64_t)pv.node_depth ^ (uint64_t)pv.inner_length << 8U;
|
|
tmp[3U] = 0ULL;
|
|
uint64_t tmp0 = tmp[0U];
|
|
uint64_t tmp1 = tmp[1U];
|
|
uint64_t tmp2 = tmp[2U];
|
|
uint64_t tmp3 = tmp[3U];
|
|
uint64_t tmp4 = tmp[4U];
|
|
uint64_t tmp5 = tmp[5U];
|
|
uint64_t tmp6 = tmp[6U];
|
|
uint64_t tmp7 = tmp[7U];
|
|
uint64_t iv0_ = iv0 ^ tmp0;
|
|
uint64_t iv1_ = iv1 ^ tmp1;
|
|
uint64_t iv2_ = iv2 ^ tmp2;
|
|
uint64_t iv3_ = iv3 ^ tmp3;
|
|
uint64_t iv4_ = iv4 ^ tmp4;
|
|
uint64_t iv5_ = iv5 ^ tmp5;
|
|
uint64_t iv6_ = iv6 ^ tmp6;
|
|
uint64_t iv7_ = iv7 ^ tmp7;
|
|
r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0_, iv1_, iv2_, iv3_);
|
|
r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4_, iv5_, iv6_, iv7_);
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
General-purpose allocation function that gives control over all
|
|
Blake2 parameters, including the key. Further resettings of the state SHALL be
|
|
done with `reset_with_params_and_key`, and SHALL feature the exact same values
|
|
for the `key_length` and `digest_length` fields as passed here. In other words,
|
|
once you commit to a digest and key length, the only way to change these
|
|
parameters is to allocate a new object.
|
|
|
|
The caller must satisfy the following requirements.
|
|
- The length of the key k MUST match the value of the field key_length in the
|
|
parameters.
|
|
- The key_length must not exceed 256 for S, 64 for B.
|
|
- The digest_length must not exceed 256 for S, 64 for B.
|
|
|
|
*/
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
*Hacl_Hash_Blake2b_Simd256_malloc_with_params_and_key(
|
|
Hacl_Hash_Blake2b_blake2_params *p,
|
|
bool last_node,
|
|
uint8_t *k
|
|
)
|
|
{
|
|
Hacl_Hash_Blake2b_blake2_params pv = p[0U];
|
|
Hacl_Hash_Blake2b_index
|
|
i1 = { .key_length = pv.key_length, .digest_length = pv.digest_length, .last_node = last_node };
|
|
return malloc_raw(i1, ((Hacl_Hash_Blake2b_params_and_key){ .fst = p, .snd = k }));
|
|
}
|
|
|
|
/**
|
|
Specialized allocation function that picks default values for all
|
|
parameters, except for the key_length. Further resettings of the state SHALL be
|
|
done with `reset_with_key`, and SHALL feature the exact same key length `kk` as
|
|
passed here. In other words, once you commit to a key length, the only way to
|
|
change this parameter is to allocate a new object.
|
|
|
|
The caller must satisfy the following requirements.
|
|
- The key_length must not exceed 256 for S, 64 for B.
|
|
|
|
*/
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
*Hacl_Hash_Blake2b_Simd256_malloc_with_key0(uint8_t *k, uint8_t kk)
|
|
{
|
|
uint8_t nn = 64U;
|
|
Hacl_Hash_Blake2b_index i = { .key_length = kk, .digest_length = nn, .last_node = false };
|
|
uint8_t salt[16U] = { 0U };
|
|
uint8_t personal[16U] = { 0U };
|
|
Hacl_Hash_Blake2b_blake2_params
|
|
p =
|
|
{
|
|
.digest_length = i.digest_length, .key_length = i.key_length, .fanout = 1U, .depth = 1U,
|
|
.leaf_length = 0U, .node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt,
|
|
.personal = personal
|
|
};
|
|
Hacl_Hash_Blake2b_blake2_params p0 = p;
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
*s = Hacl_Hash_Blake2b_Simd256_malloc_with_params_and_key(&p0, false, k);
|
|
return s;
|
|
}
|
|
|
|
/**
|
|
Specialized allocation function that picks default values for all
|
|
parameters, and has no key. Effectively, this is what you want if you intend to
|
|
use Blake2 as a hash function. Further resettings of the state SHALL be done with `reset`.
|
|
*/
|
|
Hacl_Hash_Blake2b_Simd256_state_t *Hacl_Hash_Blake2b_Simd256_malloc(void)
|
|
{
|
|
return Hacl_Hash_Blake2b_Simd256_malloc_with_key0(NULL, 0U);
|
|
}
|
|
|
|
static Hacl_Hash_Blake2b_index index_of_state(Hacl_Hash_Blake2b_Simd256_state_t *s)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state = (*s).block_state;
|
|
bool last_node = block_state.thd;
|
|
uint8_t nn = block_state.snd;
|
|
uint8_t kk1 = block_state.fst;
|
|
return
|
|
((Hacl_Hash_Blake2b_index){ .key_length = kk1, .digest_length = nn, .last_node = last_node });
|
|
}
|
|
|
|
static void
|
|
reset_raw(Hacl_Hash_Blake2b_Simd256_state_t *state, Hacl_Hash_Blake2b_params_and_key key)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_state_t scrut = *state;
|
|
uint8_t *buf = scrut.buf;
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state = scrut.block_state;
|
|
bool last_node0 = block_state.thd;
|
|
uint8_t nn0 = block_state.snd;
|
|
uint8_t kk10 = block_state.fst;
|
|
Hacl_Hash_Blake2b_index
|
|
i = { .key_length = kk10, .digest_length = nn0, .last_node = last_node0 };
|
|
KRML_MAYBE_UNUSED_VAR(i);
|
|
Hacl_Hash_Blake2b_blake2_params *p = key.fst;
|
|
uint8_t kk1 = p->key_length;
|
|
uint8_t nn = p->digest_length;
|
|
bool last_node = block_state.thd;
|
|
Hacl_Hash_Blake2b_index
|
|
i1 = { .key_length = kk1, .digest_length = nn, .last_node = last_node };
|
|
Lib_IntVector_Intrinsics_vec256 *h = block_state.f3.snd;
|
|
uint32_t kk20 = (uint32_t)i1.key_length;
|
|
uint8_t *k_1 = key.snd;
|
|
if (!(kk20 == 0U))
|
|
{
|
|
uint8_t *sub_b = buf + kk20;
|
|
memset(sub_b, 0U, (128U - kk20) * sizeof (uint8_t));
|
|
memcpy(buf, k_1, kk20 * sizeof (uint8_t));
|
|
}
|
|
Hacl_Hash_Blake2b_blake2_params pv = p[0U];
|
|
uint64_t tmp[8U] = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256 *r0 = h;
|
|
Lib_IntVector_Intrinsics_vec256 *r1 = h + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r2 = h + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r3 = h + 3U;
|
|
uint64_t iv0 = Hacl_Hash_Blake2b_ivTable_B[0U];
|
|
uint64_t iv1 = Hacl_Hash_Blake2b_ivTable_B[1U];
|
|
uint64_t iv2 = Hacl_Hash_Blake2b_ivTable_B[2U];
|
|
uint64_t iv3 = Hacl_Hash_Blake2b_ivTable_B[3U];
|
|
uint64_t iv4 = Hacl_Hash_Blake2b_ivTable_B[4U];
|
|
uint64_t iv5 = Hacl_Hash_Blake2b_ivTable_B[5U];
|
|
uint64_t iv6 = Hacl_Hash_Blake2b_ivTable_B[6U];
|
|
uint64_t iv7 = Hacl_Hash_Blake2b_ivTable_B[7U];
|
|
r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0, iv1, iv2, iv3);
|
|
r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4, iv5, iv6, iv7);
|
|
uint8_t kk2 = pv.key_length;
|
|
uint8_t nn1 = pv.digest_length;
|
|
KRML_MAYBE_FOR2(i0,
|
|
0U,
|
|
2U,
|
|
1U,
|
|
uint64_t *os = tmp + 4U;
|
|
uint8_t *bj = pv.salt + i0 * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i0] = x;);
|
|
KRML_MAYBE_FOR2(i0,
|
|
0U,
|
|
2U,
|
|
1U,
|
|
uint64_t *os = tmp + 6U;
|
|
uint8_t *bj = pv.personal + i0 * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i0] = x;);
|
|
tmp[0U] =
|
|
(uint64_t)nn1
|
|
^
|
|
((uint64_t)kk2
|
|
<< 8U
|
|
^ ((uint64_t)pv.fanout << 16U ^ ((uint64_t)pv.depth << 24U ^ (uint64_t)pv.leaf_length << 32U)));
|
|
tmp[1U] = pv.node_offset;
|
|
tmp[2U] = (uint64_t)pv.node_depth ^ (uint64_t)pv.inner_length << 8U;
|
|
tmp[3U] = 0ULL;
|
|
uint64_t tmp0 = tmp[0U];
|
|
uint64_t tmp1 = tmp[1U];
|
|
uint64_t tmp2 = tmp[2U];
|
|
uint64_t tmp3 = tmp[3U];
|
|
uint64_t tmp4 = tmp[4U];
|
|
uint64_t tmp5 = tmp[5U];
|
|
uint64_t tmp6 = tmp[6U];
|
|
uint64_t tmp7 = tmp[7U];
|
|
uint64_t iv0_ = iv0 ^ tmp0;
|
|
uint64_t iv1_ = iv1 ^ tmp1;
|
|
uint64_t iv2_ = iv2 ^ tmp2;
|
|
uint64_t iv3_ = iv3 ^ tmp3;
|
|
uint64_t iv4_ = iv4 ^ tmp4;
|
|
uint64_t iv5_ = iv5 ^ tmp5;
|
|
uint64_t iv6_ = iv6 ^ tmp6;
|
|
uint64_t iv7_ = iv7 ^ tmp7;
|
|
r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0_, iv1_, iv2_, iv3_);
|
|
r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4_, iv5_, iv6_, iv7_);
|
|
uint8_t kk11 = i.key_length;
|
|
uint32_t ite;
|
|
if (kk11 != 0U)
|
|
{
|
|
ite = 128U;
|
|
}
|
|
else
|
|
{
|
|
ite = 0U;
|
|
}
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
tmp8 = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)ite };
|
|
state[0U] = tmp8;
|
|
}
|
|
|
|
/**
|
|
General-purpose re-initialization function with parameters and
|
|
key. You cannot change digest_length, key_length, or last_node, meaning those values in
|
|
the parameters object must be the same as originally decided via one of the
|
|
malloc functions. All other values of the parameter can be changed. The behavior
|
|
is unspecified if you violate this precondition.
|
|
*/
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_reset_with_key_and_params(
|
|
Hacl_Hash_Blake2b_Simd256_state_t *s,
|
|
Hacl_Hash_Blake2b_blake2_params *p,
|
|
uint8_t *k
|
|
)
|
|
{
|
|
index_of_state(s);
|
|
reset_raw(s, ((Hacl_Hash_Blake2b_params_and_key){ .fst = p, .snd = k }));
|
|
}
|
|
|
|
/**
|
|
Specialized-purpose re-initialization function with no parameters,
|
|
and a key. The key length must be the same as originally decided via your choice
|
|
of malloc function. All other parameters are reset to their default values. The
|
|
original call to malloc MUST have set digest_length to the default value. The
|
|
behavior is unspecified if you violate this precondition.
|
|
*/
|
|
void Hacl_Hash_Blake2b_Simd256_reset_with_key(Hacl_Hash_Blake2b_Simd256_state_t *s, uint8_t *k)
|
|
{
|
|
Hacl_Hash_Blake2b_index idx = index_of_state(s);
|
|
uint8_t salt[16U] = { 0U };
|
|
uint8_t personal[16U] = { 0U };
|
|
Hacl_Hash_Blake2b_blake2_params
|
|
p =
|
|
{
|
|
.digest_length = idx.digest_length, .key_length = idx.key_length, .fanout = 1U, .depth = 1U,
|
|
.leaf_length = 0U, .node_offset = 0ULL, .node_depth = 0U, .inner_length = 0U, .salt = salt,
|
|
.personal = personal
|
|
};
|
|
Hacl_Hash_Blake2b_blake2_params p0 = p;
|
|
reset_raw(s, ((Hacl_Hash_Blake2b_params_and_key){ .fst = &p0, .snd = k }));
|
|
}
|
|
|
|
/**
|
|
Specialized-purpose re-initialization function with no parameters
|
|
and no key. This is what you want if you intend to use Blake2 as a hash
|
|
function. The key length and digest length must have been set to their
|
|
respective default values via your choice of malloc function (always true if you
|
|
used `malloc`). All other parameters are reset to their default values. The
|
|
behavior is unspecified if you violate this precondition.
|
|
*/
|
|
void Hacl_Hash_Blake2b_Simd256_reset(Hacl_Hash_Blake2b_Simd256_state_t *s)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_reset_with_key(s, NULL);
|
|
}
|
|
|
|
/**
|
|
Update function; 0 = success, 1 = max length exceeded
|
|
*/
|
|
Hacl_Streaming_Types_error_code
|
|
Hacl_Hash_Blake2b_Simd256_update(
|
|
Hacl_Hash_Blake2b_Simd256_state_t *state,
|
|
uint8_t *chunk,
|
|
uint32_t chunk_len
|
|
)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_state_t s = *state;
|
|
uint64_t total_len = s.total_len;
|
|
if ((uint64_t)chunk_len > 0xffffffffffffffffULL - total_len)
|
|
{
|
|
return Hacl_Streaming_Types_MaximumLengthExceeded;
|
|
}
|
|
uint32_t sz;
|
|
if (total_len % (uint64_t)128U == 0ULL && total_len > 0ULL)
|
|
{
|
|
sz = 128U;
|
|
}
|
|
else
|
|
{
|
|
sz = (uint32_t)(total_len % (uint64_t)128U);
|
|
}
|
|
if (chunk_len <= 128U - sz)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_state_t s1 = *state;
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state1 = s1.block_state;
|
|
uint8_t *buf = s1.buf;
|
|
uint64_t total_len1 = s1.total_len;
|
|
uint32_t sz1;
|
|
if (total_len1 % (uint64_t)128U == 0ULL && total_len1 > 0ULL)
|
|
{
|
|
sz1 = 128U;
|
|
}
|
|
else
|
|
{
|
|
sz1 = (uint32_t)(total_len1 % (uint64_t)128U);
|
|
}
|
|
uint8_t *buf2 = buf + sz1;
|
|
memcpy(buf2, chunk, chunk_len * sizeof (uint8_t));
|
|
uint64_t total_len2 = total_len1 + (uint64_t)chunk_len;
|
|
*state
|
|
=
|
|
(
|
|
(Hacl_Hash_Blake2b_Simd256_state_t){
|
|
.block_state = block_state1,
|
|
.buf = buf,
|
|
.total_len = total_len2
|
|
}
|
|
);
|
|
}
|
|
else if (sz == 0U)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_state_t s1 = *state;
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state1 = s1.block_state;
|
|
uint8_t *buf = s1.buf;
|
|
uint64_t total_len1 = s1.total_len;
|
|
uint32_t sz1;
|
|
if (total_len1 % (uint64_t)128U == 0ULL && total_len1 > 0ULL)
|
|
{
|
|
sz1 = 128U;
|
|
}
|
|
else
|
|
{
|
|
sz1 = (uint32_t)(total_len1 % (uint64_t)128U);
|
|
}
|
|
if (!(sz1 == 0U))
|
|
{
|
|
uint64_t prevlen = total_len1 - (uint64_t)sz1;
|
|
K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = block_state1.f3;
|
|
Lib_IntVector_Intrinsics_vec256 *wv = acc.fst;
|
|
Lib_IntVector_Intrinsics_vec256 *hash = acc.snd;
|
|
uint32_t nb = 1U;
|
|
Hacl_Hash_Blake2b_Simd256_update_multi(128U,
|
|
wv,
|
|
hash,
|
|
FStar_UInt128_uint64_to_uint128(prevlen),
|
|
buf,
|
|
nb);
|
|
}
|
|
uint32_t ite;
|
|
if ((uint64_t)chunk_len % (uint64_t)128U == 0ULL && (uint64_t)chunk_len > 0ULL)
|
|
{
|
|
ite = 128U;
|
|
}
|
|
else
|
|
{
|
|
ite = (uint32_t)((uint64_t)chunk_len % (uint64_t)128U);
|
|
}
|
|
uint32_t n_blocks = (chunk_len - ite) / 128U;
|
|
uint32_t data1_len = n_blocks * 128U;
|
|
uint32_t data2_len = chunk_len - data1_len;
|
|
uint8_t *data1 = chunk;
|
|
uint8_t *data2 = chunk + data1_len;
|
|
K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = block_state1.f3;
|
|
Lib_IntVector_Intrinsics_vec256 *wv = acc.fst;
|
|
Lib_IntVector_Intrinsics_vec256 *hash = acc.snd;
|
|
uint32_t nb = data1_len / 128U;
|
|
Hacl_Hash_Blake2b_Simd256_update_multi(data1_len,
|
|
wv,
|
|
hash,
|
|
FStar_UInt128_uint64_to_uint128(total_len1),
|
|
data1,
|
|
nb);
|
|
uint8_t *dst = buf;
|
|
memcpy(dst, data2, data2_len * sizeof (uint8_t));
|
|
*state
|
|
=
|
|
(
|
|
(Hacl_Hash_Blake2b_Simd256_state_t){
|
|
.block_state = block_state1,
|
|
.buf = buf,
|
|
.total_len = total_len1 + (uint64_t)chunk_len
|
|
}
|
|
);
|
|
}
|
|
else
|
|
{
|
|
uint32_t diff = 128U - sz;
|
|
uint8_t *chunk1 = chunk;
|
|
uint8_t *chunk2 = chunk + diff;
|
|
Hacl_Hash_Blake2b_Simd256_state_t s1 = *state;
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state10 = s1.block_state;
|
|
uint8_t *buf0 = s1.buf;
|
|
uint64_t total_len10 = s1.total_len;
|
|
uint32_t sz10;
|
|
if (total_len10 % (uint64_t)128U == 0ULL && total_len10 > 0ULL)
|
|
{
|
|
sz10 = 128U;
|
|
}
|
|
else
|
|
{
|
|
sz10 = (uint32_t)(total_len10 % (uint64_t)128U);
|
|
}
|
|
uint8_t *buf2 = buf0 + sz10;
|
|
memcpy(buf2, chunk1, diff * sizeof (uint8_t));
|
|
uint64_t total_len2 = total_len10 + (uint64_t)diff;
|
|
*state
|
|
=
|
|
(
|
|
(Hacl_Hash_Blake2b_Simd256_state_t){
|
|
.block_state = block_state10,
|
|
.buf = buf0,
|
|
.total_len = total_len2
|
|
}
|
|
);
|
|
Hacl_Hash_Blake2b_Simd256_state_t s10 = *state;
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state1 = s10.block_state;
|
|
uint8_t *buf = s10.buf;
|
|
uint64_t total_len1 = s10.total_len;
|
|
uint32_t sz1;
|
|
if (total_len1 % (uint64_t)128U == 0ULL && total_len1 > 0ULL)
|
|
{
|
|
sz1 = 128U;
|
|
}
|
|
else
|
|
{
|
|
sz1 = (uint32_t)(total_len1 % (uint64_t)128U);
|
|
}
|
|
if (!(sz1 == 0U))
|
|
{
|
|
uint64_t prevlen = total_len1 - (uint64_t)sz1;
|
|
K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = block_state1.f3;
|
|
Lib_IntVector_Intrinsics_vec256 *wv = acc.fst;
|
|
Lib_IntVector_Intrinsics_vec256 *hash = acc.snd;
|
|
uint32_t nb = 1U;
|
|
Hacl_Hash_Blake2b_Simd256_update_multi(128U,
|
|
wv,
|
|
hash,
|
|
FStar_UInt128_uint64_to_uint128(prevlen),
|
|
buf,
|
|
nb);
|
|
}
|
|
uint32_t ite;
|
|
if
|
|
((uint64_t)(chunk_len - diff) % (uint64_t)128U == 0ULL && (uint64_t)(chunk_len - diff) > 0ULL)
|
|
{
|
|
ite = 128U;
|
|
}
|
|
else
|
|
{
|
|
ite = (uint32_t)((uint64_t)(chunk_len - diff) % (uint64_t)128U);
|
|
}
|
|
uint32_t n_blocks = (chunk_len - diff - ite) / 128U;
|
|
uint32_t data1_len = n_blocks * 128U;
|
|
uint32_t data2_len = chunk_len - diff - data1_len;
|
|
uint8_t *data1 = chunk2;
|
|
uint8_t *data2 = chunk2 + data1_len;
|
|
K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_ acc = block_state1.f3;
|
|
Lib_IntVector_Intrinsics_vec256 *wv = acc.fst;
|
|
Lib_IntVector_Intrinsics_vec256 *hash = acc.snd;
|
|
uint32_t nb = data1_len / 128U;
|
|
Hacl_Hash_Blake2b_Simd256_update_multi(data1_len,
|
|
wv,
|
|
hash,
|
|
FStar_UInt128_uint64_to_uint128(total_len1),
|
|
data1,
|
|
nb);
|
|
uint8_t *dst = buf;
|
|
memcpy(dst, data2, data2_len * sizeof (uint8_t));
|
|
*state
|
|
=
|
|
(
|
|
(Hacl_Hash_Blake2b_Simd256_state_t){
|
|
.block_state = block_state1,
|
|
.buf = buf,
|
|
.total_len = total_len1 + (uint64_t)(chunk_len - diff)
|
|
}
|
|
);
|
|
}
|
|
return Hacl_Streaming_Types_Success;
|
|
}
|
|
|
|
/**
|
|
Digest function. This function expects the `output` array to hold
|
|
at least `digest_length` bytes, where `digest_length` was determined by your
|
|
choice of `malloc` function. Concretely, if you used `malloc` or
|
|
`malloc_with_key`, then the expected length is 256 for S, or 64 for B (default
|
|
digest length). If you used `malloc_with_params_and_key`, then the expected
|
|
length is whatever you chose for the `digest_length` field of your parameters.
|
|
For convenience, this function returns `digest_length`. When in doubt, callers
|
|
can pass an array of size HACL_BLAKE2B_256_OUT_BYTES, then use the return value
|
|
to see how many bytes were actually written.
|
|
*/
|
|
uint8_t Hacl_Hash_Blake2b_Simd256_digest(Hacl_Hash_Blake2b_Simd256_state_t *s, uint8_t *dst)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state0 = (*s).block_state;
|
|
bool last_node0 = block_state0.thd;
|
|
uint8_t nn0 = block_state0.snd;
|
|
uint8_t kk0 = block_state0.fst;
|
|
Hacl_Hash_Blake2b_index
|
|
i1 = { .key_length = kk0, .digest_length = nn0, .last_node = last_node0 };
|
|
Hacl_Hash_Blake2b_Simd256_state_t scrut = *s;
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state = scrut.block_state;
|
|
uint8_t *buf_ = scrut.buf;
|
|
uint64_t total_len = scrut.total_len;
|
|
uint32_t r;
|
|
if (total_len % (uint64_t)128U == 0ULL && total_len > 0ULL)
|
|
{
|
|
r = 128U;
|
|
}
|
|
else
|
|
{
|
|
r = (uint32_t)(total_len % (uint64_t)128U);
|
|
}
|
|
uint8_t *buf_1 = buf_;
|
|
KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 wv0[4U] KRML_POST_ALIGN(32) = { 0U };
|
|
KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b[4U] KRML_POST_ALIGN(32) = { 0U };
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t
|
|
tmp_block_state =
|
|
{
|
|
.fst = i1.key_length,
|
|
.snd = i1.digest_length,
|
|
.thd = i1.last_node,
|
|
.f3 = { .fst = wv0, .snd = b }
|
|
};
|
|
Lib_IntVector_Intrinsics_vec256 *src_b = block_state.f3.snd;
|
|
Lib_IntVector_Intrinsics_vec256 *dst_b = tmp_block_state.f3.snd;
|
|
memcpy(dst_b, src_b, 4U * sizeof (Lib_IntVector_Intrinsics_vec256));
|
|
uint64_t prev_len = total_len - (uint64_t)r;
|
|
uint32_t ite;
|
|
if (r % 128U == 0U && r > 0U)
|
|
{
|
|
ite = 128U;
|
|
}
|
|
else
|
|
{
|
|
ite = r % 128U;
|
|
}
|
|
uint8_t *buf_last = buf_1 + r - ite;
|
|
uint8_t *buf_multi = buf_1;
|
|
K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_
|
|
acc0 = tmp_block_state.f3;
|
|
Lib_IntVector_Intrinsics_vec256 *wv1 = acc0.fst;
|
|
Lib_IntVector_Intrinsics_vec256 *hash0 = acc0.snd;
|
|
uint32_t nb = 0U;
|
|
Hacl_Hash_Blake2b_Simd256_update_multi(0U,
|
|
wv1,
|
|
hash0,
|
|
FStar_UInt128_uint64_to_uint128(prev_len),
|
|
buf_multi,
|
|
nb);
|
|
uint64_t prev_len_last = total_len - (uint64_t)r;
|
|
K____Lib_IntVector_Intrinsics_vec256___Lib_IntVector_Intrinsics_vec256_
|
|
acc = tmp_block_state.f3;
|
|
bool last_node1 = tmp_block_state.thd;
|
|
Lib_IntVector_Intrinsics_vec256 *wv = acc.fst;
|
|
Lib_IntVector_Intrinsics_vec256 *hash = acc.snd;
|
|
Hacl_Hash_Blake2b_Simd256_update_last(r,
|
|
wv,
|
|
hash,
|
|
last_node1,
|
|
FStar_UInt128_uint64_to_uint128(prev_len_last),
|
|
r,
|
|
buf_last);
|
|
uint8_t nn1 = tmp_block_state.snd;
|
|
Hacl_Hash_Blake2b_Simd256_finish((uint32_t)nn1, dst, tmp_block_state.f3.snd);
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state1 = (*s).block_state;
|
|
bool last_node = block_state1.thd;
|
|
uint8_t nn = block_state1.snd;
|
|
uint8_t kk = block_state1.fst;
|
|
return
|
|
((Hacl_Hash_Blake2b_index){ .key_length = kk, .digest_length = nn, .last_node = last_node }).digest_length;
|
|
}
|
|
|
|
Hacl_Hash_Blake2b_index Hacl_Hash_Blake2b_Simd256_info(Hacl_Hash_Blake2b_Simd256_state_t *s)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state = (*s).block_state;
|
|
bool last_node = block_state.thd;
|
|
uint8_t nn = block_state.snd;
|
|
uint8_t kk = block_state.fst;
|
|
return
|
|
((Hacl_Hash_Blake2b_index){ .key_length = kk, .digest_length = nn, .last_node = last_node });
|
|
}
|
|
|
|
/**
|
|
Free state function when there is no key
|
|
*/
|
|
void Hacl_Hash_Blake2b_Simd256_free(Hacl_Hash_Blake2b_Simd256_state_t *state)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_state_t scrut = *state;
|
|
uint8_t *buf = scrut.buf;
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state = scrut.block_state;
|
|
Lib_IntVector_Intrinsics_vec256 *b = block_state.f3.snd;
|
|
Lib_IntVector_Intrinsics_vec256 *wv = block_state.f3.fst;
|
|
KRML_ALIGNED_FREE(wv);
|
|
KRML_ALIGNED_FREE(b);
|
|
KRML_HOST_FREE(buf);
|
|
KRML_HOST_FREE(state);
|
|
}
|
|
|
|
/**
|
|
Copying. This preserves all parameters.
|
|
*/
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
*Hacl_Hash_Blake2b_Simd256_copy(Hacl_Hash_Blake2b_Simd256_state_t *state)
|
|
{
|
|
Hacl_Hash_Blake2b_Simd256_state_t scrut = *state;
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t block_state0 = scrut.block_state;
|
|
uint8_t *buf0 = scrut.buf;
|
|
uint64_t total_len0 = scrut.total_len;
|
|
bool last_node = block_state0.thd;
|
|
uint8_t nn = block_state0.snd;
|
|
uint8_t kk1 = block_state0.fst;
|
|
Hacl_Hash_Blake2b_index i = { .key_length = kk1, .digest_length = nn, .last_node = last_node };
|
|
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(128U, sizeof (uint8_t));
|
|
memcpy(buf, buf0, 128U * sizeof (uint8_t));
|
|
Lib_IntVector_Intrinsics_vec256
|
|
*wv =
|
|
(Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32,
|
|
sizeof (Lib_IntVector_Intrinsics_vec256) * 4U);
|
|
memset(wv, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256));
|
|
Lib_IntVector_Intrinsics_vec256
|
|
*b =
|
|
(Lib_IntVector_Intrinsics_vec256 *)KRML_ALIGNED_MALLOC(32,
|
|
sizeof (Lib_IntVector_Intrinsics_vec256) * 4U);
|
|
memset(b, 0U, 4U * sizeof (Lib_IntVector_Intrinsics_vec256));
|
|
Hacl_Hash_Blake2b_Simd256_block_state_t
|
|
block_state =
|
|
{
|
|
.fst = i.key_length,
|
|
.snd = i.digest_length,
|
|
.thd = i.last_node,
|
|
.f3 = { .fst = wv, .snd = b }
|
|
};
|
|
Lib_IntVector_Intrinsics_vec256 *src_b = block_state0.f3.snd;
|
|
Lib_IntVector_Intrinsics_vec256 *dst_b = block_state.f3.snd;
|
|
memcpy(dst_b, src_b, 4U * sizeof (Lib_IntVector_Intrinsics_vec256));
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
s = { .block_state = block_state, .buf = buf, .total_len = total_len0 };
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
*p =
|
|
(Hacl_Hash_Blake2b_Simd256_state_t *)KRML_HOST_MALLOC(sizeof (
|
|
Hacl_Hash_Blake2b_Simd256_state_t
|
|
));
|
|
p[0U] = s;
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
Write the BLAKE2b digest of message `input` using key `key` into `output`.
|
|
|
|
@param output Pointer to `output_len` bytes of memory where the digest is written to.
|
|
@param output_len Length of the to-be-generated digest with 1 <= `output_len` <= 64.
|
|
@param input Pointer to `input_len` bytes of memory where the input message is read from.
|
|
@param input_len Length of the input message.
|
|
@param key Pointer to `key_len` bytes of memory where the key is read from.
|
|
@param key_len Length of the key. Can be 0.
|
|
*/
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_hash_with_key(
|
|
uint8_t *output,
|
|
uint32_t output_len,
|
|
uint8_t *input,
|
|
uint32_t input_len,
|
|
uint8_t *key,
|
|
uint32_t key_len
|
|
)
|
|
{
|
|
KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b[4U] KRML_POST_ALIGN(32) = { 0U };
|
|
KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b1[4U] KRML_POST_ALIGN(32) = { 0U };
|
|
Hacl_Hash_Blake2b_Simd256_init(b, key_len, output_len);
|
|
update(b1, b, key_len, key, input_len, input);
|
|
Hacl_Hash_Blake2b_Simd256_finish(output_len, output, b);
|
|
Lib_Memzero0_memzero(b1, 4U, Lib_IntVector_Intrinsics_vec256, void *);
|
|
Lib_Memzero0_memzero(b, 4U, Lib_IntVector_Intrinsics_vec256, void *);
|
|
}
|
|
|
|
/**
|
|
Write the BLAKE2b digest of message `input` using key `key` and
|
|
parameters `params` into `output`. The `key` array must be of length
|
|
`params.key_length`. The `output` array must be of length
|
|
`params.digest_length`.
|
|
*/
|
|
void
|
|
Hacl_Hash_Blake2b_Simd256_hash_with_key_and_params(
|
|
uint8_t *output,
|
|
uint8_t *input,
|
|
uint32_t input_len,
|
|
Hacl_Hash_Blake2b_blake2_params params,
|
|
uint8_t *key
|
|
)
|
|
{
|
|
KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b[4U] KRML_POST_ALIGN(32) = { 0U };
|
|
KRML_PRE_ALIGN(32) Lib_IntVector_Intrinsics_vec256 b1[4U] KRML_POST_ALIGN(32) = { 0U };
|
|
uint64_t tmp[8U] = { 0U };
|
|
Lib_IntVector_Intrinsics_vec256 *r0 = b;
|
|
Lib_IntVector_Intrinsics_vec256 *r1 = b + 1U;
|
|
Lib_IntVector_Intrinsics_vec256 *r2 = b + 2U;
|
|
Lib_IntVector_Intrinsics_vec256 *r3 = b + 3U;
|
|
uint64_t iv0 = Hacl_Hash_Blake2b_ivTable_B[0U];
|
|
uint64_t iv1 = Hacl_Hash_Blake2b_ivTable_B[1U];
|
|
uint64_t iv2 = Hacl_Hash_Blake2b_ivTable_B[2U];
|
|
uint64_t iv3 = Hacl_Hash_Blake2b_ivTable_B[3U];
|
|
uint64_t iv4 = Hacl_Hash_Blake2b_ivTable_B[4U];
|
|
uint64_t iv5 = Hacl_Hash_Blake2b_ivTable_B[5U];
|
|
uint64_t iv6 = Hacl_Hash_Blake2b_ivTable_B[6U];
|
|
uint64_t iv7 = Hacl_Hash_Blake2b_ivTable_B[7U];
|
|
r2[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0, iv1, iv2, iv3);
|
|
r3[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4, iv5, iv6, iv7);
|
|
uint8_t kk = params.key_length;
|
|
uint8_t nn = params.digest_length;
|
|
KRML_MAYBE_FOR2(i,
|
|
0U,
|
|
2U,
|
|
1U,
|
|
uint64_t *os = tmp + 4U;
|
|
uint8_t *bj = params.salt + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
KRML_MAYBE_FOR2(i,
|
|
0U,
|
|
2U,
|
|
1U,
|
|
uint64_t *os = tmp + 6U;
|
|
uint8_t *bj = params.personal + i * 8U;
|
|
uint64_t u = load64_le(bj);
|
|
uint64_t r = u;
|
|
uint64_t x = r;
|
|
os[i] = x;);
|
|
tmp[0U] =
|
|
(uint64_t)nn
|
|
^
|
|
((uint64_t)kk
|
|
<< 8U
|
|
^
|
|
((uint64_t)params.fanout
|
|
<< 16U
|
|
^ ((uint64_t)params.depth << 24U ^ (uint64_t)params.leaf_length << 32U)));
|
|
tmp[1U] = params.node_offset;
|
|
tmp[2U] = (uint64_t)params.node_depth ^ (uint64_t)params.inner_length << 8U;
|
|
tmp[3U] = 0ULL;
|
|
uint64_t tmp0 = tmp[0U];
|
|
uint64_t tmp1 = tmp[1U];
|
|
uint64_t tmp2 = tmp[2U];
|
|
uint64_t tmp3 = tmp[3U];
|
|
uint64_t tmp4 = tmp[4U];
|
|
uint64_t tmp5 = tmp[5U];
|
|
uint64_t tmp6 = tmp[6U];
|
|
uint64_t tmp7 = tmp[7U];
|
|
uint64_t iv0_ = iv0 ^ tmp0;
|
|
uint64_t iv1_ = iv1 ^ tmp1;
|
|
uint64_t iv2_ = iv2 ^ tmp2;
|
|
uint64_t iv3_ = iv3 ^ tmp3;
|
|
uint64_t iv4_ = iv4 ^ tmp4;
|
|
uint64_t iv5_ = iv5 ^ tmp5;
|
|
uint64_t iv6_ = iv6 ^ tmp6;
|
|
uint64_t iv7_ = iv7 ^ tmp7;
|
|
r0[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv0_, iv1_, iv2_, iv3_);
|
|
r1[0U] = Lib_IntVector_Intrinsics_vec256_load64s(iv4_, iv5_, iv6_, iv7_);
|
|
update(b1, b, (uint32_t)params.key_length, key, input_len, input);
|
|
Hacl_Hash_Blake2b_Simd256_finish((uint32_t)params.digest_length, output, b);
|
|
Lib_Memzero0_memzero(b1, 4U, Lib_IntVector_Intrinsics_vec256, void *);
|
|
Lib_Memzero0_memzero(b, 4U, Lib_IntVector_Intrinsics_vec256, void *);
|
|
}
|
|
|