cpython/Tools/clinic/clinic.py

5145 lines
182 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Argument Clinic
# Copyright 2012-2013 by Larry Hastings.
# Licensed to the PSF under a contributor agreement.
#
import abc
import ast
import collections
import contextlib
import copy
import cpp
import functools
import hashlib
import inspect
import io
import itertools
import os
import pprint
import re
import shlex
import string
import sys
import tempfile
import textwrap
import traceback
import types
from types import *
NoneType = type(None)
# TODO:
#
# soon:
#
# * allow mixing any two of {positional-only, positional-or-keyword,
# keyword-only}
# * dict constructor uses positional-only and keyword-only
# * max and min use positional only with an optional group
# and keyword-only
#
version = '1'
NoneType = type(None)
class Unspecified:
def __repr__(self):
return '<Unspecified>'
unspecified = Unspecified()
class Null:
def __repr__(self):
return '<Null>'
NULL = Null()
class Unknown:
def __repr__(self):
return '<Unknown>'
unknown = Unknown()
sig_end_marker = '--'
_text_accumulator_nt = collections.namedtuple("_text_accumulator", "text append output")
def _text_accumulator():
text = []
def output():
s = ''.join(text)
text.clear()
return s
return _text_accumulator_nt(text, text.append, output)
text_accumulator_nt = collections.namedtuple("text_accumulator", "text append")
def text_accumulator():
"""
Creates a simple text accumulator / joiner.
Returns a pair of callables:
append, output
"append" appends a string to the accumulator.
"output" returns the contents of the accumulator
joined together (''.join(accumulator)) and
empties the accumulator.
"""
text, append, output = _text_accumulator()
return text_accumulator_nt(append, output)
def warn_or_fail(fail=False, *args, filename=None, line_number=None):
joined = " ".join([str(a) for a in args])
add, output = text_accumulator()
if fail:
add("Error")
else:
add("Warning")
if clinic:
if filename is None:
filename = clinic.filename
if getattr(clinic, 'block_parser', None) and (line_number is None):
line_number = clinic.block_parser.line_number
if filename is not None:
add(' in file "' + filename + '"')
if line_number is not None:
add(" on line " + str(line_number))
add(':\n')
add(joined)
print(output())
if fail:
sys.exit(-1)
def warn(*args, filename=None, line_number=None):
return warn_or_fail(False, *args, filename=filename, line_number=line_number)
def fail(*args, filename=None, line_number=None):
return warn_or_fail(True, *args, filename=filename, line_number=line_number)
def quoted_for_c_string(s):
for old, new in (
('\\', '\\\\'), # must be first!
('"', '\\"'),
("'", "\\'"),
):
s = s.replace(old, new)
return s
def c_repr(s):
return '"' + s + '"'
is_legal_c_identifier = re.compile('^[A-Za-z_][A-Za-z0-9_]*$').match
def is_legal_py_identifier(s):
return all(is_legal_c_identifier(field) for field in s.split('.'))
# identifiers that are okay in Python but aren't a good idea in C.
# so if they're used Argument Clinic will add "_value" to the end
# of the name in C.
c_keywords = set("""
asm auto break case char const continue default do double
else enum extern float for goto if inline int long
register return short signed sizeof static struct switch
typedef typeof union unsigned void volatile while
""".strip().split())
def ensure_legal_c_identifier(s):
# for now, just complain if what we're given isn't legal
if not is_legal_c_identifier(s):
fail("Illegal C identifier: {}".format(s))
# but if we picked a C keyword, pick something else
if s in c_keywords:
return s + "_value"
return s
def rstrip_lines(s):
text, add, output = _text_accumulator()
for line in s.split('\n'):
add(line.rstrip())
add('\n')
text.pop()
return output()
def format_escape(s):
# double up curly-braces, this string will be used
# as part of a format_map() template later
s = s.replace('{', '{{')
s = s.replace('}', '}}')
return s
def linear_format(s, **kwargs):
"""
Perform str.format-like substitution, except:
* The strings substituted must be on lines by
themselves. (This line is the "source line".)
* If the substitution text is empty, the source line
is removed in the output.
* If the field is not recognized, the original line
is passed unmodified through to the output.
* If the substitution text is not empty:
* Each line of the substituted text is indented
by the indent of the source line.
* A newline will be added to the end.
"""
add, output = text_accumulator()
for line in s.split('\n'):
indent, curly, trailing = line.partition('{')
if not curly:
add(line)
add('\n')
continue
name, curly, trailing = trailing.partition('}')
if not curly or name not in kwargs:
add(line)
add('\n')
continue
if trailing:
fail("Text found after {" + name + "} block marker! It must be on a line by itself.")
if indent.strip():
fail("Non-whitespace characters found before {" + name + "} block marker! It must be on a line by itself.")
value = kwargs[name]
if not value:
continue
value = textwrap.indent(rstrip_lines(value), indent)
add(value)
add('\n')
return output()[:-1]
def indent_all_lines(s, prefix):
"""
Returns 's', with 'prefix' prepended to all lines.
If the last line is empty, prefix is not prepended
to it. (If s is blank, returns s unchanged.)
(textwrap.indent only adds to non-blank lines.)
"""
split = s.split('\n')
last = split.pop()
final = []
for line in split:
final.append(prefix)
final.append(line)
final.append('\n')
if last:
final.append(prefix)
final.append(last)
return ''.join(final)
def suffix_all_lines(s, suffix):
"""
Returns 's', with 'suffix' appended to all lines.
If the last line is empty, suffix is not appended
to it. (If s is blank, returns s unchanged.)
"""
split = s.split('\n')
last = split.pop()
final = []
for line in split:
final.append(line)
final.append(suffix)
final.append('\n')
if last:
final.append(last)
final.append(suffix)
return ''.join(final)
def version_splitter(s):
"""Splits a version string into a tuple of integers.
The following ASCII characters are allowed, and employ
the following conversions:
a -> -3
b -> -2
c -> -1
(This permits Python-style version strings such as "1.4b3".)
"""
version = []
accumulator = []
def flush():
if not accumulator:
raise ValueError('Unsupported version string: ' + repr(s))
version.append(int(''.join(accumulator)))
accumulator.clear()
for c in s:
if c.isdigit():
accumulator.append(c)
elif c == '.':
flush()
elif c in 'abc':
flush()
version.append('abc'.index(c) - 3)
else:
raise ValueError('Illegal character ' + repr(c) + ' in version string ' + repr(s))
flush()
return tuple(version)
def version_comparitor(version1, version2):
iterator = itertools.zip_longest(version_splitter(version1), version_splitter(version2), fillvalue=0)
for i, (a, b) in enumerate(iterator):
if a < b:
return -1
if a > b:
return 1
return 0
class CRenderData:
def __init__(self):
# The C statements to declare variables.
# Should be full lines with \n eol characters.
self.declarations = []
# The C statements required to initialize the variables before the parse call.
# Should be full lines with \n eol characters.
self.initializers = []
# The C statements needed to dynamically modify the values
# parsed by the parse call, before calling the impl.
self.modifications = []
# The entries for the "keywords" array for PyArg_ParseTuple.
# Should be individual strings representing the names.
self.keywords = []
# The "format units" for PyArg_ParseTuple.
# Should be individual strings that will get
self.format_units = []
# The varargs arguments for PyArg_ParseTuple.
self.parse_arguments = []
# The parameter declarations for the impl function.
self.impl_parameters = []
# The arguments to the impl function at the time it's called.
self.impl_arguments = []
# For return converters: the name of the variable that
# should receive the value returned by the impl.
self.return_value = "return_value"
# For return converters: the code to convert the return
# value from the parse function. This is also where
# you should check the _return_value for errors, and
# "goto exit" if there are any.
self.return_conversion = []
# The C statements required to clean up after the impl call.
self.cleanup = []
class FormatCounterFormatter(string.Formatter):
"""
This counts how many instances of each formatter
"replacement string" appear in the format string.
e.g. after evaluating "string {a}, {b}, {c}, {a}"
the counts dict would now look like
{'a': 2, 'b': 1, 'c': 1}
"""
def __init__(self):
self.counts = collections.Counter()
def get_value(self, key, args, kwargs):
self.counts[key] += 1
return ''
class Language(metaclass=abc.ABCMeta):
start_line = ""
body_prefix = ""
stop_line = ""
checksum_line = ""
def __init__(self, filename):
pass
@abc.abstractmethod
def render(self, clinic, signatures):
pass
def parse_line(self, line):
pass
def validate(self):
def assert_only_one(attr, *additional_fields):
"""
Ensures that the string found at getattr(self, attr)
contains exactly one formatter replacement string for
each valid field. The list of valid fields is
['dsl_name'] extended by additional_fields.
e.g.
self.fmt = "{dsl_name} {a} {b}"
# this passes
self.assert_only_one('fmt', 'a', 'b')
# this fails, the format string has a {b} in it
self.assert_only_one('fmt', 'a')
# this fails, the format string doesn't have a {c} in it
self.assert_only_one('fmt', 'a', 'b', 'c')
# this fails, the format string has two {a}s in it,
# it must contain exactly one
self.fmt2 = '{dsl_name} {a} {a}'
self.assert_only_one('fmt2', 'a')
"""
fields = ['dsl_name']
fields.extend(additional_fields)
line = getattr(self, attr)
fcf = FormatCounterFormatter()
fcf.format(line)
def local_fail(should_be_there_but_isnt):
if should_be_there_but_isnt:
fail("{} {} must contain {{{}}} exactly once!".format(
self.__class__.__name__, attr, name))
else:
fail("{} {} must not contain {{{}}}!".format(
self.__class__.__name__, attr, name))
for name, count in fcf.counts.items():
if name in fields:
if count > 1:
local_fail(True)
else:
local_fail(False)
for name in fields:
if fcf.counts.get(name) != 1:
local_fail(True)
assert_only_one('start_line')
assert_only_one('stop_line')
field = "arguments" if "{arguments}" in self.checksum_line else "checksum"
assert_only_one('checksum_line', field)
class PythonLanguage(Language):
language = 'Python'
start_line = "#/*[{dsl_name} input]"
body_prefix = "#"
stop_line = "#[{dsl_name} start generated code]*/"
checksum_line = "#/*[{dsl_name} end generated code: {arguments}]*/"
def permute_left_option_groups(l):
"""
Given [1, 2, 3], should yield:
()
(3,)
(2, 3)
(1, 2, 3)
"""
yield tuple()
accumulator = []
for group in reversed(l):
accumulator = list(group) + accumulator
yield tuple(accumulator)
def permute_right_option_groups(l):
"""
Given [1, 2, 3], should yield:
()
(1,)
(1, 2)
(1, 2, 3)
"""
yield tuple()
accumulator = []
for group in l:
accumulator.extend(group)
yield tuple(accumulator)
def permute_optional_groups(left, required, right):
"""
Generator function that computes the set of acceptable
argument lists for the provided iterables of
argument groups. (Actually it generates a tuple of tuples.)
Algorithm: prefer left options over right options.
If required is empty, left must also be empty.
"""
required = tuple(required)
result = []
if not required:
assert not left
accumulator = []
counts = set()
for r in permute_right_option_groups(right):
for l in permute_left_option_groups(left):
t = l + required + r
if len(t) in counts:
continue
counts.add(len(t))
accumulator.append(t)
accumulator.sort(key=len)
return tuple(accumulator)
def strip_leading_and_trailing_blank_lines(s):
lines = s.rstrip().split('\n')
while lines:
line = lines[0]
if line.strip():
break
del lines[0]
return '\n'.join(lines)
@functools.lru_cache()
def normalize_snippet(s, *, indent=0):
"""
Reformats s:
* removes leading and trailing blank lines
* ensures that it does not end with a newline
* dedents so the first nonwhite character on any line is at column "indent"
"""
s = strip_leading_and_trailing_blank_lines(s)
s = textwrap.dedent(s)
if indent:
s = textwrap.indent(s, ' ' * indent)
return s
def wrap_declarations(text, length=78):
"""
A simple-minded text wrapper for C function declarations.
It views a declaration line as looking like this:
xxxxxxxx(xxxxxxxxx,xxxxxxxxx)
If called with length=30, it would wrap that line into
xxxxxxxx(xxxxxxxxx,
xxxxxxxxx)
(If the declaration has zero or one parameters, this
function won't wrap it.)
If this doesn't work properly, it's probably better to
start from scratch with a more sophisticated algorithm,
rather than try and improve/debug this dumb little function.
"""
lines = []
for line in text.split('\n'):
prefix, _, after_l_paren = line.partition('(')
if not after_l_paren:
lines.append(line)
continue
parameters, _, after_r_paren = after_l_paren.partition(')')
if not _:
lines.append(line)
continue
if ',' not in parameters:
lines.append(line)
continue
parameters = [x.strip() + ", " for x in parameters.split(',')]
prefix += "("
if len(prefix) < length:
spaces = " " * len(prefix)
else:
spaces = " " * 4
while parameters:
line = prefix
first = True
while parameters:
if (not first and
(len(line) + len(parameters[0]) > length)):
break
line += parameters.pop(0)
first = False
if not parameters:
line = line.rstrip(", ") + ")" + after_r_paren
lines.append(line.rstrip())
prefix = spaces
return "\n".join(lines)
class CLanguage(Language):
body_prefix = "#"
language = 'C'
start_line = "/*[{dsl_name} input]"
body_prefix = ""
stop_line = "[{dsl_name} start generated code]*/"
checksum_line = "/*[{dsl_name} end generated code: {arguments}]*/"
def __init__(self, filename):
super().__init__(filename)
self.cpp = cpp.Monitor(filename)
self.cpp.fail = fail
def parse_line(self, line):
self.cpp.writeline(line)
def render(self, clinic, signatures):
function = None
for o in signatures:
if isinstance(o, Function):
if function:
fail("You may specify at most one function per block.\nFound a block containing at least two:\n\t" + repr(function) + " and " + repr(o))
function = o
return self.render_function(clinic, function)
def docstring_for_c_string(self, f):
if re.search(r'[^\x00-\x7F]', f.docstring):
warn("Non-ascii character appear in docstring.")
text, add, output = _text_accumulator()
# turn docstring into a properly quoted C string
for line in f.docstring.split('\n'):
add('"')
add(quoted_for_c_string(line))
add('\\n"\n')
if text[-2] == sig_end_marker:
# If we only have a signature, add the blank line that the
# __text_signature__ getter expects to be there.
add('"\\n"')
else:
text.pop()
add('"')
return ''.join(text)
def output_templates(self, f):
parameters = list(f.parameters.values())
assert parameters
assert isinstance(parameters[0].converter, self_converter)
del parameters[0]
converters = [p.converter for p in parameters]
has_option_groups = parameters and (parameters[0].group or parameters[-1].group)
default_return_converter = (not f.return_converter or
f.return_converter.type == 'PyObject *')
new_or_init = f.kind in (METHOD_NEW, METHOD_INIT)
pos_only = min_pos = max_pos = min_kw_only = 0
for i, p in enumerate(parameters, 1):
if p.is_keyword_only():
assert not p.is_positional_only()
if not p.is_optional():
min_kw_only = i - max_pos
else:
max_pos = i
if p.is_positional_only():
pos_only = i
if not p.is_optional():
min_pos = i
requires_defining_class = any(
isinstance(p.converter, defining_class_converter)
for p in parameters)
meth_o = (len(parameters) == 1 and
parameters[0].is_positional_only() and
not converters[0].is_optional() and
not requires_defining_class and
not new_or_init)
# we have to set these things before we're done:
#
# docstring_prototype
# docstring_definition
# impl_prototype
# methoddef_define
# parser_prototype
# parser_definition
# impl_definition
# cpp_if
# cpp_endif
# methoddef_ifndef
return_value_declaration = "PyObject *return_value = NULL;"
methoddef_define = normalize_snippet("""
#define {methoddef_name} \\
{{"{name}", {methoddef_cast}{c_basename}, {methoddef_flags}, {c_basename}__doc__}},
""")
if new_or_init and not f.docstring:
docstring_prototype = docstring_definition = ''
else:
docstring_prototype = normalize_snippet("""
PyDoc_VAR({c_basename}__doc__);
""")
docstring_definition = normalize_snippet("""
PyDoc_STRVAR({c_basename}__doc__,
{docstring});
""")
impl_definition = normalize_snippet("""
static {impl_return_type}
{c_basename}_impl({impl_parameters})
""")
impl_prototype = parser_prototype = parser_definition = None
parser_prototype_keyword = normalize_snippet("""
static PyObject *
{c_basename}({self_type}{self_name}, PyObject *args, PyObject *kwargs)
""")
parser_prototype_varargs = normalize_snippet("""
static PyObject *
{c_basename}({self_type}{self_name}, PyObject *args)
""")
parser_prototype_fastcall = normalize_snippet("""
static PyObject *
{c_basename}({self_type}{self_name}, PyObject *const *args, Py_ssize_t nargs)
""")
parser_prototype_fastcall_keywords = normalize_snippet("""
static PyObject *
{c_basename}({self_type}{self_name}, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
""")
parser_prototype_def_class = normalize_snippet("""
static PyObject *
{c_basename}({self_type}{self_name}, PyTypeObject *{defining_class_name}, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames)
""")
# parser_body_fields remembers the fields passed in to the
# previous call to parser_body. this is used for an awful hack.
parser_body_fields = ()
parser_body_declarations = ''
def parser_body(prototype, *fields, declarations=''):
nonlocal parser_body_fields, parser_body_declarations
add, output = text_accumulator()
add(prototype)
parser_body_fields = fields
parser_body_declarations = declarations
fields = list(fields)
fields.insert(0, normalize_snippet("""
{{
{return_value_declaration}
{parser_declarations}
{declarations}
{initializers}
""") + "\n")
# just imagine--your code is here in the middle
fields.append(normalize_snippet("""
{modifications}
{return_value} = {c_basename}_impl({impl_arguments});
{return_conversion}
{exit_label}
{cleanup}
return return_value;
}}
"""))
for field in fields:
add('\n')
add(field)
return linear_format(output(), parser_declarations=declarations)
if not parameters:
# no parameters, METH_NOARGS
flags = "METH_NOARGS"
parser_prototype = normalize_snippet("""
static PyObject *
{c_basename}({self_type}{self_name}, PyObject *Py_UNUSED(ignored))
""")
parser_definition = parser_prototype
if default_return_converter:
parser_definition = parser_prototype + '\n' + normalize_snippet("""
{{
return {c_basename}_impl({impl_arguments});
}}
""")
else:
parser_definition = parser_body(parser_prototype)
elif meth_o:
flags = "METH_O"
if (isinstance(converters[0], object_converter) and
converters[0].format_unit == 'O'):
meth_o_prototype = normalize_snippet("""
static PyObject *
{c_basename}({impl_parameters})
""")
if default_return_converter:
# maps perfectly to METH_O, doesn't need a return converter.
# so we skip making a parse function
# and call directly into the impl function.
impl_prototype = parser_prototype = parser_definition = ''
impl_definition = meth_o_prototype
else:
# SLIGHT HACK
# use impl_parameters for the parser here!
parser_prototype = meth_o_prototype
parser_definition = parser_body(parser_prototype)
else:
argname = 'arg'
if parameters[0].name == argname:
argname += '_'
parser_prototype = normalize_snippet("""
static PyObject *
{c_basename}({self_type}{self_name}, PyObject *%s)
""" % argname)
displayname = parameters[0].get_displayname(0)
parsearg = converters[0].parse_arg(argname, displayname)
if parsearg is None:
parsearg = """
if (!PyArg_Parse(%s, "{format_units}:{name}", {parse_arguments})) {{
goto exit;
}}
""" % argname
parser_definition = parser_body(parser_prototype,
normalize_snippet(parsearg, indent=4))
elif has_option_groups:
# positional parameters with option groups
# (we have to generate lots of PyArg_ParseTuple calls
# in a big switch statement)
flags = "METH_VARARGS"
parser_prototype = parser_prototype_varargs
parser_definition = parser_body(parser_prototype, ' {option_group_parsing}')
elif not requires_defining_class and pos_only == len(parameters):
if not new_or_init:
# positional-only, but no option groups
# we only need one call to _PyArg_ParseStack
flags = "METH_FASTCALL"
parser_prototype = parser_prototype_fastcall
nargs = 'nargs'
argname_fmt = 'args[%d]'
else:
# positional-only, but no option groups
# we only need one call to PyArg_ParseTuple
flags = "METH_VARARGS"
parser_prototype = parser_prototype_varargs
nargs = 'PyTuple_GET_SIZE(args)'
argname_fmt = 'PyTuple_GET_ITEM(args, %d)'
parser_code = [normalize_snippet("""
if (!_PyArg_CheckPositional("{name}", %s, %d, %d)) {{
goto exit;
}}
""" % (nargs, min_pos, max_pos), indent=4)]
has_optional = False
for i, p in enumerate(parameters):
displayname = p.get_displayname(i+1)
parsearg = p.converter.parse_arg(argname_fmt % i, displayname)
if parsearg is None:
#print('Cannot convert %s %r for %s' % (p.converter.__class__.__name__, p.converter.format_unit, p.converter.name), file=sys.stderr)
parser_code = None
break
if has_optional or p.is_optional():
has_optional = True
parser_code.append(normalize_snippet("""
if (%s < %d) {{
goto skip_optional;
}}
""", indent=4) % (nargs, i + 1))
parser_code.append(normalize_snippet(parsearg, indent=4))
if parser_code is not None:
if has_optional:
parser_code.append("skip_optional:")
else:
if not new_or_init:
parser_code = [normalize_snippet("""
if (!_PyArg_ParseStack(args, nargs, "{format_units}:{name}",
{parse_arguments})) {{
goto exit;
}}
""", indent=4)]
else:
parser_code = [normalize_snippet("""
if (!PyArg_ParseTuple(args, "{format_units}:{name}",
{parse_arguments})) {{
goto exit;
}}
""", indent=4)]
parser_definition = parser_body(parser_prototype, *parser_code)
else:
has_optional_kw = (max(pos_only, min_pos) + min_kw_only < len(converters))
if not new_or_init:
flags = "METH_FASTCALL|METH_KEYWORDS"
parser_prototype = parser_prototype_fastcall_keywords
argname_fmt = 'args[%d]'
declarations = normalize_snippet("""
static const char * const _keywords[] = {{{keywords} NULL}};
static _PyArg_Parser _parser = {{NULL, _keywords, "{name}", 0}};
PyObject *argsbuf[%s];
""" % len(converters))
if has_optional_kw:
declarations += "\nPy_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - %d;" % (min_pos + min_kw_only)
parser_code = [normalize_snippet("""
args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, %d, %d, %d, argsbuf);
if (!args) {{
goto exit;
}}
""" % (min_pos, max_pos, min_kw_only), indent=4)]
else:
# positional-or-keyword arguments
flags = "METH_VARARGS|METH_KEYWORDS"
parser_prototype = parser_prototype_keyword
argname_fmt = 'fastargs[%d]'
declarations = normalize_snippet("""
static const char * const _keywords[] = {{{keywords} NULL}};
static _PyArg_Parser _parser = {{NULL, _keywords, "{name}", 0}};
PyObject *argsbuf[%s];
PyObject * const *fastargs;
Py_ssize_t nargs = PyTuple_GET_SIZE(args);
""" % len(converters))
if has_optional_kw:
declarations += "\nPy_ssize_t noptargs = nargs + (kwargs ? PyDict_GET_SIZE(kwargs) : 0) - %d;" % (min_pos + min_kw_only)
parser_code = [normalize_snippet("""
fastargs = _PyArg_UnpackKeywords(_PyTuple_CAST(args)->ob_item, nargs, kwargs, NULL, &_parser, %d, %d, %d, argsbuf);
if (!fastargs) {{
goto exit;
}}
""" % (min_pos, max_pos, min_kw_only), indent=4)]
if requires_defining_class:
flags = 'METH_METHOD|' + flags
parser_prototype = parser_prototype_def_class
add_label = None
for i, p in enumerate(parameters):
displayname = p.get_displayname(i+1)
parsearg = p.converter.parse_arg(argname_fmt % i, displayname)
if parsearg is None:
#print('Cannot convert %s %r for %s' % (p.converter.__class__.__name__, p.converter.format_unit, p.converter.name), file=sys.stderr)
parser_code = None
break
if add_label and (i == pos_only or i == max_pos):
parser_code.append("%s:" % add_label)
add_label = None
if not p.is_optional():
parser_code.append(normalize_snippet(parsearg, indent=4))
elif i < pos_only:
add_label = 'skip_optional_posonly'
parser_code.append(normalize_snippet("""
if (nargs < %d) {{
goto %s;
}}
""" % (i + 1, add_label), indent=4))
if has_optional_kw:
parser_code.append(normalize_snippet("""
noptargs--;
""", indent=4))
parser_code.append(normalize_snippet(parsearg, indent=4))
else:
if i < max_pos:
label = 'skip_optional_pos'
first_opt = max(min_pos, pos_only)
else:
label = 'skip_optional_kwonly'
first_opt = max_pos + min_kw_only
if i == first_opt:
add_label = label
parser_code.append(normalize_snippet("""
if (!noptargs) {{
goto %s;
}}
""" % add_label, indent=4))
if i + 1 == len(parameters):
parser_code.append(normalize_snippet(parsearg, indent=4))
else:
add_label = label
parser_code.append(normalize_snippet("""
if (%s) {{
""" % (argname_fmt % i), indent=4))
parser_code.append(normalize_snippet(parsearg, indent=8))
parser_code.append(normalize_snippet("""
if (!--noptargs) {{
goto %s;
}}
}}
""" % add_label, indent=4))
if parser_code is not None:
if add_label:
parser_code.append("%s:" % add_label)
else:
declarations = (
'static const char * const _keywords[] = {{{keywords} NULL}};\n'
'static _PyArg_Parser _parser = {{"{format_units}:{name}", _keywords, 0}};')
if not new_or_init:
parser_code = [normalize_snippet("""
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser{parse_arguments_comma}
{parse_arguments})) {{
goto exit;
}}
""", indent=4)]
else:
parser_code = [normalize_snippet("""
if (!_PyArg_ParseTupleAndKeywordsFast(args, kwargs, &_parser,
{parse_arguments})) {{
goto exit;
}}
""", indent=4)]
parser_definition = parser_body(parser_prototype, *parser_code,
declarations=declarations)
if new_or_init:
methoddef_define = ''
if f.kind == METHOD_NEW:
parser_prototype = parser_prototype_keyword
else:
return_value_declaration = "int return_value = -1;"
parser_prototype = normalize_snippet("""
static int
{c_basename}({self_type}{self_name}, PyObject *args, PyObject *kwargs)
""")
fields = list(parser_body_fields)
parses_positional = 'METH_NOARGS' not in flags
parses_keywords = 'METH_KEYWORDS' in flags
if parses_keywords:
assert parses_positional
if requires_defining_class:
raise ValueError("Slot methods cannot access their defining class.")
if not parses_keywords:
fields.insert(0, normalize_snippet("""
if ({self_type_check}!_PyArg_NoKeywords("{name}", kwargs)) {{
goto exit;
}}
""", indent=4))
if not parses_positional:
fields.insert(0, normalize_snippet("""
if ({self_type_check}!_PyArg_NoPositional("{name}", args)) {{
goto exit;
}}
""", indent=4))
parser_definition = parser_body(parser_prototype, *fields,
declarations=parser_body_declarations)
if flags in ('METH_NOARGS', 'METH_O', 'METH_VARARGS'):
methoddef_cast = "(PyCFunction)"
else:
methoddef_cast = "(PyCFunction)(void(*)(void))"
if f.methoddef_flags:
flags += '|' + f.methoddef_flags
methoddef_define = methoddef_define.replace('{methoddef_flags}', flags)
methoddef_define = methoddef_define.replace('{methoddef_cast}', methoddef_cast)
methoddef_ifndef = ''
conditional = self.cpp.condition()
if not conditional:
cpp_if = cpp_endif = ''
else:
cpp_if = "#if " + conditional
cpp_endif = "#endif /* " + conditional + " */"
if methoddef_define and f.full_name not in clinic.ifndef_symbols:
clinic.ifndef_symbols.add(f.full_name)
methoddef_ifndef = normalize_snippet("""
#ifndef {methoddef_name}
#define {methoddef_name}
#endif /* !defined({methoddef_name}) */
""")
# add ';' to the end of parser_prototype and impl_prototype
# (they mustn't be None, but they could be an empty string.)
assert parser_prototype is not None
if parser_prototype:
assert not parser_prototype.endswith(';')
parser_prototype += ';'
if impl_prototype is None:
impl_prototype = impl_definition
if impl_prototype:
impl_prototype += ";"
parser_definition = parser_definition.replace("{return_value_declaration}", return_value_declaration)
d = {
"docstring_prototype" : docstring_prototype,
"docstring_definition" : docstring_definition,
"impl_prototype" : impl_prototype,
"methoddef_define" : methoddef_define,
"parser_prototype" : parser_prototype,
"parser_definition" : parser_definition,
"impl_definition" : impl_definition,
"cpp_if" : cpp_if,
"cpp_endif" : cpp_endif,
"methoddef_ifndef" : methoddef_ifndef,
}
# make sure we didn't forget to assign something,
# and wrap each non-empty value in \n's
d2 = {}
for name, value in d.items():
assert value is not None, "got a None value for template " + repr(name)
if value:
value = '\n' + value + '\n'
d2[name] = value
return d2
@staticmethod
def group_to_variable_name(group):
adjective = "left_" if group < 0 else "right_"
return "group_" + adjective + str(abs(group))
def render_option_group_parsing(self, f, template_dict):
# positional only, grouped, optional arguments!
# can be optional on the left or right.
# here's an example:
#
# [ [ [ A1 A2 ] B1 B2 B3 ] C1 C2 ] D1 D2 D3 [ E1 E2 E3 [ F1 F2 F3 ] ]
#
# Here group D are required, and all other groups are optional.
# (Group D's "group" is actually None.)
# We can figure out which sets of arguments we have based on
# how many arguments are in the tuple.
#
# Note that you need to count up on both sides. For example,
# you could have groups C+D, or C+D+E, or C+D+E+F.
#
# What if the number of arguments leads us to an ambiguous result?
# Clinic prefers groups on the left. So in the above example,
# five arguments would map to B+C, not C+D.
add, output = text_accumulator()
parameters = list(f.parameters.values())
if isinstance(parameters[0].converter, self_converter):
del parameters[0]
groups = []
group = None
left = []
right = []
required = []
last = unspecified
for p in parameters:
group_id = p.group
if group_id != last:
last = group_id
group = []
if group_id < 0:
left.append(group)
elif group_id == 0:
group = required
else:
right.append(group)
group.append(p)
count_min = sys.maxsize
count_max = -1
add("switch (PyTuple_GET_SIZE(args)) {\n")
for subset in permute_optional_groups(left, required, right):
count = len(subset)
count_min = min(count_min, count)
count_max = max(count_max, count)
if count == 0:
add(""" case 0:
break;
""")
continue
group_ids = {p.group for p in subset} # eliminate duplicates
d = {}
d['count'] = count
d['name'] = f.name
d['format_units'] = "".join(p.converter.format_unit for p in subset)
parse_arguments = []
for p in subset:
p.converter.parse_argument(parse_arguments)
d['parse_arguments'] = ", ".join(parse_arguments)
group_ids.discard(0)
lines = [self.group_to_variable_name(g) + " = 1;" for g in group_ids]
lines = "\n".join(lines)
s = """\
case {count}:
if (!PyArg_ParseTuple(args, "{format_units}:{name}", {parse_arguments})) {{
goto exit;
}}
{group_booleans}
break;
"""
s = linear_format(s, group_booleans=lines)
s = s.format_map(d)
add(s)
add(" default:\n")
s = ' PyErr_SetString(PyExc_TypeError, "{} requires {} to {} arguments");\n'
add(s.format(f.full_name, count_min, count_max))
add(' goto exit;\n')
add("}")
template_dict['option_group_parsing'] = format_escape(output())
def render_function(self, clinic, f):
if not f:
return ""
add, output = text_accumulator()
data = CRenderData()
assert f.parameters, "We should always have a 'self' at this point!"
parameters = f.render_parameters
converters = [p.converter for p in parameters]
templates = self.output_templates(f)
f_self = parameters[0]
selfless = parameters[1:]
assert isinstance(f_self.converter, self_converter), "No self parameter in " + repr(f.full_name) + "!"
last_group = 0
first_optional = len(selfless)
positional = selfless and selfless[-1].is_positional_only()
new_or_init = f.kind in (METHOD_NEW, METHOD_INIT)
default_return_converter = (not f.return_converter or
f.return_converter.type == 'PyObject *')
has_option_groups = False
# offset i by -1 because first_optional needs to ignore self
for i, p in enumerate(parameters, -1):
c = p.converter
if (i != -1) and (p.default is not unspecified):
first_optional = min(first_optional, i)
# insert group variable
group = p.group
if last_group != group:
last_group = group
if group:
group_name = self.group_to_variable_name(group)
data.impl_arguments.append(group_name)
data.declarations.append("int " + group_name + " = 0;")
data.impl_parameters.append("int " + group_name)
has_option_groups = True
c.render(p, data)
if has_option_groups and (not positional):
fail("You cannot use optional groups ('[' and ']')\nunless all parameters are positional-only ('/').")
# HACK
# when we're METH_O, but have a custom return converter,
# we use "impl_parameters" for the parsing function
# because that works better. but that means we must
# suppress actually declaring the impl's parameters
# as variables in the parsing function. but since it's
# METH_O, we have exactly one anyway, so we know exactly
# where it is.
if ("METH_O" in templates['methoddef_define'] and
'{impl_parameters}' in templates['parser_prototype']):
data.declarations.pop(0)
template_dict = {}
full_name = f.full_name
template_dict['full_name'] = full_name
if new_or_init:
name = f.cls.name
else:
name = f.name
template_dict['name'] = name
if f.c_basename:
c_basename = f.c_basename
else:
fields = full_name.split(".")
if fields[-1] == '__new__':
fields.pop()
c_basename = "_".join(fields)
template_dict['c_basename'] = c_basename
methoddef_name = "{}_METHODDEF".format(c_basename.upper())
template_dict['methoddef_name'] = methoddef_name
template_dict['docstring'] = self.docstring_for_c_string(f)
template_dict['self_name'] = template_dict['self_type'] = template_dict['self_type_check'] = ''
for converter in converters:
converter.set_template_dict(template_dict)
f.return_converter.render(f, data)
template_dict['impl_return_type'] = f.return_converter.type
template_dict['declarations'] = format_escape("\n".join(data.declarations))
template_dict['initializers'] = "\n\n".join(data.initializers)
template_dict['modifications'] = '\n\n'.join(data.modifications)
template_dict['keywords'] = ' '.join('"' + k + '",' for k in data.keywords)
template_dict['format_units'] = ''.join(data.format_units)
template_dict['parse_arguments'] = ', '.join(data.parse_arguments)
if data.parse_arguments:
template_dict['parse_arguments_comma'] = ',';
else:
template_dict['parse_arguments_comma'] = '';
template_dict['impl_parameters'] = ", ".join(data.impl_parameters)
template_dict['impl_arguments'] = ", ".join(data.impl_arguments)
template_dict['return_conversion'] = format_escape("".join(data.return_conversion).rstrip())
template_dict['cleanup'] = format_escape("".join(data.cleanup))
template_dict['return_value'] = data.return_value
# used by unpack tuple code generator
ignore_self = -1 if isinstance(converters[0], self_converter) else 0
unpack_min = first_optional
unpack_max = len(selfless)
template_dict['unpack_min'] = str(unpack_min)
template_dict['unpack_max'] = str(unpack_max)
if has_option_groups:
self.render_option_group_parsing(f, template_dict)
# buffers, not destination
for name, destination in clinic.destination_buffers.items():
template = templates[name]
if has_option_groups:
template = linear_format(template,
option_group_parsing=template_dict['option_group_parsing'])
template = linear_format(template,
declarations=template_dict['declarations'],
return_conversion=template_dict['return_conversion'],
initializers=template_dict['initializers'],
modifications=template_dict['modifications'],
cleanup=template_dict['cleanup'],
)
# Only generate the "exit:" label
# if we have any gotos
need_exit_label = "goto exit;" in template
template = linear_format(template,
exit_label="exit:" if need_exit_label else ''
)
s = template.format_map(template_dict)
# mild hack:
# reflow long impl declarations
if name in {"impl_prototype", "impl_definition"}:
s = wrap_declarations(s)
if clinic.line_prefix:
s = indent_all_lines(s, clinic.line_prefix)
if clinic.line_suffix:
s = suffix_all_lines(s, clinic.line_suffix)
destination.append(s)
return clinic.get_destination('block').dump()
@contextlib.contextmanager
def OverrideStdioWith(stdout):
saved_stdout = sys.stdout
sys.stdout = stdout
try:
yield
finally:
assert sys.stdout is stdout
sys.stdout = saved_stdout
def create_regex(before, after, word=True, whole_line=True):
"""Create an re object for matching marker lines."""
group_re = r"\w+" if word else ".+"
pattern = r'{}({}){}'
if whole_line:
pattern = '^' + pattern + '$'
pattern = pattern.format(re.escape(before), group_re, re.escape(after))
return re.compile(pattern)
class Block:
r"""
Represents a single block of text embedded in
another file. If dsl_name is None, the block represents
verbatim text, raw original text from the file, in
which case "input" will be the only non-false member.
If dsl_name is not None, the block represents a Clinic
block.
input is always str, with embedded \n characters.
input represents the original text from the file;
if it's a Clinic block, it is the original text with
the body_prefix and redundant leading whitespace removed.
dsl_name is either str or None. If str, it's the text
found on the start line of the block between the square
brackets.
signatures is either list or None. If it's a list,
it may only contain clinic.Module, clinic.Class, and
clinic.Function objects. At the moment it should
contain at most one of each.
output is either str or None. If str, it's the output
from this block, with embedded '\n' characters.
indent is either str or None. It's the leading whitespace
that was found on every line of input. (If body_prefix is
not empty, this is the indent *after* removing the
body_prefix.)
preindent is either str or None. It's the whitespace that
was found in front of every line of input *before* the
"body_prefix" (see the Language object). If body_prefix
is empty, preindent must always be empty too.
To illustrate indent and preindent: Assume that '_'
represents whitespace. If the block processed was in a
Python file, and looked like this:
____#/*[python]
____#__for a in range(20):
____#____print(a)
____#[python]*/
"preindent" would be "____" and "indent" would be "__".
"""
def __init__(self, input, dsl_name=None, signatures=None, output=None, indent='', preindent=''):
assert isinstance(input, str)
self.input = input
self.dsl_name = dsl_name
self.signatures = signatures or []
self.output = output
self.indent = indent
self.preindent = preindent
def __repr__(self):
dsl_name = self.dsl_name or "text"
def summarize(s):
s = repr(s)
if len(s) > 30:
return s[:26] + "..." + s[0]
return s
return "".join((
"<Block ", dsl_name, " input=", summarize(self.input), " output=", summarize(self.output), ">"))
class BlockParser:
"""
Block-oriented parser for Argument Clinic.
Iterator, yields Block objects.
"""
def __init__(self, input, language, *, verify=True):
"""
"input" should be a str object
with embedded \n characters.
"language" should be a Language object.
"""
language.validate()
self.input = collections.deque(reversed(input.splitlines(keepends=True)))
self.block_start_line_number = self.line_number = 0
self.language = language
before, _, after = language.start_line.partition('{dsl_name}')
assert _ == '{dsl_name}'
self.find_start_re = create_regex(before, after, whole_line=False)
self.start_re = create_regex(before, after)
self.verify = verify
self.last_checksum_re = None
self.last_dsl_name = None
self.dsl_name = None
self.first_block = True
def __iter__(self):
return self
def __next__(self):
while True:
if not self.input:
raise StopIteration
if self.dsl_name:
return_value = self.parse_clinic_block(self.dsl_name)
self.dsl_name = None
self.first_block = False
return return_value
block = self.parse_verbatim_block()
if self.first_block and not block.input:
continue
self.first_block = False
return block
def is_start_line(self, line):
match = self.start_re.match(line.lstrip())
return match.group(1) if match else None
def _line(self, lookahead=False):
self.line_number += 1
line = self.input.pop()
if not lookahead:
self.language.parse_line(line)
return line
def parse_verbatim_block(self):
add, output = text_accumulator()
self.block_start_line_number = self.line_number
while self.input:
line = self._line()
dsl_name = self.is_start_line(line)
if dsl_name:
self.dsl_name = dsl_name
break
add(line)
return Block(output())
def parse_clinic_block(self, dsl_name):
input_add, input_output = text_accumulator()
self.block_start_line_number = self.line_number + 1
stop_line = self.language.stop_line.format(dsl_name=dsl_name)
body_prefix = self.language.body_prefix.format(dsl_name=dsl_name)
def is_stop_line(line):
# make sure to recognize stop line even if it
# doesn't end with EOL (it could be the very end of the file)
if not line.startswith(stop_line):
return False
remainder = line[len(stop_line):]
return (not remainder) or remainder.isspace()
# consume body of program
while self.input:
line = self._line()
if is_stop_line(line) or self.is_start_line(line):
break
if body_prefix:
line = line.lstrip()
assert line.startswith(body_prefix)
line = line[len(body_prefix):]
input_add(line)
# consume output and checksum line, if present.
if self.last_dsl_name == dsl_name:
checksum_re = self.last_checksum_re
else:
before, _, after = self.language.checksum_line.format(dsl_name=dsl_name, arguments='{arguments}').partition('{arguments}')
assert _ == '{arguments}'
checksum_re = create_regex(before, after, word=False)
self.last_dsl_name = dsl_name
self.last_checksum_re = checksum_re
# scan forward for checksum line
output_add, output_output = text_accumulator()
arguments = None
while self.input:
line = self._line(lookahead=True)
match = checksum_re.match(line.lstrip())
arguments = match.group(1) if match else None
if arguments:
break
output_add(line)
if self.is_start_line(line):
break
output = output_output()
if arguments:
d = {}
for field in shlex.split(arguments):
name, equals, value = field.partition('=')
if not equals:
fail("Mangled Argument Clinic marker line: {!r}".format(line))
d[name.strip()] = value.strip()
if self.verify:
if 'input' in d:
checksum = d['output']
input_checksum = d['input']
else:
checksum = d['checksum']
input_checksum = None
computed = compute_checksum(output, len(checksum))
if checksum != computed:
fail("Checksum mismatch!\nExpected: {}\nComputed: {}\n"
"Suggested fix: remove all generated code including "
"the end marker,\n"
"or use the '-f' option."
.format(checksum, computed))
else:
# put back output
output_lines = output.splitlines(keepends=True)
self.line_number -= len(output_lines)
self.input.extend(reversed(output_lines))
output = None
return Block(input_output(), dsl_name, output=output)
class BlockPrinter:
def __init__(self, language, f=None):
self.language = language
self.f = f or io.StringIO()
def print_block(self, block):
input = block.input
output = block.output
dsl_name = block.dsl_name
write = self.f.write
assert not ((dsl_name == None) ^ (output == None)), "you must specify dsl_name and output together, dsl_name " + repr(dsl_name)
if not dsl_name:
write(input)
return
write(self.language.start_line.format(dsl_name=dsl_name))
write("\n")
body_prefix = self.language.body_prefix.format(dsl_name=dsl_name)
if not body_prefix:
write(input)
else:
for line in input.split('\n'):
write(body_prefix)
write(line)
write("\n")
write(self.language.stop_line.format(dsl_name=dsl_name))
write("\n")
input = ''.join(block.input)
output = ''.join(block.output)
if output:
if not output.endswith('\n'):
output += '\n'
write(output)
arguments="output={} input={}".format(compute_checksum(output, 16), compute_checksum(input, 16))
write(self.language.checksum_line.format(dsl_name=dsl_name, arguments=arguments))
write("\n")
def write(self, text):
self.f.write(text)
class BufferSeries:
"""
Behaves like a "defaultlist".
When you ask for an index that doesn't exist yet,
the object grows the list until that item exists.
So o[n] will always work.
Supports negative indices for actual items.
e.g. o[-1] is an element immediately preceding o[0].
"""
def __init__(self):
self._start = 0
self._array = []
self._constructor = _text_accumulator
def __getitem__(self, i):
i -= self._start
if i < 0:
self._start += i
prefix = [self._constructor() for x in range(-i)]
self._array = prefix + self._array
i = 0
while i >= len(self._array):
self._array.append(self._constructor())
return self._array[i]
def clear(self):
for ta in self._array:
ta._text.clear()
def dump(self):
texts = [ta.output() for ta in self._array]
return "".join(texts)
class Destination:
def __init__(self, name, type, clinic, *args):
self.name = name
self.type = type
self.clinic = clinic
valid_types = ('buffer', 'file', 'suppress')
if type not in valid_types:
fail("Invalid destination type " + repr(type) + " for " + name + " , must be " + ', '.join(valid_types))
extra_arguments = 1 if type == "file" else 0
if len(args) < extra_arguments:
fail("Not enough arguments for destination " + name + " new " + type)
if len(args) > extra_arguments:
fail("Too many arguments for destination " + name + " new " + type)
if type =='file':
d = {}
filename = clinic.filename
d['path'] = filename
dirname, basename = os.path.split(filename)
if not dirname:
dirname = '.'
d['dirname'] = dirname
d['basename'] = basename
d['basename_root'], d['basename_extension'] = os.path.splitext(filename)
self.filename = args[0].format_map(d)
self.buffers = BufferSeries()
def __repr__(self):
if self.type == 'file':
file_repr = " " + repr(self.filename)
else:
file_repr = ''
return "".join(("<Destination ", self.name, " ", self.type, file_repr, ">"))
def clear(self):
if self.type != 'buffer':
fail("Can't clear destination" + self.name + " , it's not of type buffer")
self.buffers.clear()
def dump(self):
return self.buffers.dump()
# maps strings to Language objects.
# "languages" maps the name of the language ("C", "Python").
# "extensions" maps the file extension ("c", "py").
languages = { 'C': CLanguage, 'Python': PythonLanguage }
extensions = { name: CLanguage for name in "c cc cpp cxx h hh hpp hxx".split() }
extensions['py'] = PythonLanguage
# maps strings to callables.
# these callables must be of the form:
# def foo(name, default, *, ...)
# The callable may have any number of keyword-only parameters.
# The callable must return a CConverter object.
# The callable should not call builtins.print.
converters = {}
# maps strings to callables.
# these callables follow the same rules as those for "converters" above.
# note however that they will never be called with keyword-only parameters.
legacy_converters = {}
# maps strings to callables.
# these callables must be of the form:
# def foo(*, ...)
# The callable may have any number of keyword-only parameters.
# The callable must return a CConverter object.
# The callable should not call builtins.print.
return_converters = {}
def write_file(filename, new_contents):
try:
with open(filename, 'r', encoding="utf-8") as fp:
old_contents = fp.read()
if old_contents == new_contents:
# no change: avoid modifying the file modification time
return
except FileNotFoundError:
pass
# Atomic write using a temporary file and os.replace()
filename_new = f"{filename}.new"
with open(filename_new, "w", encoding="utf-8") as fp:
fp.write(new_contents)
try:
os.replace(filename_new, filename)
except:
os.unlink(filename_new)
raise
clinic = None
class Clinic:
presets_text = """
preset block
everything block
methoddef_ifndef buffer 1
docstring_prototype suppress
parser_prototype suppress
cpp_if suppress
cpp_endif suppress
preset original
everything block
methoddef_ifndef buffer 1
docstring_prototype suppress
parser_prototype suppress
cpp_if suppress
cpp_endif suppress
preset file
everything file
methoddef_ifndef file 1
docstring_prototype suppress
parser_prototype suppress
impl_definition block
preset buffer
everything buffer
methoddef_ifndef buffer 1
impl_definition block
docstring_prototype suppress
impl_prototype suppress
parser_prototype suppress
preset partial-buffer
everything buffer
methoddef_ifndef buffer 1
docstring_prototype block
impl_prototype suppress
methoddef_define block
parser_prototype block
impl_definition block
"""
def __init__(self, language, printer=None, *, verify=True, filename=None):
# maps strings to Parser objects.
# (instantiated from the "parsers" global.)
self.parsers = {}
self.language = language
if printer:
fail("Custom printers are broken right now")
self.printer = printer or BlockPrinter(language)
self.verify = verify
self.filename = filename
self.modules = collections.OrderedDict()
self.classes = collections.OrderedDict()
self.functions = []
self.line_prefix = self.line_suffix = ''
self.destinations = {}
self.add_destination("block", "buffer")
self.add_destination("suppress", "suppress")
self.add_destination("buffer", "buffer")
if filename:
self.add_destination("file", "file", "{dirname}/clinic/{basename}.h")
d = self.get_destination_buffer
self.destination_buffers = collections.OrderedDict((
('cpp_if', d('file')),
('docstring_prototype', d('suppress')),
('docstring_definition', d('file')),
('methoddef_define', d('file')),
('impl_prototype', d('file')),
('parser_prototype', d('suppress')),
('parser_definition', d('file')),
('cpp_endif', d('file')),
('methoddef_ifndef', d('file', 1)),
('impl_definition', d('block')),
))
self.destination_buffers_stack = []
self.ifndef_symbols = set()
self.presets = {}
preset = None
for line in self.presets_text.strip().split('\n'):
line = line.strip()
if not line:
continue
name, value, *options = line.split()
if name == 'preset':
self.presets[value] = preset = collections.OrderedDict()
continue
if len(options):
index = int(options[0])
else:
index = 0
buffer = self.get_destination_buffer(value, index)
if name == 'everything':
for name in self.destination_buffers:
preset[name] = buffer
continue
assert name in self.destination_buffers
preset[name] = buffer
global clinic
clinic = self
def add_destination(self, name, type, *args):
if name in self.destinations:
fail("Destination already exists: " + repr(name))
self.destinations[name] = Destination(name, type, self, *args)
def get_destination(self, name):
d = self.destinations.get(name)
if not d:
fail("Destination does not exist: " + repr(name))
return d
def get_destination_buffer(self, name, item=0):
d = self.get_destination(name)
return d.buffers[item]
def parse(self, input):
printer = self.printer
self.block_parser = BlockParser(input, self.language, verify=self.verify)
for block in self.block_parser:
dsl_name = block.dsl_name
if dsl_name:
if dsl_name not in self.parsers:
assert dsl_name in parsers, "No parser to handle {!r} block.".format(dsl_name)
self.parsers[dsl_name] = parsers[dsl_name](self)
parser = self.parsers[dsl_name]
try:
parser.parse(block)
except Exception:
fail('Exception raised during parsing:\n' +
traceback.format_exc().rstrip())
printer.print_block(block)
second_pass_replacements = {}
# these are destinations not buffers
for name, destination in self.destinations.items():
if destination.type == 'suppress':
continue
output = destination.dump()
if output:
block = Block("", dsl_name="clinic", output=output)
if destination.type == 'buffer':
block.input = "dump " + name + "\n"
warn("Destination buffer " + repr(name) + " not empty at end of file, emptying.")
printer.write("\n")
printer.print_block(block)
continue
if destination.type == 'file':
try:
dirname = os.path.dirname(destination.filename)
try:
os.makedirs(dirname)
except FileExistsError:
if not os.path.isdir(dirname):
fail("Can't write to destination {}, "
"can't make directory {}!".format(
destination.filename, dirname))
if self.verify:
with open(destination.filename, "rt") as f:
parser_2 = BlockParser(f.read(), language=self.language)
blocks = list(parser_2)
if (len(blocks) != 1) or (blocks[0].input != 'preserve\n'):
fail("Modified destination file " + repr(destination.filename) + ", not overwriting!")
except FileNotFoundError:
pass
block.input = 'preserve\n'
printer_2 = BlockPrinter(self.language)
printer_2.print_block(block)
write_file(destination.filename, printer_2.f.getvalue())
continue
text = printer.f.getvalue()
if second_pass_replacements:
printer_2 = BlockPrinter(self.language)
parser_2 = BlockParser(text, self.language)
changed = False
for block in parser_2:
if block.dsl_name:
for id, replacement in second_pass_replacements.items():
if id in block.output:
changed = True
block.output = block.output.replace(id, replacement)
printer_2.print_block(block)
if changed:
text = printer_2.f.getvalue()
return text
def _module_and_class(self, fields):
"""
fields should be an iterable of field names.
returns a tuple of (module, class).
the module object could actually be self (a clinic object).
this function is only ever used to find the parent of where
a new class/module should go.
"""
in_classes = False
parent = module = self
cls = None
so_far = []
for field in fields:
so_far.append(field)
if not in_classes:
child = parent.modules.get(field)
if child:
parent = module = child
continue
in_classes = True
if not hasattr(parent, 'classes'):
return module, cls
child = parent.classes.get(field)
if not child:
fail('Parent class or module ' + '.'.join(so_far) + " does not exist.")
cls = parent = child
return module, cls
def parse_file(filename, *, verify=True, output=None):
if not output:
output = filename
extension = os.path.splitext(filename)[1][1:]
if not extension:
fail("Can't extract file type for file " + repr(filename))
try:
language = extensions[extension](filename)
except KeyError:
fail("Can't identify file type for file " + repr(filename))
with open(filename, 'r', encoding="utf-8") as f:
raw = f.read()
# exit quickly if there are no clinic markers in the file
find_start_re = BlockParser("", language).find_start_re
if not find_start_re.search(raw):
return
clinic = Clinic(language, verify=verify, filename=filename)
cooked = clinic.parse(raw)
write_file(output, cooked)
def compute_checksum(input, length=None):
input = input or ''
s = hashlib.sha1(input.encode('utf-8')).hexdigest()
if length:
s = s[:length]
return s
class PythonParser:
def __init__(self, clinic):
pass
def parse(self, block):
s = io.StringIO()
with OverrideStdioWith(s):
exec(block.input)
block.output = s.getvalue()
class Module:
def __init__(self, name, module=None):
self.name = name
self.module = self.parent = module
self.modules = collections.OrderedDict()
self.classes = collections.OrderedDict()
self.functions = []
def __repr__(self):
return "<clinic.Module " + repr(self.name) + " at " + str(id(self)) + ">"
class Class:
def __init__(self, name, module=None, cls=None, typedef=None, type_object=None):
self.name = name
self.module = module
self.cls = cls
self.typedef = typedef
self.type_object = type_object
self.parent = cls or module
self.classes = collections.OrderedDict()
self.functions = []
def __repr__(self):
return "<clinic.Class " + repr(self.name) + " at " + str(id(self)) + ">"
unsupported_special_methods = set("""
__abs__
__add__
__and__
__bytes__
__call__
__complex__
__delitem__
__divmod__
__eq__
__float__
__floordiv__
__ge__
__getattr__
__getattribute__
__getitem__
__gt__
__hash__
__iadd__
__iand__
__ifloordiv__
__ilshift__
__imatmul__
__imod__
__imul__
__index__
__int__
__invert__
__ior__
__ipow__
__irshift__
__isub__
__iter__
__itruediv__
__ixor__
__le__
__len__
__lshift__
__lt__
__matmul__
__mod__
__mul__
__neg__
__next__
__or__
__pos__
__pow__
__radd__
__rand__
__rdivmod__
__repr__
__rfloordiv__
__rlshift__
__rmatmul__
__rmod__
__rmul__
__ror__
__rpow__
__rrshift__
__rshift__
__rsub__
__rtruediv__
__rxor__
__setattr__
__setitem__
__str__
__sub__
__truediv__
__xor__
""".strip().split())
INVALID, CALLABLE, STATIC_METHOD, CLASS_METHOD, METHOD_INIT, METHOD_NEW = """
INVALID, CALLABLE, STATIC_METHOD, CLASS_METHOD, METHOD_INIT, METHOD_NEW
""".replace(",", "").strip().split()
class Function:
"""
Mutable duck type for inspect.Function.
docstring - a str containing
* embedded line breaks
* text outdented to the left margin
* no trailing whitespace.
It will always be true that
(not docstring) or ((not docstring[0].isspace()) and (docstring.rstrip() == docstring))
"""
def __init__(self, parameters=None, *, name,
module, cls=None, c_basename=None,
full_name=None,
return_converter, return_annotation=inspect.Signature.empty,
docstring=None, kind=CALLABLE, coexist=False,
docstring_only=False):
self.parameters = parameters or collections.OrderedDict()
self.return_annotation = return_annotation
self.name = name
self.full_name = full_name
self.module = module
self.cls = cls
self.parent = cls or module
self.c_basename = c_basename
self.return_converter = return_converter
self.docstring = docstring or ''
self.kind = kind
self.coexist = coexist
self.self_converter = None
# docstring_only means "don't generate a machine-readable
# signature, just a normal docstring". it's True for
# functions with optional groups because we can't represent
# those accurately with inspect.Signature in 3.4.
self.docstring_only = docstring_only
self.rendered_parameters = None
__render_parameters__ = None
@property
def render_parameters(self):
if not self.__render_parameters__:
self.__render_parameters__ = l = []
for p in self.parameters.values():
p = p.copy()
p.converter.pre_render()
l.append(p)
return self.__render_parameters__
@property
def methoddef_flags(self):
if self.kind in (METHOD_INIT, METHOD_NEW):
return None
flags = []
if self.kind == CLASS_METHOD:
flags.append('METH_CLASS')
elif self.kind == STATIC_METHOD:
flags.append('METH_STATIC')
else:
assert self.kind == CALLABLE, "unknown kind: " + repr(self.kind)
if self.coexist:
flags.append('METH_COEXIST')
return '|'.join(flags)
def __repr__(self):
return '<clinic.Function ' + self.name + '>'
def copy(self, **overrides):
kwargs = {
'name': self.name, 'module': self.module, 'parameters': self.parameters,
'cls': self.cls, 'c_basename': self.c_basename,
'full_name': self.full_name,
'return_converter': self.return_converter, 'return_annotation': self.return_annotation,
'docstring': self.docstring, 'kind': self.kind, 'coexist': self.coexist,
'docstring_only': self.docstring_only,
}
kwargs.update(overrides)
f = Function(**kwargs)
parameters = collections.OrderedDict()
for name, value in f.parameters.items():
value = value.copy(function=f)
parameters[name] = value
f.parameters = parameters
return f
class Parameter:
"""
Mutable duck type of inspect.Parameter.
"""
def __init__(self, name, kind, *, default=inspect.Parameter.empty,
function, converter, annotation=inspect.Parameter.empty,
docstring=None, group=0):
self.name = name
self.kind = kind
self.default = default
self.function = function
self.converter = converter
self.annotation = annotation
self.docstring = docstring or ''
self.group = group
def __repr__(self):
return '<clinic.Parameter ' + self.name + '>'
def is_keyword_only(self):
return self.kind == inspect.Parameter.KEYWORD_ONLY
def is_positional_only(self):
return self.kind == inspect.Parameter.POSITIONAL_ONLY
def is_optional(self):
return (self.default is not unspecified)
def copy(self, **overrides):
kwargs = {
'name': self.name, 'kind': self.kind, 'default':self.default,
'function': self.function, 'converter': self.converter, 'annotation': self.annotation,
'docstring': self.docstring, 'group': self.group,
}
kwargs.update(overrides)
if 'converter' not in overrides:
converter = copy.copy(self.converter)
converter.function = kwargs['function']
kwargs['converter'] = converter
return Parameter(**kwargs)
def get_displayname(self, i):
if i == 0:
return '"argument"'
if not self.is_positional_only():
return '''"argument '{}'"'''.format(self.name)
else:
return '"argument {}"'.format(i)
class LandMine:
# try to access any
def __init__(self, message):
self.__message__ = message
def __repr__(self):
return '<LandMine ' + repr(self.__message__) + ">"
def __getattribute__(self, name):
if name in ('__repr__', '__message__'):
return super().__getattribute__(name)
# raise RuntimeError(repr(name))
fail("Stepped on a land mine, trying to access attribute " + repr(name) + ":\n" + self.__message__)
def add_c_converter(f, name=None):
if not name:
name = f.__name__
if not name.endswith('_converter'):
return f
name = name[:-len('_converter')]
converters[name] = f
return f
def add_default_legacy_c_converter(cls):
# automatically add converter for default format unit
# (but without stomping on the existing one if it's already
# set, in case you subclass)
if ((cls.format_unit not in ('O&', '')) and
(cls.format_unit not in legacy_converters)):
legacy_converters[cls.format_unit] = cls
return cls
def add_legacy_c_converter(format_unit, **kwargs):
"""
Adds a legacy converter.
"""
def closure(f):
if not kwargs:
added_f = f
else:
added_f = functools.partial(f, **kwargs)
if format_unit:
legacy_converters[format_unit] = added_f
return f
return closure
class CConverterAutoRegister(type):
def __init__(cls, name, bases, classdict):
add_c_converter(cls)
add_default_legacy_c_converter(cls)
class CConverter(metaclass=CConverterAutoRegister):
"""
For the init function, self, name, function, and default
must be keyword-or-positional parameters. All other
parameters must be keyword-only.
"""
# The C name to use for this variable.
name = None
# The Python name to use for this variable.
py_name = None
# The C type to use for this variable.
# 'type' should be a Python string specifying the type, e.g. "int".
# If this is a pointer type, the type string should end with ' *'.
type = None
# The Python default value for this parameter, as a Python value.
# Or the magic value "unspecified" if there is no default.
# Or the magic value "unknown" if this value is a cannot be evaluated
# at Argument-Clinic-preprocessing time (but is presumed to be valid
# at runtime).
default = unspecified
# If not None, default must be isinstance() of this type.
# (You can also specify a tuple of types.)
default_type = None
# "default" converted into a C value, as a string.
# Or None if there is no default.
c_default = None
# "default" converted into a Python value, as a string.
# Or None if there is no default.
py_default = None
# The default value used to initialize the C variable when
# there is no default, but not specifying a default may
# result in an "uninitialized variable" warning. This can
# easily happen when using option groups--although
# properly-written code won't actually use the variable,
# the variable does get passed in to the _impl. (Ah, if
# only dataflow analysis could inline the static function!)
#
# This value is specified as a string.
# Every non-abstract subclass should supply a valid value.
c_ignored_default = 'NULL'
# The C converter *function* to be used, if any.
# (If this is not None, format_unit must be 'O&'.)
converter = None
# Should Argument Clinic add a '&' before the name of
# the variable when passing it into the _impl function?
impl_by_reference = False
# Should Argument Clinic add a '&' before the name of
# the variable when passing it into PyArg_ParseTuple (AndKeywords)?
parse_by_reference = True
#############################################################
#############################################################
## You shouldn't need to read anything below this point to ##
## write your own converter functions. ##
#############################################################
#############################################################
# The "format unit" to specify for this variable when
# parsing arguments using PyArg_ParseTuple (AndKeywords).
# Custom converters should always use the default value of 'O&'.
format_unit = 'O&'
# What encoding do we want for this variable? Only used
# by format units starting with 'e'.
encoding = None
# Should this object be required to be a subclass of a specific type?
# If not None, should be a string representing a pointer to a
# PyTypeObject (e.g. "&PyUnicode_Type").
# Only used by the 'O!' format unit (and the "object" converter).
subclass_of = None
# Do we want an adjacent '_length' variable for this variable?
# Only used by format units ending with '#'.
length = False
# Should we show this parameter in the generated
# __text_signature__? This is *almost* always True.
# (It's only False for __new__, __init__, and METH_STATIC functions.)
show_in_signature = True
# Overrides the name used in a text signature.
# The name used for a "self" parameter must be one of
# self, type, or module; however users can set their own.
# This lets the self_converter overrule the user-settable
# name, *just* for the text signature.
# Only set by self_converter.
signature_name = None
# keep in sync with self_converter.__init__!
def __init__(self, name, py_name, function, default=unspecified, *, c_default=None, py_default=None, annotation=unspecified, **kwargs):
self.name = ensure_legal_c_identifier(name)
self.py_name = py_name
if default is not unspecified:
if self.default_type and not isinstance(default, (self.default_type, Unknown)):
if isinstance(self.default_type, type):
types_str = self.default_type.__name__
else:
types_str = ', '.join((cls.__name__ for cls in self.default_type))
fail("{}: default value {!r} for field {} is not of type {}".format(
self.__class__.__name__, default, name, types_str))
self.default = default
if c_default:
self.c_default = c_default
if py_default:
self.py_default = py_default
if annotation != unspecified:
fail("The 'annotation' parameter is not currently permitted.")
# this is deliberate, to prevent you from caching information
# about the function in the init.
# (that breaks if we get cloned.)
# so after this change we will noisily fail.
self.function = LandMine("Don't access members of self.function inside converter_init!")
self.converter_init(**kwargs)
self.function = function
def converter_init(self):
pass
def is_optional(self):
return (self.default is not unspecified)
def _render_self(self, parameter, data):
self.parameter = parameter
name = self.name
# impl_arguments
s = ("&" if self.impl_by_reference else "") + name
data.impl_arguments.append(s)
if self.length:
data.impl_arguments.append(self.length_name())
# impl_parameters
data.impl_parameters.append(self.simple_declaration(by_reference=self.impl_by_reference))
if self.length:
data.impl_parameters.append("Py_ssize_t " + self.length_name())
def _render_non_self(self, parameter, data):
self.parameter = parameter
name = self.name
# declarations
d = self.declaration()
data.declarations.append(d)
# initializers
initializers = self.initialize()
if initializers:
data.initializers.append('/* initializers for ' + name + ' */\n' + initializers.rstrip())
# modifications
modifications = self.modify()
if modifications:
data.modifications.append('/* modifications for ' + name + ' */\n' + modifications.rstrip())
# keywords
if parameter.is_positional_only():
data.keywords.append('')
else:
data.keywords.append(parameter.name)
# format_units
if self.is_optional() and '|' not in data.format_units:
data.format_units.append('|')
if parameter.is_keyword_only() and '$' not in data.format_units:
data.format_units.append('$')
data.format_units.append(self.format_unit)
# parse_arguments
self.parse_argument(data.parse_arguments)
# cleanup
cleanup = self.cleanup()
if cleanup:
data.cleanup.append('/* Cleanup for ' + name + ' */\n' + cleanup.rstrip() + "\n")
def render(self, parameter, data):
"""
parameter is a clinic.Parameter instance.
data is a CRenderData instance.
"""
self._render_self(parameter, data)
self._render_non_self(parameter, data)
def length_name(self):
"""Computes the name of the associated "length" variable."""
if not self.length:
return None
return self.name + "_length"
# Why is this one broken out separately?
# For "positional-only" function parsing,
# which generates a bunch of PyArg_ParseTuple calls.
def parse_argument(self, list):
assert not (self.converter and self.encoding)
if self.format_unit == 'O&':
assert self.converter
list.append(self.converter)
if self.encoding:
list.append(c_repr(self.encoding))
elif self.subclass_of:
list.append(self.subclass_of)
s = ("&" if self.parse_by_reference else "") + self.name
list.append(s)
if self.length:
list.append("&" + self.length_name())
#
# All the functions after here are intended as extension points.
#
def simple_declaration(self, by_reference=False):
"""
Computes the basic declaration of the variable.
Used in computing the prototype declaration and the
variable declaration.
"""
prototype = [self.type]
if by_reference or not self.type.endswith('*'):
prototype.append(" ")
if by_reference:
prototype.append('*')
prototype.append(self.name)
return "".join(prototype)
def declaration(self):
"""
The C statement to declare this variable.
"""
declaration = [self.simple_declaration()]
default = self.c_default
if not default and self.parameter.group:
default = self.c_ignored_default
if default:
declaration.append(" = ")
declaration.append(default)
declaration.append(";")
if self.length:
declaration.append('\nPy_ssize_t ')
declaration.append(self.length_name())
declaration.append(';')
return "".join(declaration)
def initialize(self):
"""
The C statements required to set up this variable before parsing.
Returns a string containing this code indented at column 0.
If no initialization is necessary, returns an empty string.
"""
return ""
def modify(self):
"""
The C statements required to modify this variable after parsing.
Returns a string containing this code indented at column 0.
If no initialization is necessary, returns an empty string.
"""
return ""
def cleanup(self):
"""
The C statements required to clean up after this variable.
Returns a string containing this code indented at column 0.
If no cleanup is necessary, returns an empty string.
"""
return ""
def pre_render(self):
"""
A second initialization function, like converter_init,
called just before rendering.
You are permitted to examine self.function here.
"""
pass
def parse_arg(self, argname, displayname):
if self.format_unit == 'O&':
return """
if (!{converter}({argname}, &{paramname})) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name,
converter=self.converter)
if self.format_unit == 'O!':
cast = '(%s)' % self.type if self.type != 'PyObject *' else ''
if self.subclass_of in type_checks:
typecheck, typename = type_checks[self.subclass_of]
return """
if (!{typecheck}({argname})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "{typename}", {argname});
goto exit;
}}}}
{paramname} = {cast}{argname};
""".format(argname=argname, paramname=self.name,
displayname=displayname, typecheck=typecheck,
typename=typename, cast=cast)
return """
if (!PyObject_TypeCheck({argname}, {subclass_of})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, ({subclass_of})->tp_name, {argname});
goto exit;
}}}}
{paramname} = {cast}{argname};
""".format(argname=argname, paramname=self.name,
subclass_of=self.subclass_of, cast=cast,
displayname=displayname)
if self.format_unit == 'O':
cast = '(%s)' % self.type if self.type != 'PyObject *' else ''
return """
{paramname} = {cast}{argname};
""".format(argname=argname, paramname=self.name, cast=cast)
return None
def set_template_dict(self, template_dict):
pass
type_checks = {
'&PyLong_Type': ('PyLong_Check', 'int'),
'&PyTuple_Type': ('PyTuple_Check', 'tuple'),
'&PyList_Type': ('PyList_Check', 'list'),
'&PySet_Type': ('PySet_Check', 'set'),
'&PyFrozenSet_Type': ('PyFrozenSet_Check', 'frozenset'),
'&PyDict_Type': ('PyDict_Check', 'dict'),
'&PyUnicode_Type': ('PyUnicode_Check', 'str'),
'&PyBytes_Type': ('PyBytes_Check', 'bytes'),
'&PyByteArray_Type': ('PyByteArray_Check', 'bytearray'),
}
class bool_converter(CConverter):
type = 'int'
default_type = bool
format_unit = 'p'
c_ignored_default = '0'
def converter_init(self, *, accept={object}):
if accept == {int}:
self.format_unit = 'i'
elif accept != {object}:
fail("bool_converter: illegal 'accept' argument " + repr(accept))
if self.default is not unspecified:
self.default = bool(self.default)
self.c_default = str(int(self.default))
def parse_arg(self, argname, displayname):
if self.format_unit == 'i':
# XXX PyFloat_Check can be removed after the end of the
# deprecation in _PyLong_FromNbIndexOrNbInt.
return """
{paramname} = _PyLong_AsInt({argname});
if ({paramname} == -1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
elif self.format_unit == 'p':
return """
{paramname} = PyObject_IsTrue({argname});
if ({paramname} < 0) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class defining_class_converter(CConverter):
"""
A special-case converter:
this is the default converter used for the defining class.
"""
type = 'PyTypeObject *'
format_unit = ''
show_in_signature = False
def converter_init(self, *, type=None):
self.specified_type = type
def render(self, parameter, data):
self._render_self(parameter, data)
def set_template_dict(self, template_dict):
template_dict['defining_class_name'] = self.name
class char_converter(CConverter):
type = 'char'
default_type = (bytes, bytearray)
format_unit = 'c'
c_ignored_default = "'\0'"
def converter_init(self):
if isinstance(self.default, self.default_type):
if len(self.default) != 1:
fail("char_converter: illegal default value " + repr(self.default))
self.c_default = repr(bytes(self.default))[1:]
if self.c_default == '"\'"':
self.c_default = r"'\''"
def parse_arg(self, argname, displayname):
if self.format_unit == 'c':
return """
if (PyBytes_Check({argname}) && PyBytes_GET_SIZE({argname}) == 1) {{{{
{paramname} = PyBytes_AS_STRING({argname})[0];
}}}}
else if (PyByteArray_Check({argname}) && PyByteArray_GET_SIZE({argname}) == 1) {{{{
{paramname} = PyByteArray_AS_STRING({argname})[0];
}}}}
else {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "a byte string of length 1", {argname});
goto exit;
}}}}
""".format(argname=argname, paramname=self.name,
displayname=displayname)
return super().parse_arg(argname, displayname)
@add_legacy_c_converter('B', bitwise=True)
class unsigned_char_converter(CConverter):
type = 'unsigned char'
default_type = int
format_unit = 'b'
c_ignored_default = "'\0'"
def converter_init(self, *, bitwise=False):
if bitwise:
self.format_unit = 'B'
def parse_arg(self, argname, displayname):
if self.format_unit == 'b':
return """
{{{{
long ival = PyLong_AsLong({argname});
if (ival == -1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
else if (ival < 0) {{{{
PyErr_SetString(PyExc_OverflowError,
"unsigned byte integer is less than minimum");
goto exit;
}}}}
else if (ival > UCHAR_MAX) {{{{
PyErr_SetString(PyExc_OverflowError,
"unsigned byte integer is greater than maximum");
goto exit;
}}}}
else {{{{
{paramname} = (unsigned char) ival;
}}}}
}}}}
""".format(argname=argname, paramname=self.name)
elif self.format_unit == 'B':
return """
{{{{
unsigned long ival = PyLong_AsUnsignedLongMask({argname});
if (ival == (unsigned long)-1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
else {{{{
{paramname} = (unsigned char) ival;
}}}}
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class byte_converter(unsigned_char_converter): pass
class short_converter(CConverter):
type = 'short'
default_type = int
format_unit = 'h'
c_ignored_default = "0"
def parse_arg(self, argname, displayname):
if self.format_unit == 'h':
return """
{{{{
long ival = PyLong_AsLong({argname});
if (ival == -1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
else if (ival < SHRT_MIN) {{{{
PyErr_SetString(PyExc_OverflowError,
"signed short integer is less than minimum");
goto exit;
}}}}
else if (ival > SHRT_MAX) {{{{
PyErr_SetString(PyExc_OverflowError,
"signed short integer is greater than maximum");
goto exit;
}}}}
else {{{{
{paramname} = (short) ival;
}}}}
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class unsigned_short_converter(CConverter):
type = 'unsigned short'
default_type = int
c_ignored_default = "0"
def converter_init(self, *, bitwise=False):
if bitwise:
self.format_unit = 'H'
else:
self.converter = '_PyLong_UnsignedShort_Converter'
def parse_arg(self, argname, displayname):
if self.format_unit == 'H':
return """
{paramname} = (unsigned short)PyLong_AsUnsignedLongMask({argname});
if ({paramname} == (unsigned short)-1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
@add_legacy_c_converter('C', accept={str})
class int_converter(CConverter):
type = 'int'
default_type = int
format_unit = 'i'
c_ignored_default = "0"
def converter_init(self, *, accept={int}, type=None):
if accept == {str}:
self.format_unit = 'C'
elif accept != {int}:
fail("int_converter: illegal 'accept' argument " + repr(accept))
if type != None:
self.type = type
def parse_arg(self, argname, displayname):
if self.format_unit == 'i':
return """
{paramname} = _PyLong_AsInt({argname});
if ({paramname} == -1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
elif self.format_unit == 'C':
return """
if (!PyUnicode_Check({argname})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "a unicode character", {argname});
goto exit;
}}}}
if (PyUnicode_READY({argname})) {{{{
goto exit;
}}}}
if (PyUnicode_GET_LENGTH({argname}) != 1) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "a unicode character", {argname});
goto exit;
}}}}
{paramname} = PyUnicode_READ_CHAR({argname}, 0);
""".format(argname=argname, paramname=self.name,
displayname=displayname)
return super().parse_arg(argname, displayname)
class unsigned_int_converter(CConverter):
type = 'unsigned int'
default_type = int
c_ignored_default = "0"
def converter_init(self, *, bitwise=False):
if bitwise:
self.format_unit = 'I'
else:
self.converter = '_PyLong_UnsignedInt_Converter'
def parse_arg(self, argname, displayname):
if self.format_unit == 'I':
return """
{paramname} = (unsigned int)PyLong_AsUnsignedLongMask({argname});
if ({paramname} == (unsigned int)-1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class long_converter(CConverter):
type = 'long'
default_type = int
format_unit = 'l'
c_ignored_default = "0"
def parse_arg(self, argname, displayname):
if self.format_unit == 'l':
return """
{paramname} = PyLong_AsLong({argname});
if ({paramname} == -1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class unsigned_long_converter(CConverter):
type = 'unsigned long'
default_type = int
c_ignored_default = "0"
def converter_init(self, *, bitwise=False):
if bitwise:
self.format_unit = 'k'
else:
self.converter = '_PyLong_UnsignedLong_Converter'
def parse_arg(self, argname, displayname):
if self.format_unit == 'k':
return """
if (!PyLong_Check({argname})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "int", {argname});
goto exit;
}}}}
{paramname} = PyLong_AsUnsignedLongMask({argname});
""".format(argname=argname, paramname=self.name,
displayname=displayname)
return super().parse_arg(argname, displayname)
class long_long_converter(CConverter):
type = 'long long'
default_type = int
format_unit = 'L'
c_ignored_default = "0"
def parse_arg(self, argname, displayname):
if self.format_unit == 'L':
return """
{paramname} = PyLong_AsLongLong({argname});
if ({paramname} == -1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class unsigned_long_long_converter(CConverter):
type = 'unsigned long long'
default_type = int
c_ignored_default = "0"
def converter_init(self, *, bitwise=False):
if bitwise:
self.format_unit = 'K'
else:
self.converter = '_PyLong_UnsignedLongLong_Converter'
def parse_arg(self, argname, displayname):
if self.format_unit == 'K':
return """
if (!PyLong_Check({argname})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "int", {argname});
goto exit;
}}}}
{paramname} = PyLong_AsUnsignedLongLongMask({argname});
""".format(argname=argname, paramname=self.name,
displayname=displayname)
return super().parse_arg(argname, displayname)
class Py_ssize_t_converter(CConverter):
type = 'Py_ssize_t'
c_ignored_default = "0"
def converter_init(self, *, accept={int}):
if accept == {int}:
self.format_unit = 'n'
self.default_type = int
elif accept == {int, NoneType}:
self.converter = '_Py_convert_optional_to_ssize_t'
else:
fail("Py_ssize_t_converter: illegal 'accept' argument " + repr(accept))
def parse_arg(self, argname, displayname):
if self.format_unit == 'n':
return """
{{{{
Py_ssize_t ival = -1;
PyObject *iobj = _PyNumber_Index({argname});
if (iobj != NULL) {{{{
ival = PyLong_AsSsize_t(iobj);
Py_DECREF(iobj);
}}}}
if (ival == -1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
{paramname} = ival;
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class slice_index_converter(CConverter):
type = 'Py_ssize_t'
def converter_init(self, *, accept={int, NoneType}):
if accept == {int}:
self.converter = '_PyEval_SliceIndexNotNone'
elif accept == {int, NoneType}:
self.converter = '_PyEval_SliceIndex'
else:
fail("slice_index_converter: illegal 'accept' argument " + repr(accept))
class size_t_converter(CConverter):
type = 'size_t'
converter = '_PyLong_Size_t_Converter'
c_ignored_default = "0"
def parse_arg(self, argname, displayname):
if self.format_unit == 'n':
return """
{paramname} = PyNumber_AsSsize_t({argname}, PyExc_OverflowError);
if ({paramname} == -1 && PyErr_Occurred()) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class fildes_converter(CConverter):
type = 'int'
converter = '_PyLong_FileDescriptor_Converter'
def _parse_arg(self, argname, displayname):
return """
{paramname} = PyObject_AsFileDescriptor({argname});
if ({paramname} == -1) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
class float_converter(CConverter):
type = 'float'
default_type = float
format_unit = 'f'
c_ignored_default = "0.0"
def parse_arg(self, argname, displayname):
if self.format_unit == 'f':
return """
if (PyFloat_CheckExact({argname})) {{{{
{paramname} = (float) (PyFloat_AS_DOUBLE({argname}));
}}}}
else
{{{{
{paramname} = (float) PyFloat_AsDouble({argname});
if ({paramname} == -1.0 && PyErr_Occurred()) {{{{
goto exit;
}}}}
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class double_converter(CConverter):
type = 'double'
default_type = float
format_unit = 'd'
c_ignored_default = "0.0"
def parse_arg(self, argname, displayname):
if self.format_unit == 'd':
return """
if (PyFloat_CheckExact({argname})) {{{{
{paramname} = PyFloat_AS_DOUBLE({argname});
}}}}
else
{{{{
{paramname} = PyFloat_AsDouble({argname});
if ({paramname} == -1.0 && PyErr_Occurred()) {{{{
goto exit;
}}}}
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class Py_complex_converter(CConverter):
type = 'Py_complex'
default_type = complex
format_unit = 'D'
c_ignored_default = "{0.0, 0.0}"
def parse_arg(self, argname, displayname):
if self.format_unit == 'D':
return """
{paramname} = PyComplex_AsCComplex({argname});
if (PyErr_Occurred()) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name)
return super().parse_arg(argname, displayname)
class object_converter(CConverter):
type = 'PyObject *'
format_unit = 'O'
def converter_init(self, *, converter=None, type=None, subclass_of=None):
if converter:
if subclass_of:
fail("object: Cannot pass in both 'converter' and 'subclass_of'")
self.format_unit = 'O&'
self.converter = converter
elif subclass_of:
self.format_unit = 'O!'
self.subclass_of = subclass_of
if type is not None:
self.type = type
#
# We define three conventions for buffer types in the 'accept' argument:
#
# buffer : any object supporting the buffer interface
# rwbuffer: any object supporting the buffer interface, but must be writeable
# robuffer: any object supporting the buffer interface, but must not be writeable
#
class buffer: pass
class rwbuffer: pass
class robuffer: pass
def str_converter_key(types, encoding, zeroes):
return (frozenset(types), bool(encoding), bool(zeroes))
str_converter_argument_map = {}
class str_converter(CConverter):
type = 'const char *'
default_type = (str, Null, NoneType)
format_unit = 's'
def converter_init(self, *, accept={str}, encoding=None, zeroes=False):
key = str_converter_key(accept, encoding, zeroes)
format_unit = str_converter_argument_map.get(key)
if not format_unit:
fail("str_converter: illegal combination of arguments", key)
self.format_unit = format_unit
self.length = bool(zeroes)
if encoding:
if self.default not in (Null, None, unspecified):
fail("str_converter: Argument Clinic doesn't support default values for encoded strings")
self.encoding = encoding
self.type = 'char *'
# sorry, clinic can't support preallocated buffers
# for es# and et#
self.c_default = "NULL"
if NoneType in accept and self.c_default == "Py_None":
self.c_default = "NULL"
def cleanup(self):
if self.encoding:
name = self.name
return "".join(["if (", name, ") {\n PyMem_FREE(", name, ");\n}\n"])
def parse_arg(self, argname, displayname):
if self.format_unit == 's':
return """
if (!PyUnicode_Check({argname})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "str", {argname});
goto exit;
}}}}
Py_ssize_t {paramname}_length;
{paramname} = PyUnicode_AsUTF8AndSize({argname}, &{paramname}_length);
if ({paramname} == NULL) {{{{
goto exit;
}}}}
if (strlen({paramname}) != (size_t){paramname}_length) {{{{
PyErr_SetString(PyExc_ValueError, "embedded null character");
goto exit;
}}}}
""".format(argname=argname, paramname=self.name,
displayname=displayname)
if self.format_unit == 'z':
return """
if ({argname} == Py_None) {{{{
{paramname} = NULL;
}}}}
else if (PyUnicode_Check({argname})) {{{{
Py_ssize_t {paramname}_length;
{paramname} = PyUnicode_AsUTF8AndSize({argname}, &{paramname}_length);
if ({paramname} == NULL) {{{{
goto exit;
}}}}
if (strlen({paramname}) != (size_t){paramname}_length) {{{{
PyErr_SetString(PyExc_ValueError, "embedded null character");
goto exit;
}}}}
}}}}
else {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "str or None", {argname});
goto exit;
}}}}
""".format(argname=argname, paramname=self.name,
displayname=displayname)
return super().parse_arg(argname, displayname)
#
# This is the fourth or fifth rewrite of registering all the
# string converter format units. Previous approaches hid
# bugs--generally mismatches between the semantics of the format
# unit and the arguments necessary to represent those semantics
# properly. Hopefully with this approach we'll get it 100% right.
#
# The r() function (short for "register") both registers the
# mapping from arguments to format unit *and* registers the
# legacy C converter for that format unit.
#
def r(format_unit, *, accept, encoding=False, zeroes=False):
if not encoding and format_unit != 's':
# add the legacy c converters here too.
#
# note: add_legacy_c_converter can't work for
# es, es#, et, or et#
# because of their extra encoding argument
#
# also don't add the converter for 's' because
# the metaclass for CConverter adds it for us.
kwargs = {}
if accept != {str}:
kwargs['accept'] = accept
if zeroes:
kwargs['zeroes'] = True
added_f = functools.partial(str_converter, **kwargs)
legacy_converters[format_unit] = added_f
d = str_converter_argument_map
key = str_converter_key(accept, encoding, zeroes)
if key in d:
sys.exit("Duplicate keys specified for str_converter_argument_map!")
d[key] = format_unit
r('es', encoding=True, accept={str})
r('es#', encoding=True, zeroes=True, accept={str})
r('et', encoding=True, accept={bytes, bytearray, str})
r('et#', encoding=True, zeroes=True, accept={bytes, bytearray, str})
r('s', accept={str})
r('s#', zeroes=True, accept={robuffer, str})
r('y', accept={robuffer})
r('y#', zeroes=True, accept={robuffer})
r('z', accept={str, NoneType})
r('z#', zeroes=True, accept={robuffer, str, NoneType})
del r
class PyBytesObject_converter(CConverter):
type = 'PyBytesObject *'
format_unit = 'S'
# accept = {bytes}
def parse_arg(self, argname, displayname):
if self.format_unit == 'S':
return """
if (!PyBytes_Check({argname})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "bytes", {argname});
goto exit;
}}}}
{paramname} = ({type}){argname};
""".format(argname=argname, paramname=self.name,
type=self.type, displayname=displayname)
return super().parse_arg(argname, displayname)
class PyByteArrayObject_converter(CConverter):
type = 'PyByteArrayObject *'
format_unit = 'Y'
# accept = {bytearray}
def parse_arg(self, argname, displayname):
if self.format_unit == 'Y':
return """
if (!PyByteArray_Check({argname})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "bytearray", {argname});
goto exit;
}}}}
{paramname} = ({type}){argname};
""".format(argname=argname, paramname=self.name,
type=self.type, displayname=displayname)
return super().parse_arg(argname, displayname)
class unicode_converter(CConverter):
type = 'PyObject *'
default_type = (str, Null, NoneType)
format_unit = 'U'
def parse_arg(self, argname, displayname):
if self.format_unit == 'U':
return """
if (!PyUnicode_Check({argname})) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "str", {argname});
goto exit;
}}}}
if (PyUnicode_READY({argname}) == -1) {{{{
goto exit;
}}}}
{paramname} = {argname};
""".format(argname=argname, paramname=self.name,
displayname=displayname)
return super().parse_arg(argname, displayname)
@add_legacy_c_converter('u')
@add_legacy_c_converter('u#', zeroes=True)
@add_legacy_c_converter('Z', accept={str, NoneType})
@add_legacy_c_converter('Z#', accept={str, NoneType}, zeroes=True)
class Py_UNICODE_converter(CConverter):
type = 'const Py_UNICODE *'
default_type = (str, Null, NoneType)
def converter_init(self, *, accept={str}, zeroes=False):
format_unit = 'Z' if accept=={str, NoneType} else 'u'
if zeroes:
format_unit += '#'
self.length = True
self.format_unit = format_unit
else:
self.accept = accept
if accept == {str}:
self.converter = '_PyUnicode_WideCharString_Converter'
elif accept == {str, NoneType}:
self.converter = '_PyUnicode_WideCharString_Opt_Converter'
else:
fail("Py_UNICODE_converter: illegal 'accept' argument " + repr(accept))
def cleanup(self):
if not self.length:
return """\
#if !USE_UNICODE_WCHAR_CACHE
PyMem_Free((void *){name});
#endif /* USE_UNICODE_WCHAR_CACHE */
""".format(name=self.name)
def parse_arg(self, argname, argnum):
if not self.length:
if self.accept == {str}:
return """
if (!PyUnicode_Check({argname})) {{{{
_PyArg_BadArgument("{{name}}", {argnum}, "str", {argname});
goto exit;
}}}}
#if USE_UNICODE_WCHAR_CACHE
{paramname} = _PyUnicode_AsUnicode({argname});
#else /* USE_UNICODE_WCHAR_CACHE */
{paramname} = PyUnicode_AsWideCharString({argname}, NULL);
#endif /* USE_UNICODE_WCHAR_CACHE */
if ({paramname} == NULL) {{{{
goto exit;
}}}}
""".format(argname=argname, paramname=self.name, argnum=argnum)
elif self.accept == {str, NoneType}:
return """
if ({argname} == Py_None) {{{{
{paramname} = NULL;
}}}}
else if (PyUnicode_Check({argname})) {{{{
#if USE_UNICODE_WCHAR_CACHE
{paramname} = _PyUnicode_AsUnicode({argname});
#else /* USE_UNICODE_WCHAR_CACHE */
{paramname} = PyUnicode_AsWideCharString({argname}, NULL);
#endif /* USE_UNICODE_WCHAR_CACHE */
if ({paramname} == NULL) {{{{
goto exit;
}}}}
}}}}
else {{{{
_PyArg_BadArgument("{{name}}", {argnum}, "str or None", {argname});
goto exit;
}}}}
""".format(argname=argname, paramname=self.name, argnum=argnum)
return super().parse_arg(argname, argnum)
@add_legacy_c_converter('s*', accept={str, buffer})
@add_legacy_c_converter('z*', accept={str, buffer, NoneType})
@add_legacy_c_converter('w*', accept={rwbuffer})
class Py_buffer_converter(CConverter):
type = 'Py_buffer'
format_unit = 'y*'
impl_by_reference = True
c_ignored_default = "{NULL, NULL}"
def converter_init(self, *, accept={buffer}):
if self.default not in (unspecified, None):
fail("The only legal default value for Py_buffer is None.")
self.c_default = self.c_ignored_default
if accept == {str, buffer, NoneType}:
format_unit = 'z*'
elif accept == {str, buffer}:
format_unit = 's*'
elif accept == {buffer}:
format_unit = 'y*'
elif accept == {rwbuffer}:
format_unit = 'w*'
else:
fail("Py_buffer_converter: illegal combination of arguments")
self.format_unit = format_unit
def cleanup(self):
name = self.name
return "".join(["if (", name, ".obj) {\n PyBuffer_Release(&", name, ");\n}\n"])
def parse_arg(self, argname, displayname):
if self.format_unit == 'y*':
return """
if (PyObject_GetBuffer({argname}, &{paramname}, PyBUF_SIMPLE) != 0) {{{{
goto exit;
}}}}
if (!PyBuffer_IsContiguous(&{paramname}, 'C')) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "contiguous buffer", {argname});
goto exit;
}}}}
""".format(argname=argname, paramname=self.name,
displayname=displayname)
elif self.format_unit == 's*':
return """
if (PyUnicode_Check({argname})) {{{{
Py_ssize_t len;
const char *ptr = PyUnicode_AsUTF8AndSize({argname}, &len);
if (ptr == NULL) {{{{
goto exit;
}}}}
PyBuffer_FillInfo(&{paramname}, {argname}, (void *)ptr, len, 1, 0);
}}}}
else {{{{ /* any bytes-like object */
if (PyObject_GetBuffer({argname}, &{paramname}, PyBUF_SIMPLE) != 0) {{{{
goto exit;
}}}}
if (!PyBuffer_IsContiguous(&{paramname}, 'C')) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "contiguous buffer", {argname});
goto exit;
}}}}
}}}}
""".format(argname=argname, paramname=self.name,
displayname=displayname)
elif self.format_unit == 'w*':
return """
if (PyObject_GetBuffer({argname}, &{paramname}, PyBUF_WRITABLE) < 0) {{{{
PyErr_Clear();
_PyArg_BadArgument("{{name}}", {displayname}, "read-write bytes-like object", {argname});
goto exit;
}}}}
if (!PyBuffer_IsContiguous(&{paramname}, 'C')) {{{{
_PyArg_BadArgument("{{name}}", {displayname}, "contiguous buffer", {argname});
goto exit;
}}}}
""".format(argname=argname, paramname=self.name,
displayname=displayname)
return super().parse_arg(argname, displayname)
def correct_name_for_self(f):
if f.kind in (CALLABLE, METHOD_INIT):
if f.cls:
return "PyObject *", "self"
return "PyObject *", "module"
if f.kind == STATIC_METHOD:
return "void *", "null"
if f.kind in (CLASS_METHOD, METHOD_NEW):
return "PyTypeObject *", "type"
raise RuntimeError("Unhandled type of function f: " + repr(f.kind))
def required_type_for_self_for_parser(f):
type, _ = correct_name_for_self(f)
if f.kind in (METHOD_INIT, METHOD_NEW, STATIC_METHOD, CLASS_METHOD):
return type
return None
class self_converter(CConverter):
"""
A special-case converter:
this is the default converter used for "self".
"""
type = None
format_unit = ''
def converter_init(self, *, type=None):
self.specified_type = type
def pre_render(self):
f = self.function
default_type, default_name = correct_name_for_self(f)
self.signature_name = default_name
self.type = self.specified_type or self.type or default_type
kind = self.function.kind
new_or_init = kind in (METHOD_NEW, METHOD_INIT)
if (kind == STATIC_METHOD) or new_or_init:
self.show_in_signature = False
# tp_new (METHOD_NEW) functions are of type newfunc:
# typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
# PyTypeObject is a typedef for struct _typeobject.
#
# tp_init (METHOD_INIT) functions are of type initproc:
# typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
#
# All other functions generated by Argument Clinic are stored in
# PyMethodDef structures, in the ml_meth slot, which is of type PyCFunction:
# typedef PyObject *(*PyCFunction)(PyObject *, PyObject *);
# However! We habitually cast these functions to PyCFunction,
# since functions that accept keyword arguments don't fit this signature
# but are stored there anyway. So strict type equality isn't important
# for these functions.
#
# So:
#
# * The name of the first parameter to the impl and the parsing function will always
# be self.name.
#
# * The type of the first parameter to the impl will always be of self.type.
#
# * If the function is neither tp_new (METHOD_NEW) nor tp_init (METHOD_INIT):
# * The type of the first parameter to the parsing function is also self.type.
# This means that if you step into the parsing function, your "self" parameter
# is of the correct type, which may make debugging more pleasant.
#
# * Else if the function is tp_new (METHOD_NEW):
# * The type of the first parameter to the parsing function is "PyTypeObject *",
# so the type signature of the function call is an exact match.
# * If self.type != "PyTypeObject *", we cast the first parameter to self.type
# in the impl call.
#
# * Else if the function is tp_init (METHOD_INIT):
# * The type of the first parameter to the parsing function is "PyObject *",
# so the type signature of the function call is an exact match.
# * If self.type != "PyObject *", we cast the first parameter to self.type
# in the impl call.
@property
def parser_type(self):
return required_type_for_self_for_parser(self.function) or self.type
def render(self, parameter, data):
"""
parameter is a clinic.Parameter instance.
data is a CRenderData instance.
"""
if self.function.kind == STATIC_METHOD:
return
self._render_self(parameter, data)
if self.type != self.parser_type:
# insert cast to impl_argument[0], aka self.
# we know we're in the first slot in all the CRenderData lists,
# because we render parameters in order, and self is always first.
assert len(data.impl_arguments) == 1
assert data.impl_arguments[0] == self.name
data.impl_arguments[0] = '(' + self.type + ")" + data.impl_arguments[0]
def set_template_dict(self, template_dict):
template_dict['self_name'] = self.name
template_dict['self_type'] = self.parser_type
kind = self.function.kind
cls = self.function.cls
if ((kind in (METHOD_NEW, METHOD_INIT)) and cls and cls.typedef):
type_object = self.function.cls.type_object
if kind == METHOD_NEW:
type_check = '({} == {})'.format(self.name, type_object)
else:
type_check = 'Py_IS_TYPE({}, {})'.format(self.name, type_object)
line = '{} &&\n '.format(type_check)
template_dict['self_type_check'] = line
def add_c_return_converter(f, name=None):
if not name:
name = f.__name__
if not name.endswith('_return_converter'):
return f
name = name[:-len('_return_converter')]
return_converters[name] = f
return f
class CReturnConverterAutoRegister(type):
def __init__(cls, name, bases, classdict):
add_c_return_converter(cls)
class CReturnConverter(metaclass=CReturnConverterAutoRegister):
# The C type to use for this variable.
# 'type' should be a Python string specifying the type, e.g. "int".
# If this is a pointer type, the type string should end with ' *'.
type = 'PyObject *'
# The Python default value for this parameter, as a Python value.
# Or the magic value "unspecified" if there is no default.
default = None
def __init__(self, *, py_default=None, **kwargs):
self.py_default = py_default
try:
self.return_converter_init(**kwargs)
except TypeError as e:
s = ', '.join(name + '=' + repr(value) for name, value in kwargs.items())
sys.exit(self.__class__.__name__ + '(' + s + ')\n' + str(e))
def return_converter_init(self):
pass
def declare(self, data, name="_return_value"):
line = []
add = line.append
add(self.type)
if not self.type.endswith('*'):
add(' ')
add(name + ';')
data.declarations.append(''.join(line))
data.return_value = name
def err_occurred_if(self, expr, data):
data.return_conversion.append('if (({}) && PyErr_Occurred()) {{\n goto exit;\n}}\n'.format(expr))
def err_occurred_if_null_pointer(self, variable, data):
data.return_conversion.append('if ({} == NULL) {{\n goto exit;\n}}\n'.format(variable))
def render(self, function, data):
"""
function is a clinic.Function instance.
data is a CRenderData instance.
"""
pass
add_c_return_converter(CReturnConverter, 'object')
class NoneType_return_converter(CReturnConverter):
def render(self, function, data):
self.declare(data)
data.return_conversion.append('''
if (_return_value != Py_None) {
goto exit;
}
return_value = Py_None;
Py_INCREF(Py_None);
'''.strip())
class bool_return_converter(CReturnConverter):
type = 'int'
def render(self, function, data):
self.declare(data)
self.err_occurred_if("_return_value == -1", data)
data.return_conversion.append('return_value = PyBool_FromLong((long)_return_value);\n')
class long_return_converter(CReturnConverter):
type = 'long'
conversion_fn = 'PyLong_FromLong'
cast = ''
unsigned_cast = ''
def render(self, function, data):
self.declare(data)
self.err_occurred_if("_return_value == {}-1".format(self.unsigned_cast), data)
data.return_conversion.append(
''.join(('return_value = ', self.conversion_fn, '(', self.cast, '_return_value);\n')))
class int_return_converter(long_return_converter):
type = 'int'
cast = '(long)'
class init_return_converter(long_return_converter):
"""
Special return converter for __init__ functions.
"""
type = 'int'
cast = '(long)'
def render(self, function, data):
pass
class unsigned_long_return_converter(long_return_converter):
type = 'unsigned long'
conversion_fn = 'PyLong_FromUnsignedLong'
unsigned_cast = '(unsigned long)'
class unsigned_int_return_converter(unsigned_long_return_converter):
type = 'unsigned int'
cast = '(unsigned long)'
unsigned_cast = '(unsigned int)'
class Py_ssize_t_return_converter(long_return_converter):
type = 'Py_ssize_t'
conversion_fn = 'PyLong_FromSsize_t'
class size_t_return_converter(long_return_converter):
type = 'size_t'
conversion_fn = 'PyLong_FromSize_t'
unsigned_cast = '(size_t)'
class double_return_converter(CReturnConverter):
type = 'double'
cast = ''
def render(self, function, data):
self.declare(data)
self.err_occurred_if("_return_value == -1.0", data)
data.return_conversion.append(
'return_value = PyFloat_FromDouble(' + self.cast + '_return_value);\n')
class float_return_converter(double_return_converter):
type = 'float'
cast = '(double)'
def eval_ast_expr(node, globals, *, filename='-'):
"""
Takes an ast.Expr node. Compiles and evaluates it.
Returns the result of the expression.
globals represents the globals dict the expression
should see. (There's no equivalent for "locals" here.)
"""
if isinstance(node, ast.Expr):
node = node.value
node = ast.Expression(node)
co = compile(node, filename, 'eval')
fn = types.FunctionType(co, globals)
return fn()
class IndentStack:
def __init__(self):
self.indents = []
self.margin = None
def _ensure(self):
if not self.indents:
fail('IndentStack expected indents, but none are defined.')
def measure(self, line):
"""
Returns the length of the line's margin.
"""
if '\t' in line:
fail('Tab characters are illegal in the Argument Clinic DSL.')
stripped = line.lstrip()
if not len(stripped):
# we can't tell anything from an empty line
# so just pretend it's indented like our current indent
self._ensure()
return self.indents[-1]
return len(line) - len(stripped)
def infer(self, line):
"""
Infer what is now the current margin based on this line.
Returns:
1 if we have indented (or this is the first margin)
0 if the margin has not changed
-N if we have dedented N times
"""
indent = self.measure(line)
margin = ' ' * indent
if not self.indents:
self.indents.append(indent)
self.margin = margin
return 1
current = self.indents[-1]
if indent == current:
return 0
if indent > current:
self.indents.append(indent)
self.margin = margin
return 1
# indent < current
if indent not in self.indents:
fail("Illegal outdent.")
outdent_count = 0
while indent != current:
self.indents.pop()
current = self.indents[-1]
outdent_count -= 1
self.margin = margin
return outdent_count
@property
def depth(self):
"""
Returns how many margins are currently defined.
"""
return len(self.indents)
def indent(self, line):
"""
Indents a line by the currently defined margin.
"""
return self.margin + line
def dedent(self, line):
"""
Dedents a line by the currently defined margin.
(The inverse of 'indent'.)
"""
margin = self.margin
indent = self.indents[-1]
if not line.startswith(margin):
fail('Cannot dedent, line does not start with the previous margin:')
return line[indent:]
class DSLParser:
def __init__(self, clinic):
self.clinic = clinic
self.directives = {}
for name in dir(self):
# functions that start with directive_ are added to directives
_, s, key = name.partition("directive_")
if s:
self.directives[key] = getattr(self, name)
# functions that start with at_ are too, with an @ in front
_, s, key = name.partition("at_")
if s:
self.directives['@' + key] = getattr(self, name)
self.reset()
def reset(self):
self.function = None
self.state = self.state_dsl_start
self.parameter_indent = None
self.keyword_only = False
self.positional_only = False
self.group = 0
self.parameter_state = self.ps_start
self.seen_positional_with_default = False
self.indent = IndentStack()
self.kind = CALLABLE
self.coexist = False
self.parameter_continuation = ''
self.preserve_output = False
def directive_version(self, required):
global version
if version_comparitor(version, required) < 0:
fail("Insufficient Clinic version!\n Version: " + version + "\n Required: " + required)
def directive_module(self, name):
fields = name.split('.')
new = fields.pop()
module, cls = self.clinic._module_and_class(fields)
if cls:
fail("Can't nest a module inside a class!")
if name in module.classes:
fail("Already defined module " + repr(name) + "!")
m = Module(name, module)
module.modules[name] = m
self.block.signatures.append(m)
def directive_class(self, name, typedef, type_object):
fields = name.split('.')
in_classes = False
parent = self
name = fields.pop()
so_far = []
module, cls = self.clinic._module_and_class(fields)
parent = cls or module
if name in parent.classes:
fail("Already defined class " + repr(name) + "!")
c = Class(name, module, cls, typedef, type_object)
parent.classes[name] = c
self.block.signatures.append(c)
def directive_set(self, name, value):
if name not in ("line_prefix", "line_suffix"):
fail("unknown variable", repr(name))
value = value.format_map({
'block comment start': '/*',
'block comment end': '*/',
})
self.clinic.__dict__[name] = value
def directive_destination(self, name, command, *args):
if command == 'new':
self.clinic.add_destination(name, *args)
return
if command == 'clear':
self.clinic.get_destination(name).clear()
fail("unknown destination command", repr(command))
def directive_output(self, command_or_name, destination=''):
fd = self.clinic.destination_buffers
if command_or_name == "preset":
preset = self.clinic.presets.get(destination)
if not preset:
fail("Unknown preset " + repr(destination) + "!")
fd.update(preset)
return
if command_or_name == "push":
self.clinic.destination_buffers_stack.append(fd.copy())
return
if command_or_name == "pop":
if not self.clinic.destination_buffers_stack:
fail("Can't 'output pop', stack is empty!")
previous_fd = self.clinic.destination_buffers_stack.pop()
fd.update(previous_fd)
return
# secret command for debugging!
if command_or_name == "print":
self.block.output.append(pprint.pformat(fd))
self.block.output.append('\n')
return
d = self.clinic.get_destination(destination)
if command_or_name == "everything":
for name in list(fd):
fd[name] = d
return
if command_or_name not in fd:
fail("Invalid command / destination name " + repr(command_or_name) + ", must be one of:\n preset push pop print everything " + " ".join(fd))
fd[command_or_name] = d
def directive_dump(self, name):
self.block.output.append(self.clinic.get_destination(name).dump())
def directive_print(self, *args):
self.block.output.append(' '.join(args))
self.block.output.append('\n')
def directive_preserve(self):
if self.preserve_output:
fail("Can't have preserve twice in one block!")
self.preserve_output = True
def at_classmethod(self):
if self.kind is not CALLABLE:
fail("Can't set @classmethod, function is not a normal callable")
self.kind = CLASS_METHOD
def at_staticmethod(self):
if self.kind is not CALLABLE:
fail("Can't set @staticmethod, function is not a normal callable")
self.kind = STATIC_METHOD
def at_coexist(self):
if self.coexist:
fail("Called @coexist twice!")
self.coexist = True
def parse(self, block):
self.reset()
self.block = block
self.saved_output = self.block.output
block.output = []
block_start = self.clinic.block_parser.line_number
lines = block.input.split('\n')
for line_number, line in enumerate(lines, self.clinic.block_parser.block_start_line_number):
if '\t' in line:
fail('Tab characters are illegal in the Clinic DSL.\n\t' + repr(line), line_number=block_start)
self.state(line)
self.next(self.state_terminal)
self.state(None)
block.output.extend(self.clinic.language.render(clinic, block.signatures))
if self.preserve_output:
if block.output:
fail("'preserve' only works for blocks that don't produce any output!")
block.output = self.saved_output
@staticmethod
def ignore_line(line):
# ignore comment-only lines
if line.lstrip().startswith('#'):
return True
# Ignore empty lines too
# (but not in docstring sections!)
if not line.strip():
return True
return False
@staticmethod
def calculate_indent(line):
return len(line) - len(line.strip())
def next(self, state, line=None):
# real_print(self.state.__name__, "->", state.__name__, ", line=", line)
self.state = state
if line is not None:
self.state(line)
def state_dsl_start(self, line):
# self.block = self.ClinicOutputBlock(self)
if self.ignore_line(line):
return
# is it a directive?
fields = shlex.split(line)
directive_name = fields[0]
directive = self.directives.get(directive_name, None)
if directive:
try:
directive(*fields[1:])
except TypeError as e:
fail(str(e))
return
self.next(self.state_modulename_name, line)
def state_modulename_name(self, line):
# looking for declaration, which establishes the leftmost column
# line should be
# modulename.fnname [as c_basename] [-> return annotation]
# square brackets denote optional syntax.
#
# alternatively:
# modulename.fnname [as c_basename] = modulename.existing_fn_name
# clones the parameters and return converter from that
# function. you can't modify them. you must enter a
# new docstring.
#
# (but we might find a directive first!)
#
# this line is permitted to start with whitespace.
# we'll call this number of spaces F (for "function").
if not line.strip():
return
self.indent.infer(line)
# are we cloning?
before, equals, existing = line.rpartition('=')
if equals:
full_name, _, c_basename = before.partition(' as ')
full_name = full_name.strip()
c_basename = c_basename.strip()
existing = existing.strip()
if (is_legal_py_identifier(full_name) and
(not c_basename or is_legal_c_identifier(c_basename)) and
is_legal_py_identifier(existing)):
# we're cloning!
fields = [x.strip() for x in existing.split('.')]
function_name = fields.pop()
module, cls = self.clinic._module_and_class(fields)
for existing_function in (cls or module).functions:
if existing_function.name == function_name:
break
else:
existing_function = None
if not existing_function:
print("class", cls, "module", module, "existing", existing)
print("cls. functions", cls.functions)
fail("Couldn't find existing function " + repr(existing) + "!")
fields = [x.strip() for x in full_name.split('.')]
function_name = fields.pop()
module, cls = self.clinic._module_and_class(fields)
if not (existing_function.kind == self.kind and existing_function.coexist == self.coexist):
fail("'kind' of function and cloned function don't match! (@classmethod/@staticmethod/@coexist)")
self.function = existing_function.copy(name=function_name, full_name=full_name, module=module, cls=cls, c_basename=c_basename, docstring='')
self.block.signatures.append(self.function)
(cls or module).functions.append(self.function)
self.next(self.state_function_docstring)
return
line, _, returns = line.partition('->')
full_name, _, c_basename = line.partition(' as ')
full_name = full_name.strip()
c_basename = c_basename.strip() or None
if not is_legal_py_identifier(full_name):
fail("Illegal function name: {}".format(full_name))
if c_basename and not is_legal_c_identifier(c_basename):
fail("Illegal C basename: {}".format(c_basename))
return_converter = None
if returns:
ast_input = "def x() -> {}: pass".format(returns)
module = None
try:
module = ast.parse(ast_input)
except SyntaxError:
pass
if not module:
fail("Badly-formed annotation for " + full_name + ": " + returns)
try:
name, legacy, kwargs = self.parse_converter(module.body[0].returns)
if legacy:
fail("Legacy converter {!r} not allowed as a return converter"
.format(name))
if name not in return_converters:
fail("No available return converter called " + repr(name))
return_converter = return_converters[name](**kwargs)
except ValueError:
fail("Badly-formed annotation for " + full_name + ": " + returns)
fields = [x.strip() for x in full_name.split('.')]
function_name = fields.pop()
module, cls = self.clinic._module_and_class(fields)
fields = full_name.split('.')
if fields[-1] in unsupported_special_methods:
fail(f"{fields[-1]} is a special method and cannot be converted to Argument Clinic! (Yet.)")
if fields[-1] == '__new__':
if (self.kind != CLASS_METHOD) or (not cls):
fail("__new__ must be a class method!")
self.kind = METHOD_NEW
elif fields[-1] == '__init__':
if (self.kind != CALLABLE) or (not cls):
fail("__init__ must be a normal method, not a class or static method!")
self.kind = METHOD_INIT
if not return_converter:
return_converter = init_return_converter()
if not return_converter:
return_converter = CReturnConverter()
if not module:
fail("Undefined module used in declaration of " + repr(full_name.strip()) + ".")
self.function = Function(name=function_name, full_name=full_name, module=module, cls=cls, c_basename=c_basename,
return_converter=return_converter, kind=self.kind, coexist=self.coexist)
self.block.signatures.append(self.function)
# insert a self converter automatically
type, name = correct_name_for_self(self.function)
kwargs = {}
if cls and type == "PyObject *":
kwargs['type'] = cls.typedef
sc = self.function.self_converter = self_converter(name, name, self.function, **kwargs)
p_self = Parameter(sc.name, inspect.Parameter.POSITIONAL_ONLY, function=self.function, converter=sc)
self.function.parameters[sc.name] = p_self
(cls or module).functions.append(self.function)
self.next(self.state_parameters_start)
# Now entering the parameters section. The rules, formally stated:
#
# * All lines must be indented with spaces only.
# * The first line must be a parameter declaration.
# * The first line must be indented.
# * This first line establishes the indent for parameters.
# * We'll call this number of spaces P (for "parameter").
# * Thenceforth:
# * Lines indented with P spaces specify a parameter.
# * Lines indented with > P spaces are docstrings for the previous
# parameter.
# * We'll call this number of spaces D (for "docstring").
# * All subsequent lines indented with >= D spaces are stored as
# part of the per-parameter docstring.
# * All lines will have the first D spaces of the indent stripped
# before they are stored.
# * It's illegal to have a line starting with a number of spaces X
# such that P < X < D.
# * A line with < P spaces is the first line of the function
# docstring, which ends processing for parameters and per-parameter
# docstrings.
# * The first line of the function docstring must be at the same
# indent as the function declaration.
# * It's illegal to have any line in the parameters section starting
# with X spaces such that F < X < P. (As before, F is the indent
# of the function declaration.)
#
# Also, currently Argument Clinic places the following restrictions on groups:
# * Each group must contain at least one parameter.
# * Each group may contain at most one group, which must be the furthest
# thing in the group from the required parameters. (The nested group
# must be the first in the group when it's before the required
# parameters, and the last thing in the group when after the required
# parameters.)
# * There may be at most one (top-level) group to the left or right of
# the required parameters.
# * You must specify a slash, and it must be after all parameters.
# (In other words: either all parameters are positional-only,
# or none are.)
#
# Said another way:
# * Each group must contain at least one parameter.
# * All left square brackets before the required parameters must be
# consecutive. (You can't have a left square bracket followed
# by a parameter, then another left square bracket. You can't
# have a left square bracket, a parameter, a right square bracket,
# and then a left square bracket.)
# * All right square brackets after the required parameters must be
# consecutive.
#
# These rules are enforced with a single state variable:
# "parameter_state". (Previously the code was a miasma of ifs and
# separate boolean state variables.) The states are:
#
# [ [ a, b, ] c, ] d, e, f=3, [ g, h, [ i ] ] <- line
# 01 2 3 4 5 6 <- state transitions
#
# 0: ps_start. before we've seen anything. legal transitions are to 1 or 3.
# 1: ps_left_square_before. left square brackets before required parameters.
# 2: ps_group_before. in a group, before required parameters.
# 3: ps_required. required parameters, positional-or-keyword or positional-only
# (we don't know yet). (renumber left groups!)
# 4: ps_optional. positional-or-keyword or positional-only parameters that
# now must have default values.
# 5: ps_group_after. in a group, after required parameters.
# 6: ps_right_square_after. right square brackets after required parameters.
ps_start, ps_left_square_before, ps_group_before, ps_required, \
ps_optional, ps_group_after, ps_right_square_after = range(7)
def state_parameters_start(self, line):
if self.ignore_line(line):
return
# if this line is not indented, we have no parameters
if not self.indent.infer(line):
return self.next(self.state_function_docstring, line)
self.parameter_continuation = ''
return self.next(self.state_parameter, line)
def to_required(self):
"""
Transition to the "required" parameter state.
"""
if self.parameter_state != self.ps_required:
self.parameter_state = self.ps_required
for p in self.function.parameters.values():
p.group = -p.group
def state_parameter(self, line):
if self.parameter_continuation:
line = self.parameter_continuation + ' ' + line.lstrip()
self.parameter_continuation = ''
if self.ignore_line(line):
return
assert self.indent.depth == 2
indent = self.indent.infer(line)
if indent == -1:
# we outdented, must be to definition column
return self.next(self.state_function_docstring, line)
if indent == 1:
# we indented, must be to new parameter docstring column
return self.next(self.state_parameter_docstring_start, line)
line = line.rstrip()
if line.endswith('\\'):
self.parameter_continuation = line[:-1]
return
line = line.lstrip()
if line in ('*', '/', '[', ']'):
self.parse_special_symbol(line)
return
if self.parameter_state in (self.ps_start, self.ps_required):
self.to_required()
elif self.parameter_state == self.ps_left_square_before:
self.parameter_state = self.ps_group_before
elif self.parameter_state == self.ps_group_before:
if not self.group:
self.to_required()
elif self.parameter_state in (self.ps_group_after, self.ps_optional):
pass
else:
fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ".a)")
# handle "as" for parameters too
c_name = None
name, have_as_token, trailing = line.partition(' as ')
if have_as_token:
name = name.strip()
if ' ' not in name:
fields = trailing.strip().split(' ')
if not fields:
fail("Invalid 'as' clause!")
c_name = fields[0]
if c_name.endswith(':'):
name += ':'
c_name = c_name[:-1]
fields[0] = name
line = ' '.join(fields)
base, equals, default = line.rpartition('=')
if not equals:
base = default
default = None
module = None
try:
ast_input = "def x({}): pass".format(base)
module = ast.parse(ast_input)
except SyntaxError:
try:
# the last = was probably inside a function call, like
# c: int(accept={str})
# so assume there was no actual default value.
default = None
ast_input = "def x({}): pass".format(line)
module = ast.parse(ast_input)
except SyntaxError:
pass
if not module:
fail("Function " + self.function.name + " has an invalid parameter declaration:\n\t" + line)
function_args = module.body[0].args
if len(function_args.args) > 1:
fail("Function " + self.function.name + " has an invalid parameter declaration (comma?):\n\t" + line)
if function_args.defaults or function_args.kw_defaults:
fail("Function " + self.function.name + " has an invalid parameter declaration (default value?):\n\t" + line)
if function_args.vararg or function_args.kwarg:
fail("Function " + self.function.name + " has an invalid parameter declaration (*args? **kwargs?):\n\t" + line)
parameter = function_args.args[0]
parameter_name = parameter.arg
name, legacy, kwargs = self.parse_converter(parameter.annotation)
if not default:
if self.parameter_state == self.ps_optional:
fail("Can't have a parameter without a default (" + repr(parameter_name) + ")\nafter a parameter with a default!")
value = unspecified
if 'py_default' in kwargs:
fail("You can't specify py_default without specifying a default value!")
else:
if self.parameter_state == self.ps_required:
self.parameter_state = self.ps_optional
default = default.strip()
bad = False
ast_input = "x = {}".format(default)
bad = False
try:
module = ast.parse(ast_input)
if 'c_default' not in kwargs:
# we can only represent very simple data values in C.
# detect whether default is okay, via a denylist
# of disallowed ast nodes.
class DetectBadNodes(ast.NodeVisitor):
bad = False
def bad_node(self, node):
self.bad = True
# inline function call
visit_Call = bad_node
# inline if statement ("x = 3 if y else z")
visit_IfExp = bad_node
# comprehensions and generator expressions
visit_ListComp = visit_SetComp = bad_node
visit_DictComp = visit_GeneratorExp = bad_node
# literals for advanced types
visit_Dict = visit_Set = bad_node
visit_List = visit_Tuple = bad_node
# "starred": "a = [1, 2, 3]; *a"
visit_Starred = bad_node
denylist = DetectBadNodes()
denylist.visit(module)
bad = denylist.bad
else:
# if they specify a c_default, we can be more lenient about the default value.
# but at least make an attempt at ensuring it's a valid expression.
try:
value = eval(default)
if value == unspecified:
fail("'unspecified' is not a legal default value!")
except NameError:
pass # probably a named constant
except Exception as e:
fail("Malformed expression given as default value\n"
"{!r} caused {!r}".format(default, e))
if bad:
fail("Unsupported expression as default value: " + repr(default))
expr = module.body[0].value
# mild hack: explicitly support NULL as a default value
if isinstance(expr, ast.Name) and expr.id == 'NULL':
value = NULL
py_default = '<unrepresentable>'
c_default = "NULL"
elif (isinstance(expr, ast.BinOp) or
(isinstance(expr, ast.UnaryOp) and
not (isinstance(expr.operand, ast.Num) or
(hasattr(ast, 'Constant') and
isinstance(expr.operand, ast.Constant) and
type(expr.operand.value) in (int, float, complex)))
)):
c_default = kwargs.get("c_default")
if not (isinstance(c_default, str) and c_default):
fail("When you specify an expression (" + repr(default) + ") as your default value,\nyou MUST specify a valid c_default." + ast.dump(expr))
py_default = default
value = unknown
elif isinstance(expr, ast.Attribute):
a = []
n = expr
while isinstance(n, ast.Attribute):
a.append(n.attr)
n = n.value
if not isinstance(n, ast.Name):
fail("Unsupported default value " + repr(default) + " (looked like a Python constant)")
a.append(n.id)
py_default = ".".join(reversed(a))
c_default = kwargs.get("c_default")
if not (isinstance(c_default, str) and c_default):
fail("When you specify a named constant (" + repr(py_default) + ") as your default value,\nyou MUST specify a valid c_default.")
try:
value = eval(py_default)
except NameError:
value = unknown
else:
value = ast.literal_eval(expr)
py_default = repr(value)
if isinstance(value, (bool, None.__class__)):
c_default = "Py_" + py_default
elif isinstance(value, str):
c_default = c_repr(value)
else:
c_default = py_default
except SyntaxError as e:
fail("Syntax error: " + repr(e.text))
except (ValueError, AttributeError):
value = unknown
c_default = kwargs.get("c_default")
py_default = default
if not (isinstance(c_default, str) and c_default):
fail("When you specify a named constant (" + repr(py_default) + ") as your default value,\nyou MUST specify a valid c_default.")
kwargs.setdefault('c_default', c_default)
kwargs.setdefault('py_default', py_default)
dict = legacy_converters if legacy else converters
legacy_str = "legacy " if legacy else ""
if name not in dict:
fail('{} is not a valid {}converter'.format(name, legacy_str))
# if you use a c_name for the parameter, we just give that name to the converter
# but the parameter object gets the python name
converter = dict[name](c_name or parameter_name, parameter_name, self.function, value, **kwargs)
kind = inspect.Parameter.KEYWORD_ONLY if self.keyword_only else inspect.Parameter.POSITIONAL_OR_KEYWORD
if isinstance(converter, self_converter):
if len(self.function.parameters) == 1:
if (self.parameter_state != self.ps_required):
fail("A 'self' parameter cannot be marked optional.")
if value is not unspecified:
fail("A 'self' parameter cannot have a default value.")
if self.group:
fail("A 'self' parameter cannot be in an optional group.")
kind = inspect.Parameter.POSITIONAL_ONLY
self.parameter_state = self.ps_start
self.function.parameters.clear()
else:
fail("A 'self' parameter, if specified, must be the very first thing in the parameter block.")
if isinstance(converter, defining_class_converter):
_lp = len(self.function.parameters)
if _lp == 1:
if (self.parameter_state != self.ps_required):
fail("A 'defining_class' parameter cannot be marked optional.")
if value is not unspecified:
fail("A 'defining_class' parameter cannot have a default value.")
if self.group:
fail("A 'defining_class' parameter cannot be in an optional group.")
else:
fail("A 'defining_class' parameter, if specified, must either be the first thing in the parameter block, or come just after 'self'.")
p = Parameter(parameter_name, kind, function=self.function, converter=converter, default=value, group=self.group)
if parameter_name in self.function.parameters:
fail("You can't have two parameters named " + repr(parameter_name) + "!")
self.function.parameters[parameter_name] = p
def parse_converter(self, annotation):
if (hasattr(ast, 'Constant') and
isinstance(annotation, ast.Constant) and
type(annotation.value) is str):
return annotation.value, True, {}
if isinstance(annotation, ast.Str):
return annotation.s, True, {}
if isinstance(annotation, ast.Name):
return annotation.id, False, {}
if not isinstance(annotation, ast.Call):
fail("Annotations must be either a name, a function call, or a string.")
name = annotation.func.id
symbols = globals()
kwargs = {node.arg: eval_ast_expr(node.value, symbols) for node in annotation.keywords}
return name, False, kwargs
def parse_special_symbol(self, symbol):
if symbol == '*':
if self.keyword_only:
fail("Function " + self.function.name + " uses '*' more than once.")
self.keyword_only = True
elif symbol == '[':
if self.parameter_state in (self.ps_start, self.ps_left_square_before):
self.parameter_state = self.ps_left_square_before
elif self.parameter_state in (self.ps_required, self.ps_group_after):
self.parameter_state = self.ps_group_after
else:
fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ".b)")
self.group += 1
self.function.docstring_only = True
elif symbol == ']':
if not self.group:
fail("Function " + self.function.name + " has a ] without a matching [.")
if not any(p.group == self.group for p in self.function.parameters.values()):
fail("Function " + self.function.name + " has an empty group.\nAll groups must contain at least one parameter.")
self.group -= 1
if self.parameter_state in (self.ps_left_square_before, self.ps_group_before):
self.parameter_state = self.ps_group_before
elif self.parameter_state in (self.ps_group_after, self.ps_right_square_after):
self.parameter_state = self.ps_right_square_after
else:
fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ".c)")
elif symbol == '/':
if self.positional_only:
fail("Function " + self.function.name + " uses '/' more than once.")
self.positional_only = True
# ps_required and ps_optional are allowed here, that allows positional-only without option groups
# to work (and have default values!)
if (self.parameter_state not in (self.ps_required, self.ps_optional, self.ps_right_square_after, self.ps_group_before)) or self.group:
fail("Function " + self.function.name + " has an unsupported group configuration. (Unexpected state " + str(self.parameter_state) + ".d)")
if self.keyword_only:
fail("Function " + self.function.name + " mixes keyword-only and positional-only parameters, which is unsupported.")
# fixup preceding parameters
for p in self.function.parameters.values():
if (p.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD and not isinstance(p.converter, self_converter)):
fail("Function " + self.function.name + " mixes keyword-only and positional-only parameters, which is unsupported.")
p.kind = inspect.Parameter.POSITIONAL_ONLY
def state_parameter_docstring_start(self, line):
self.parameter_docstring_indent = len(self.indent.margin)
assert self.indent.depth == 3
return self.next(self.state_parameter_docstring, line)
# every line of the docstring must start with at least F spaces,
# where F > P.
# these F spaces will be stripped.
def state_parameter_docstring(self, line):
stripped = line.strip()
if stripped.startswith('#'):
return
indent = self.indent.measure(line)
if indent < self.parameter_docstring_indent:
self.indent.infer(line)
assert self.indent.depth < 3
if self.indent.depth == 2:
# back to a parameter
return self.next(self.state_parameter, line)
assert self.indent.depth == 1
return self.next(self.state_function_docstring, line)
assert self.function.parameters
last_parameter = next(reversed(list(self.function.parameters.values())))
new_docstring = last_parameter.docstring
if new_docstring:
new_docstring += '\n'
if stripped:
new_docstring += self.indent.dedent(line)
last_parameter.docstring = new_docstring
# the final stanza of the DSL is the docstring.
def state_function_docstring(self, line):
if self.group:
fail("Function " + self.function.name + " has a ] without a matching [.")
stripped = line.strip()
if stripped.startswith('#'):
return
new_docstring = self.function.docstring
if new_docstring:
new_docstring += "\n"
if stripped:
line = self.indent.dedent(line).rstrip()
else:
line = ''
new_docstring += line
self.function.docstring = new_docstring
def format_docstring(self):
f = self.function
new_or_init = f.kind in (METHOD_NEW, METHOD_INIT)
if new_or_init and not f.docstring:
# don't render a docstring at all, no signature, nothing.
return f.docstring
text, add, output = _text_accumulator()
parameters = f.render_parameters
##
## docstring first line
##
if new_or_init:
# classes get *just* the name of the class
# not __new__, not __init__, and not module.classname
assert f.cls
add(f.cls.name)
else:
add(f.name)
add('(')
# populate "right_bracket_count" field for every parameter
assert parameters, "We should always have a self parameter. " + repr(f)
assert isinstance(parameters[0].converter, self_converter)
# self is always positional-only.
assert parameters[0].is_positional_only()
parameters[0].right_bracket_count = 0
positional_only = True
for p in parameters[1:]:
if not p.is_positional_only():
positional_only = False
else:
assert positional_only
if positional_only:
p.right_bracket_count = abs(p.group)
else:
# don't put any right brackets around non-positional-only parameters, ever.
p.right_bracket_count = 0
right_bracket_count = 0
def fix_right_bracket_count(desired):
nonlocal right_bracket_count
s = ''
while right_bracket_count < desired:
s += '['
right_bracket_count += 1
while right_bracket_count > desired:
s += ']'
right_bracket_count -= 1
return s
need_slash = False
added_slash = False
need_a_trailing_slash = False
# we only need a trailing slash:
# * if this is not a "docstring_only" signature
# * and if the last *shown* parameter is
# positional only
if not f.docstring_only:
for p in reversed(parameters):
if not p.converter.show_in_signature:
continue
if p.is_positional_only():
need_a_trailing_slash = True
break
added_star = False
first_parameter = True
last_p = parameters[-1]
line_length = len(''.join(text))
indent = " " * line_length
def add_parameter(text):
nonlocal line_length
nonlocal first_parameter
if first_parameter:
s = text
first_parameter = False
else:
s = ' ' + text
if line_length + len(s) >= 72:
add('\n')
add(indent)
line_length = len(indent)
s = text
line_length += len(s)
add(s)
for p in parameters:
if not p.converter.show_in_signature:
continue
assert p.name
is_self = isinstance(p.converter, self_converter)
if is_self and f.docstring_only:
# this isn't a real machine-parsable signature,
# so let's not print the "self" parameter
continue
if p.is_positional_only():
need_slash = not f.docstring_only
elif need_slash and not (added_slash or p.is_positional_only()):
added_slash = True
add_parameter('/,')
if p.is_keyword_only() and not added_star:
added_star = True
add_parameter('*,')
p_add, p_output = text_accumulator()
p_add(fix_right_bracket_count(p.right_bracket_count))
if isinstance(p.converter, self_converter):
# annotate first parameter as being a "self".
#
# if inspect.Signature gets this function,
# and it's already bound, the self parameter
# will be stripped off.
#
# if it's not bound, it should be marked
# as positional-only.
#
# note: we don't print "self" for __init__,
# because this isn't actually the signature
# for __init__. (it can't be, __init__ doesn't
# have a docstring.) if this is an __init__
# (or __new__), then this signature is for
# calling the class to construct a new instance.
p_add('$')
name = p.converter.signature_name or p.name
p_add(name)
if p.converter.is_optional():
p_add('=')
value = p.converter.py_default
if not value:
value = repr(p.converter.default)
p_add(value)
if (p != last_p) or need_a_trailing_slash:
p_add(',')
add_parameter(p_output())
add(fix_right_bracket_count(0))
if need_a_trailing_slash:
add_parameter('/')
add(')')
# PEP 8 says:
#
# The Python standard library will not use function annotations
# as that would result in a premature commitment to a particular
# annotation style. Instead, the annotations are left for users
# to discover and experiment with useful annotation styles.
#
# therefore this is commented out:
#
# if f.return_converter.py_default:
# add(' -> ')
# add(f.return_converter.py_default)
if not f.docstring_only:
add("\n" + sig_end_marker + "\n")
docstring_first_line = output()
# now fix up the places where the brackets look wrong
docstring_first_line = docstring_first_line.replace(', ]', ',] ')
# okay. now we're officially building the "parameters" section.
# create substitution text for {parameters}
spacer_line = False
for p in parameters:
if not p.docstring.strip():
continue
if spacer_line:
add('\n')
else:
spacer_line = True
add(" ")
add(p.name)
add('\n')
add(textwrap.indent(rstrip_lines(p.docstring.rstrip()), " "))
parameters = output()
if parameters:
parameters += '\n'
##
## docstring body
##
docstring = f.docstring.rstrip()
lines = [line.rstrip() for line in docstring.split('\n')]
# Enforce the summary line!
# The first line of a docstring should be a summary of the function.
# It should fit on one line (80 columns? 79 maybe?) and be a paragraph
# by itself.
#
# Argument Clinic enforces the following rule:
# * either the docstring is empty,
# * or it must have a summary line.
#
# Guido said Clinic should enforce this:
# http://mail.python.org/pipermail/python-dev/2013-June/127110.html
if len(lines) >= 2:
if lines[1]:
fail("Docstring for " + f.full_name + " does not have a summary line!\n" +
"Every non-blank function docstring must start with\n" +
"a single line summary followed by an empty line.")
elif len(lines) == 1:
# the docstring is only one line right now--the summary line.
# add an empty line after the summary line so we have space
# between it and the {parameters} we're about to add.
lines.append('')
parameters_marker_count = len(docstring.split('{parameters}')) - 1
if parameters_marker_count > 1:
fail('You may not specify {parameters} more than once in a docstring!')
if not parameters_marker_count:
# insert after summary line
lines.insert(2, '{parameters}')
# insert at front of docstring
lines.insert(0, docstring_first_line)
docstring = "\n".join(lines)
add(docstring)
docstring = output()
docstring = linear_format(docstring, parameters=parameters)
docstring = docstring.rstrip()
return docstring
def state_terminal(self, line):
"""
Called when processing the block is done.
"""
assert not line
if not self.function:
return
if self.keyword_only:
values = self.function.parameters.values()
if not values:
no_parameter_after_star = True
else:
last_parameter = next(reversed(list(values)))
no_parameter_after_star = last_parameter.kind != inspect.Parameter.KEYWORD_ONLY
if no_parameter_after_star:
fail("Function " + self.function.name + " specifies '*' without any parameters afterwards.")
# remove trailing whitespace from all parameter docstrings
for name, value in self.function.parameters.items():
if not value:
continue
value.docstring = value.docstring.rstrip()
self.function.docstring = self.format_docstring()
# maps strings to callables.
# the callable should return an object
# that implements the clinic parser
# interface (__init__ and parse).
#
# example parsers:
# "clinic", handles the Clinic DSL
# "python", handles running Python code
#
parsers = {'clinic' : DSLParser, 'python': PythonParser}
clinic = None
def main(argv):
import sys
if sys.version_info.major < 3 or sys.version_info.minor < 3:
sys.exit("Error: clinic.py requires Python 3.3 or greater.")
import argparse
cmdline = argparse.ArgumentParser(
description="""Preprocessor for CPython C files.
The purpose of the Argument Clinic is automating all the boilerplate involved
with writing argument parsing code for builtins and providing introspection
signatures ("docstrings") for CPython builtins.
For more information see https://docs.python.org/3/howto/clinic.html""")
cmdline.add_argument("-f", "--force", action='store_true')
cmdline.add_argument("-o", "--output", type=str)
cmdline.add_argument("-v", "--verbose", action='store_true')
cmdline.add_argument("--converters", action='store_true')
cmdline.add_argument("--make", action='store_true',
help="Walk --srcdir to run over all relevant files.")
cmdline.add_argument("--srcdir", type=str, default=os.curdir,
help="The directory tree to walk in --make mode.")
cmdline.add_argument("filename", type=str, nargs="*")
ns = cmdline.parse_args(argv)
if ns.converters:
if ns.filename:
print("Usage error: can't specify --converters and a filename at the same time.")
print()
cmdline.print_usage()
sys.exit(-1)
converters = []
return_converters = []
ignored = set("""
add_c_converter
add_c_return_converter
add_default_legacy_c_converter
add_legacy_c_converter
""".strip().split())
module = globals()
for name in module:
for suffix, ids in (
("_return_converter", return_converters),
("_converter", converters),
):
if name in ignored:
continue
if name.endswith(suffix):
ids.append((name, name[:-len(suffix)]))
break
print()
print("Legacy converters:")
legacy = sorted(legacy_converters)
print(' ' + ' '.join(c for c in legacy if c[0].isupper()))
print(' ' + ' '.join(c for c in legacy if c[0].islower()))
print()
for title, attribute, ids in (
("Converters", 'converter_init', converters),
("Return converters", 'return_converter_init', return_converters),
):
print(title + ":")
longest = -1
for name, short_name in ids:
longest = max(longest, len(short_name))
for name, short_name in sorted(ids, key=lambda x: x[1].lower()):
cls = module[name]
callable = getattr(cls, attribute, None)
if not callable:
continue
signature = inspect.signature(callable)
parameters = []
for parameter_name, parameter in signature.parameters.items():
if parameter.kind == inspect.Parameter.KEYWORD_ONLY:
if parameter.default != inspect.Parameter.empty:
s = '{}={!r}'.format(parameter_name, parameter.default)
else:
s = parameter_name
parameters.append(s)
print(' {}({})'.format(short_name, ', '.join(parameters)))
print()
print("All converters also accept (c_default=None, py_default=None, annotation=None).")
print("All return converters also accept (py_default=None).")
sys.exit(0)
if ns.make:
if ns.output or ns.filename:
print("Usage error: can't use -o or filenames with --make.")
print()
cmdline.print_usage()
sys.exit(-1)
if not ns.srcdir:
print("Usage error: --srcdir must not be empty with --make.")
print()
cmdline.print_usage()
sys.exit(-1)
for root, dirs, files in os.walk(ns.srcdir):
for rcs_dir in ('.svn', '.git', '.hg', 'build', 'externals'):
if rcs_dir in dirs:
dirs.remove(rcs_dir)
for filename in files:
if not (filename.endswith('.c') or filename.endswith('.h')):
continue
path = os.path.join(root, filename)
if ns.verbose:
print(path)
parse_file(path, verify=not ns.force)
return
if not ns.filename:
cmdline.print_usage()
sys.exit(-1)
if ns.output and len(ns.filename) > 1:
print("Usage error: can't use -o with multiple filenames.")
print()
cmdline.print_usage()
sys.exit(-1)
for filename in ns.filename:
if ns.verbose:
print(filename)
parse_file(filename, output=ns.output, verify=not ns.force)
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))