mirror of https://github.com/python/cpython
1337 lines
44 KiB
C
1337 lines
44 KiB
C
/* Authors: Gregory P. Smith & Jeffrey Yasskin */
|
|
#ifndef Py_BUILD_CORE_BUILTIN
|
|
# define Py_BUILD_CORE_MODULE 1
|
|
#endif
|
|
|
|
#include "Python.h"
|
|
#include "pycore_fileutils.h"
|
|
#include "pycore_pystate.h"
|
|
#include "pycore_signal.h" // _Py_RestoreSignals()
|
|
#if defined(HAVE_PIPE2) && !defined(_GNU_SOURCE)
|
|
# define _GNU_SOURCE
|
|
#endif
|
|
#include <unistd.h> // close()
|
|
#include <fcntl.h> // fcntl()
|
|
#ifdef HAVE_SYS_TYPES_H
|
|
# include <sys/types.h>
|
|
#endif
|
|
#if defined(HAVE_SYS_STAT_H)
|
|
# include <sys/stat.h> // stat()
|
|
#endif
|
|
#ifdef HAVE_SYS_SYSCALL_H
|
|
# include <sys/syscall.h>
|
|
#endif
|
|
#if defined(HAVE_SYS_RESOURCE_H)
|
|
# include <sys/resource.h>
|
|
#endif
|
|
#ifdef HAVE_DIRENT_H
|
|
# include <dirent.h> // opendir()
|
|
#endif
|
|
#if defined(HAVE_SETGROUPS)
|
|
# include <grp.h> // setgroups()
|
|
#endif
|
|
|
|
#include "posixmodule.h"
|
|
|
|
#ifdef _Py_MEMORY_SANITIZER
|
|
# include <sanitizer/msan_interface.h>
|
|
#endif
|
|
|
|
#if defined(__ANDROID__) && __ANDROID_API__ < 21 && !defined(SYS_getdents64)
|
|
# include <sys/linux-syscalls.h>
|
|
# define SYS_getdents64 __NR_getdents64
|
|
#endif
|
|
|
|
#if defined(__linux__) && defined(HAVE_VFORK) && defined(HAVE_SIGNAL_H) && \
|
|
defined(HAVE_PTHREAD_SIGMASK) && !defined(HAVE_BROKEN_PTHREAD_SIGMASK)
|
|
/* If this is ever expanded to non-Linux platforms, verify what calls are
|
|
* allowed after vfork(). Ex: setsid() may be disallowed on macOS? */
|
|
# include <signal.h>
|
|
# define VFORK_USABLE 1
|
|
#endif
|
|
|
|
#if defined(__sun) && defined(__SVR4)
|
|
/* readdir64 is used to work around Solaris 9 bug 6395699. */
|
|
# define readdir readdir64
|
|
# define dirent dirent64
|
|
# if !defined(HAVE_DIRFD)
|
|
/* Some versions of Solaris lack dirfd(). */
|
|
# define dirfd(dirp) ((dirp)->dd_fd)
|
|
# define HAVE_DIRFD
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(__FreeBSD__) || (defined(__APPLE__) && defined(__MACH__)) || defined(__DragonFly__)
|
|
# define FD_DIR "/dev/fd"
|
|
#else
|
|
# define FD_DIR "/proc/self/fd"
|
|
#endif
|
|
|
|
#ifdef NGROUPS_MAX
|
|
#define MAX_GROUPS NGROUPS_MAX
|
|
#else
|
|
#define MAX_GROUPS 64
|
|
#endif
|
|
|
|
#define POSIX_CALL(call) do { if ((call) == -1) goto error; } while (0)
|
|
|
|
static struct PyModuleDef _posixsubprocessmodule;
|
|
|
|
/*[clinic input]
|
|
module _posixsubprocess
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=c62211df27cf7334]*/
|
|
|
|
/*[python input]
|
|
class pid_t_converter(CConverter):
|
|
type = 'pid_t'
|
|
format_unit = '" _Py_PARSE_PID "'
|
|
|
|
def parse_arg(self, argname, displayname, *, limited_capi):
|
|
return self.format_code("""
|
|
{paramname} = PyLong_AsPid({argname});
|
|
if ({paramname} == -1 && PyErr_Occurred()) {{{{
|
|
goto exit;
|
|
}}}}
|
|
""",
|
|
argname=argname)
|
|
[python start generated code]*/
|
|
/*[python end generated code: output=da39a3ee5e6b4b0d input=c94349aa1aad151d]*/
|
|
|
|
#include "clinic/_posixsubprocess.c.h"
|
|
|
|
/* Convert ASCII to a positive int, no libc call. no overflow. -1 on error. */
|
|
static int
|
|
_pos_int_from_ascii(const char *name)
|
|
{
|
|
int num = 0;
|
|
while (*name >= '0' && *name <= '9') {
|
|
num = num * 10 + (*name - '0');
|
|
++name;
|
|
}
|
|
if (*name)
|
|
return -1; /* Non digit found, not a number. */
|
|
return num;
|
|
}
|
|
|
|
|
|
#if defined(__FreeBSD__) || defined(__DragonFly__)
|
|
/* When /dev/fd isn't mounted it is often a static directory populated
|
|
* with 0 1 2 or entries for 0 .. 63 on FreeBSD, NetBSD, OpenBSD and DragonFlyBSD.
|
|
* NetBSD and OpenBSD have a /proc fs available (though not necessarily
|
|
* mounted) and do not have fdescfs for /dev/fd. MacOS X has a devfs
|
|
* that properly supports /dev/fd.
|
|
*/
|
|
static int
|
|
_is_fdescfs_mounted_on_dev_fd(void)
|
|
{
|
|
struct stat dev_stat;
|
|
struct stat dev_fd_stat;
|
|
if (stat("/dev", &dev_stat) != 0)
|
|
return 0;
|
|
if (stat(FD_DIR, &dev_fd_stat) != 0)
|
|
return 0;
|
|
if (dev_stat.st_dev == dev_fd_stat.st_dev)
|
|
return 0; /* / == /dev == /dev/fd means it is static. #fail */
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Returns 1 if there is a problem with fd_sequence, 0 otherwise. */
|
|
static int
|
|
_sanity_check_python_fd_sequence(PyObject *fd_sequence)
|
|
{
|
|
Py_ssize_t seq_idx;
|
|
long prev_fd = -1;
|
|
for (seq_idx = 0; seq_idx < PyTuple_GET_SIZE(fd_sequence); ++seq_idx) {
|
|
PyObject* py_fd = PyTuple_GET_ITEM(fd_sequence, seq_idx);
|
|
long iter_fd;
|
|
if (!PyLong_Check(py_fd)) {
|
|
return 1;
|
|
}
|
|
iter_fd = PyLong_AsLong(py_fd);
|
|
if (iter_fd < 0 || iter_fd <= prev_fd || iter_fd > INT_MAX) {
|
|
/* Negative, overflow, unsorted, too big for a fd. */
|
|
return 1;
|
|
}
|
|
prev_fd = iter_fd;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Is fd found in the sorted Python Sequence? */
|
|
static int
|
|
_is_fd_in_sorted_fd_sequence(int fd, int *fd_sequence,
|
|
Py_ssize_t fd_sequence_len)
|
|
{
|
|
/* Binary search. */
|
|
Py_ssize_t search_min = 0;
|
|
Py_ssize_t search_max = fd_sequence_len - 1;
|
|
if (search_max < 0)
|
|
return 0;
|
|
do {
|
|
long middle = (search_min + search_max) / 2;
|
|
long middle_fd = fd_sequence[middle];
|
|
if (fd == middle_fd)
|
|
return 1;
|
|
if (fd > middle_fd)
|
|
search_min = middle + 1;
|
|
else
|
|
search_max = middle - 1;
|
|
} while (search_min <= search_max);
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Forward declaration
|
|
static void _Py_FreeCharPArray(char *const array[]);
|
|
|
|
/*
|
|
* Flatten a sequence of bytes() objects into a C array of
|
|
* NULL terminated string pointers with a NULL char* terminating the array.
|
|
* (ie: an argv or env list)
|
|
*
|
|
* Memory allocated for the returned list is allocated using PyMem_Malloc()
|
|
* and MUST be freed by _Py_FreeCharPArray().
|
|
*/
|
|
static char *const *
|
|
_PySequence_BytesToCharpArray(PyObject* self)
|
|
{
|
|
char **array;
|
|
Py_ssize_t i, argc;
|
|
PyObject *item = NULL;
|
|
Py_ssize_t size;
|
|
|
|
argc = PySequence_Size(self);
|
|
if (argc == -1)
|
|
return NULL;
|
|
|
|
assert(argc >= 0);
|
|
|
|
if ((size_t)argc > (PY_SSIZE_T_MAX-sizeof(char *)) / sizeof(char *)) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
|
|
array = PyMem_Malloc((argc + 1) * sizeof(char *));
|
|
if (array == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < argc; ++i) {
|
|
char *data;
|
|
item = PySequence_GetItem(self, i);
|
|
if (item == NULL) {
|
|
/* NULL terminate before freeing. */
|
|
array[i] = NULL;
|
|
goto fail;
|
|
}
|
|
/* check for embedded null bytes */
|
|
if (PyBytes_AsStringAndSize(item, &data, NULL) < 0) {
|
|
/* NULL terminate before freeing. */
|
|
array[i] = NULL;
|
|
goto fail;
|
|
}
|
|
size = PyBytes_GET_SIZE(item) + 1;
|
|
array[i] = PyMem_Malloc(size);
|
|
if (!array[i]) {
|
|
PyErr_NoMemory();
|
|
goto fail;
|
|
}
|
|
memcpy(array[i], data, size);
|
|
Py_DECREF(item);
|
|
}
|
|
array[argc] = NULL;
|
|
|
|
return array;
|
|
|
|
fail:
|
|
Py_XDECREF(item);
|
|
_Py_FreeCharPArray(array);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Free's a NULL terminated char** array of C strings. */
|
|
static void
|
|
_Py_FreeCharPArray(char *const array[])
|
|
{
|
|
Py_ssize_t i;
|
|
for (i = 0; array[i] != NULL; ++i) {
|
|
PyMem_Free(array[i]);
|
|
}
|
|
PyMem_Free((void*)array);
|
|
}
|
|
|
|
|
|
/*
|
|
* Do all the Python C API calls in the parent process to turn the pass_fds
|
|
* "py_fds_to_keep" tuple into a C array. The caller owns allocation and
|
|
* freeing of the array.
|
|
*
|
|
* On error an unknown number of array elements may have been filled in.
|
|
* A Python exception has been set when an error is returned.
|
|
*
|
|
* Returns: -1 on error, 0 on success.
|
|
*/
|
|
static int
|
|
convert_fds_to_keep_to_c(PyObject *py_fds_to_keep, int *c_fds_to_keep)
|
|
{
|
|
Py_ssize_t i, len;
|
|
|
|
len = PyTuple_GET_SIZE(py_fds_to_keep);
|
|
for (i = 0; i < len; ++i) {
|
|
PyObject* fdobj = PyTuple_GET_ITEM(py_fds_to_keep, i);
|
|
long fd = PyLong_AsLong(fdobj);
|
|
if (fd == -1 && PyErr_Occurred()) {
|
|
return -1;
|
|
}
|
|
if (fd < 0 || fd > INT_MAX) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"fd out of range in fds_to_keep.");
|
|
return -1;
|
|
}
|
|
c_fds_to_keep[i] = (int)fd;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* This function must be async-signal-safe as it is called from child_exec()
|
|
* after fork() or vfork().
|
|
*/
|
|
static int
|
|
make_inheritable(int *c_fds_to_keep, Py_ssize_t len, int errpipe_write)
|
|
{
|
|
Py_ssize_t i;
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
int fd = c_fds_to_keep[i];
|
|
if (fd == errpipe_write) {
|
|
/* errpipe_write is part of fds_to_keep. It must be closed at
|
|
exec(), but kept open in the child process until exec() is
|
|
called. */
|
|
continue;
|
|
}
|
|
if (_Py_set_inheritable_async_safe(fd, 1, NULL) < 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Get the maximum file descriptor that could be opened by this process.
|
|
* This function is async signal safe for use between fork() and exec().
|
|
*/
|
|
static long
|
|
safe_get_max_fd(void)
|
|
{
|
|
long local_max_fd;
|
|
#if defined(__NetBSD__)
|
|
local_max_fd = fcntl(0, F_MAXFD);
|
|
if (local_max_fd >= 0)
|
|
return local_max_fd;
|
|
#endif
|
|
#if defined(HAVE_SYS_RESOURCE_H) && defined(__OpenBSD__)
|
|
struct rlimit rl;
|
|
/* Not on the POSIX async signal safe functions list but likely
|
|
* safe. TODO - Someone should audit OpenBSD to make sure. */
|
|
if (getrlimit(RLIMIT_NOFILE, &rl) >= 0)
|
|
return (long) rl.rlim_max;
|
|
#endif
|
|
#ifdef _SC_OPEN_MAX
|
|
local_max_fd = sysconf(_SC_OPEN_MAX);
|
|
if (local_max_fd == -1)
|
|
#endif
|
|
local_max_fd = 256; /* Matches legacy Lib/subprocess.py behavior. */
|
|
return local_max_fd;
|
|
}
|
|
|
|
|
|
/* Close all file descriptors in the given range except for those in
|
|
* fds_to_keep by invoking closer on each subrange.
|
|
*
|
|
* If end_fd == -1, it's guessed via safe_get_max_fd(), but it isn't
|
|
* possible to know for sure what the max fd to go up to is for
|
|
* processes with the capability of raising their maximum, or in case
|
|
* a process opened a high fd and then lowered its maximum.
|
|
*/
|
|
static int
|
|
_close_range_except(int start_fd,
|
|
int end_fd,
|
|
int *fds_to_keep,
|
|
Py_ssize_t fds_to_keep_len,
|
|
int (*closer)(int, int))
|
|
{
|
|
if (end_fd == -1) {
|
|
end_fd = Py_MIN(safe_get_max_fd(), INT_MAX);
|
|
}
|
|
Py_ssize_t keep_seq_idx;
|
|
/* As fds_to_keep is sorted we can loop through the list closing
|
|
* fds in between any in the keep list falling within our range. */
|
|
for (keep_seq_idx = 0; keep_seq_idx < fds_to_keep_len; ++keep_seq_idx) {
|
|
int keep_fd = fds_to_keep[keep_seq_idx];
|
|
if (keep_fd < start_fd)
|
|
continue;
|
|
if (closer(start_fd, keep_fd - 1) != 0)
|
|
return -1;
|
|
start_fd = keep_fd + 1;
|
|
}
|
|
if (start_fd <= end_fd) {
|
|
if (closer(start_fd, end_fd) != 0)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if defined(__linux__) && defined(HAVE_SYS_SYSCALL_H)
|
|
/* It doesn't matter if d_name has room for NAME_MAX chars; we're using this
|
|
* only to read a directory of short file descriptor number names. The kernel
|
|
* will return an error if we didn't give it enough space. Highly Unlikely.
|
|
* This structure is very old and stable: It will not change unless the kernel
|
|
* chooses to break compatibility with all existing binaries. Highly Unlikely.
|
|
*/
|
|
struct linux_dirent64 {
|
|
unsigned long long d_ino;
|
|
long long d_off;
|
|
unsigned short d_reclen; /* Length of this linux_dirent */
|
|
unsigned char d_type;
|
|
char d_name[256]; /* Filename (null-terminated) */
|
|
};
|
|
|
|
static int
|
|
_brute_force_closer(int first, int last)
|
|
{
|
|
for (int i = first; i <= last; i++) {
|
|
/* Ignore errors */
|
|
(void)close(i);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Close all open file descriptors in the range from start_fd and higher
|
|
* Do not close any in the sorted fds_to_keep list.
|
|
*
|
|
* This version is async signal safe as it does not make any unsafe C library
|
|
* calls, malloc calls or handle any locks. It is _unfortunate_ to be forced
|
|
* to resort to making a kernel system call directly but this is the ONLY api
|
|
* available that does no harm. opendir/readdir/closedir perform memory
|
|
* allocation and locking so while they usually work they are not guaranteed
|
|
* to (especially if you have replaced your malloc implementation). A version
|
|
* of this function that uses those can be found in the _maybe_unsafe variant.
|
|
*
|
|
* This is Linux specific because that is all I am ready to test it on. It
|
|
* should be easy to add OS specific dirent or dirent64 structures and modify
|
|
* it with some cpp #define magic to work on other OSes as well if you want.
|
|
*/
|
|
static void
|
|
_close_open_fds_safe(int start_fd, int *fds_to_keep, Py_ssize_t fds_to_keep_len)
|
|
{
|
|
int fd_dir_fd;
|
|
|
|
fd_dir_fd = _Py_open_noraise(FD_DIR, O_RDONLY);
|
|
if (fd_dir_fd == -1) {
|
|
/* No way to get a list of open fds. */
|
|
_close_range_except(start_fd, -1,
|
|
fds_to_keep, fds_to_keep_len,
|
|
_brute_force_closer);
|
|
return;
|
|
} else {
|
|
char buffer[sizeof(struct linux_dirent64)];
|
|
int bytes;
|
|
while ((bytes = syscall(SYS_getdents64, fd_dir_fd,
|
|
(struct linux_dirent64 *)buffer,
|
|
sizeof(buffer))) > 0) {
|
|
struct linux_dirent64 *entry;
|
|
int offset;
|
|
#ifdef _Py_MEMORY_SANITIZER
|
|
__msan_unpoison(buffer, bytes);
|
|
#endif
|
|
for (offset = 0; offset < bytes; offset += entry->d_reclen) {
|
|
int fd;
|
|
entry = (struct linux_dirent64 *)(buffer + offset);
|
|
if ((fd = _pos_int_from_ascii(entry->d_name)) < 0)
|
|
continue; /* Not a number. */
|
|
if (fd != fd_dir_fd && fd >= start_fd &&
|
|
!_is_fd_in_sorted_fd_sequence(fd, fds_to_keep,
|
|
fds_to_keep_len)) {
|
|
close(fd);
|
|
}
|
|
}
|
|
}
|
|
close(fd_dir_fd);
|
|
}
|
|
}
|
|
|
|
#define _close_open_fds_fallback _close_open_fds_safe
|
|
|
|
#else /* NOT (defined(__linux__) && defined(HAVE_SYS_SYSCALL_H)) */
|
|
|
|
static int
|
|
_unsafe_closer(int first, int last)
|
|
{
|
|
_Py_closerange(first, last);
|
|
return 0;
|
|
}
|
|
|
|
/* Close all open file descriptors from start_fd and higher.
|
|
* Do not close any in the sorted fds_to_keep tuple.
|
|
*
|
|
* This function violates the strict use of async signal safe functions. :(
|
|
* It calls opendir(), readdir() and closedir(). Of these, the one most
|
|
* likely to ever cause a problem is opendir() as it performs an internal
|
|
* malloc(). Practically this should not be a problem. The Java VM makes the
|
|
* same calls between fork and exec in its own UNIXProcess_md.c implementation.
|
|
*
|
|
* readdir_r() is not used because it provides no benefit. It is typically
|
|
* implemented as readdir() followed by memcpy(). See also:
|
|
* http://womble.decadent.org.uk/readdir_r-advisory.html
|
|
*/
|
|
static void
|
|
_close_open_fds_maybe_unsafe(int start_fd, int *fds_to_keep,
|
|
Py_ssize_t fds_to_keep_len)
|
|
{
|
|
DIR *proc_fd_dir;
|
|
#ifndef HAVE_DIRFD
|
|
while (_is_fd_in_sorted_fd_sequence(start_fd, fds_to_keep,
|
|
fds_to_keep_len)) {
|
|
++start_fd;
|
|
}
|
|
/* Close our lowest fd before we call opendir so that it is likely to
|
|
* reuse that fd otherwise we might close opendir's file descriptor in
|
|
* our loop. This trick assumes that fd's are allocated on a lowest
|
|
* available basis. */
|
|
close(start_fd);
|
|
++start_fd;
|
|
#endif
|
|
|
|
#if defined(__FreeBSD__) || defined(__DragonFly__)
|
|
if (!_is_fdescfs_mounted_on_dev_fd())
|
|
proc_fd_dir = NULL;
|
|
else
|
|
#endif
|
|
proc_fd_dir = opendir(FD_DIR);
|
|
if (!proc_fd_dir) {
|
|
/* No way to get a list of open fds. */
|
|
_close_range_except(start_fd, -1, fds_to_keep, fds_to_keep_len,
|
|
_unsafe_closer);
|
|
} else {
|
|
struct dirent *dir_entry;
|
|
#ifdef HAVE_DIRFD
|
|
int fd_used_by_opendir = dirfd(proc_fd_dir);
|
|
#else
|
|
int fd_used_by_opendir = start_fd - 1;
|
|
#endif
|
|
errno = 0;
|
|
while ((dir_entry = readdir(proc_fd_dir))) {
|
|
int fd;
|
|
if ((fd = _pos_int_from_ascii(dir_entry->d_name)) < 0)
|
|
continue; /* Not a number. */
|
|
if (fd != fd_used_by_opendir && fd >= start_fd &&
|
|
!_is_fd_in_sorted_fd_sequence(fd, fds_to_keep,
|
|
fds_to_keep_len)) {
|
|
close(fd);
|
|
}
|
|
errno = 0;
|
|
}
|
|
if (errno) {
|
|
/* readdir error, revert behavior. Highly Unlikely. */
|
|
_close_range_except(start_fd, -1, fds_to_keep, fds_to_keep_len,
|
|
_unsafe_closer);
|
|
}
|
|
closedir(proc_fd_dir);
|
|
}
|
|
}
|
|
|
|
#define _close_open_fds_fallback _close_open_fds_maybe_unsafe
|
|
|
|
#endif /* else NOT (defined(__linux__) && defined(HAVE_SYS_SYSCALL_H)) */
|
|
|
|
/* We can use close_range() library function only if it's known to be
|
|
* async-signal-safe.
|
|
*
|
|
* On Linux, glibc explicitly documents it to be a thin wrapper over
|
|
* the system call, and other C libraries are likely to follow glibc.
|
|
*/
|
|
#if defined(HAVE_CLOSE_RANGE) && \
|
|
(defined(__linux__) || defined(__FreeBSD__))
|
|
#define HAVE_ASYNC_SAFE_CLOSE_RANGE
|
|
|
|
static int
|
|
_close_range_closer(int first, int last)
|
|
{
|
|
return close_range(first, last, 0);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
_close_open_fds(int start_fd, int *fds_to_keep, Py_ssize_t fds_to_keep_len)
|
|
{
|
|
#ifdef HAVE_ASYNC_SAFE_CLOSE_RANGE
|
|
if (_close_range_except(
|
|
start_fd, INT_MAX, fds_to_keep, fds_to_keep_len,
|
|
_close_range_closer) == 0) {
|
|
return;
|
|
}
|
|
#endif
|
|
_close_open_fds_fallback(start_fd, fds_to_keep, fds_to_keep_len);
|
|
}
|
|
|
|
#ifdef VFORK_USABLE
|
|
/* Reset dispositions for all signals to SIG_DFL except for ignored
|
|
* signals. This way we ensure that no signal handlers can run
|
|
* after we unblock signals in a child created by vfork().
|
|
*/
|
|
static void
|
|
reset_signal_handlers(const sigset_t *child_sigmask)
|
|
{
|
|
struct sigaction sa_dfl = {.sa_handler = SIG_DFL};
|
|
for (int sig = 1; sig < _NSIG; sig++) {
|
|
/* Dispositions for SIGKILL and SIGSTOP can't be changed. */
|
|
if (sig == SIGKILL || sig == SIGSTOP) {
|
|
continue;
|
|
}
|
|
|
|
/* There is no need to reset the disposition of signals that will
|
|
* remain blocked across execve() since the kernel will do it. */
|
|
if (sigismember(child_sigmask, sig) == 1) {
|
|
continue;
|
|
}
|
|
|
|
struct sigaction sa;
|
|
/* C libraries usually return EINVAL for signals used
|
|
* internally (e.g. for thread cancellation), so simply
|
|
* skip errors here. */
|
|
if (sigaction(sig, NULL, &sa) == -1) {
|
|
continue;
|
|
}
|
|
|
|
/* void *h works as these fields are both pointer types already. */
|
|
void *h = (sa.sa_flags & SA_SIGINFO ? (void *)sa.sa_sigaction :
|
|
(void *)sa.sa_handler);
|
|
if (h == SIG_IGN || h == SIG_DFL) {
|
|
continue;
|
|
}
|
|
|
|
/* This call can't reasonably fail, but if it does, terminating
|
|
* the child seems to be too harsh, so ignore errors. */
|
|
(void) sigaction(sig, &sa_dfl, NULL);
|
|
}
|
|
}
|
|
#endif /* VFORK_USABLE */
|
|
|
|
|
|
/*
|
|
* This function is code executed in the child process immediately after
|
|
* (v)fork to set things up and call exec().
|
|
*
|
|
* All of the code in this function must only use async-signal-safe functions,
|
|
* listed at `man 7 signal` or
|
|
* http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html.
|
|
*
|
|
* This restriction is documented at
|
|
* http://www.opengroup.org/onlinepubs/009695399/functions/fork.html.
|
|
*
|
|
* If this function is called after vfork(), even more care must be taken.
|
|
* The lack of preparations that C libraries normally take on fork(),
|
|
* as well as sharing the address space with the parent, might make even
|
|
* async-signal-safe functions vfork-unsafe. In particular, on Linux,
|
|
* set*id() and setgroups() library functions must not be called, since
|
|
* they have to interact with the library-level thread list and send
|
|
* library-internal signals to implement per-process credentials semantics
|
|
* required by POSIX but not supported natively on Linux. Another reason to
|
|
* avoid this family of functions is that sharing an address space between
|
|
* processes running with different privileges is inherently insecure.
|
|
* See https://bugs.python.org/issue35823 for discussion and references.
|
|
*
|
|
* In some C libraries, setrlimit() has the same thread list/signalling
|
|
* behavior since resource limits were per-thread attributes before
|
|
* Linux 2.6.10. Musl, as of 1.2.1, is known to have this issue
|
|
* (https://www.openwall.com/lists/musl/2020/10/15/6).
|
|
*
|
|
* If vfork-unsafe functionality is desired after vfork(), consider using
|
|
* syscall() to obtain it.
|
|
*/
|
|
Py_NO_INLINE static void
|
|
child_exec(char *const exec_array[],
|
|
char *const argv[],
|
|
char *const envp[],
|
|
const char *cwd,
|
|
int p2cread, int p2cwrite,
|
|
int c2pread, int c2pwrite,
|
|
int errread, int errwrite,
|
|
int errpipe_read, int errpipe_write,
|
|
int close_fds, int restore_signals,
|
|
int call_setsid, pid_t pgid_to_set,
|
|
gid_t gid,
|
|
Py_ssize_t extra_group_size, const gid_t *extra_groups,
|
|
uid_t uid, int child_umask,
|
|
const void *child_sigmask,
|
|
int *fds_to_keep, Py_ssize_t fds_to_keep_len,
|
|
PyObject *preexec_fn,
|
|
PyObject *preexec_fn_args_tuple)
|
|
{
|
|
int i, saved_errno;
|
|
PyObject *result;
|
|
/* Indicate to the parent that the error happened before exec(). */
|
|
const char *err_msg = "noexec";
|
|
/* Buffer large enough to hold a hex integer. We can't malloc. */
|
|
char hex_errno[sizeof(saved_errno)*2+1];
|
|
|
|
if (make_inheritable(fds_to_keep, fds_to_keep_len, errpipe_write) < 0)
|
|
goto error;
|
|
|
|
/* Close parent's pipe ends. */
|
|
if (p2cwrite != -1)
|
|
POSIX_CALL(close(p2cwrite));
|
|
if (c2pread != -1)
|
|
POSIX_CALL(close(c2pread));
|
|
if (errread != -1)
|
|
POSIX_CALL(close(errread));
|
|
POSIX_CALL(close(errpipe_read));
|
|
|
|
/* When duping fds, if there arises a situation where one of the fds is
|
|
either 0, 1 or 2, it is possible that it is overwritten (#12607). */
|
|
if (c2pwrite == 0) {
|
|
POSIX_CALL(c2pwrite = dup(c2pwrite));
|
|
/* issue32270 */
|
|
if (_Py_set_inheritable_async_safe(c2pwrite, 0, NULL) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
while (errwrite == 0 || errwrite == 1) {
|
|
POSIX_CALL(errwrite = dup(errwrite));
|
|
/* issue32270 */
|
|
if (_Py_set_inheritable_async_safe(errwrite, 0, NULL) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
/* Dup fds for child.
|
|
dup2() removes the CLOEXEC flag but we must do it ourselves if dup2()
|
|
would be a no-op (issue #10806). */
|
|
if (p2cread == 0) {
|
|
if (_Py_set_inheritable_async_safe(p2cread, 1, NULL) < 0)
|
|
goto error;
|
|
}
|
|
else if (p2cread != -1)
|
|
POSIX_CALL(dup2(p2cread, 0)); /* stdin */
|
|
|
|
if (c2pwrite == 1) {
|
|
if (_Py_set_inheritable_async_safe(c2pwrite, 1, NULL) < 0)
|
|
goto error;
|
|
}
|
|
else if (c2pwrite != -1)
|
|
POSIX_CALL(dup2(c2pwrite, 1)); /* stdout */
|
|
|
|
if (errwrite == 2) {
|
|
if (_Py_set_inheritable_async_safe(errwrite, 1, NULL) < 0)
|
|
goto error;
|
|
}
|
|
else if (errwrite != -1)
|
|
POSIX_CALL(dup2(errwrite, 2)); /* stderr */
|
|
|
|
/* We no longer manually close p2cread, c2pwrite, and errwrite here as
|
|
* _close_open_fds takes care when it is not already non-inheritable. */
|
|
|
|
if (cwd) {
|
|
if (chdir(cwd) == -1) {
|
|
err_msg = "noexec:chdir";
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (child_umask >= 0)
|
|
umask(child_umask); /* umask() always succeeds. */
|
|
|
|
if (restore_signals) {
|
|
_Py_RestoreSignals();
|
|
}
|
|
|
|
#ifdef VFORK_USABLE
|
|
if (child_sigmask) {
|
|
reset_signal_handlers(child_sigmask);
|
|
if ((errno = pthread_sigmask(SIG_SETMASK, child_sigmask, NULL))) {
|
|
goto error;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_SETSID
|
|
if (call_setsid)
|
|
POSIX_CALL(setsid());
|
|
#endif
|
|
|
|
#ifdef HAVE_SETPGID
|
|
static_assert(_Py_IS_TYPE_SIGNED(pid_t), "pid_t is unsigned");
|
|
if (pgid_to_set >= 0) {
|
|
POSIX_CALL(setpgid(0, pgid_to_set));
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_SETGROUPS
|
|
if (extra_group_size >= 0) {
|
|
assert((extra_group_size == 0) == (extra_groups == NULL));
|
|
POSIX_CALL(setgroups(extra_group_size, extra_groups));
|
|
}
|
|
#endif /* HAVE_SETGROUPS */
|
|
|
|
#ifdef HAVE_SETREGID
|
|
if (gid != (gid_t)-1)
|
|
POSIX_CALL(setregid(gid, gid));
|
|
#endif /* HAVE_SETREGID */
|
|
|
|
#ifdef HAVE_SETREUID
|
|
if (uid != (uid_t)-1)
|
|
POSIX_CALL(setreuid(uid, uid));
|
|
#endif /* HAVE_SETREUID */
|
|
|
|
|
|
err_msg = "";
|
|
if (preexec_fn != Py_None && preexec_fn_args_tuple) {
|
|
/* This is where the user has asked us to deadlock their program. */
|
|
result = PyObject_Call(preexec_fn, preexec_fn_args_tuple, NULL);
|
|
if (result == NULL) {
|
|
/* Stringifying the exception or traceback would involve
|
|
* memory allocation and thus potential for deadlock.
|
|
* We've already faced potential deadlock by calling back
|
|
* into Python in the first place, so it probably doesn't
|
|
* matter but we avoid it to minimize the possibility. */
|
|
err_msg = "Exception occurred in preexec_fn.";
|
|
errno = 0; /* We don't want to report an OSError. */
|
|
goto error;
|
|
}
|
|
/* Py_DECREF(result); - We're about to exec so why bother? */
|
|
}
|
|
|
|
/* close FDs after executing preexec_fn, which might open FDs */
|
|
if (close_fds) {
|
|
/* TODO HP-UX could use pstat_getproc() if anyone cares about it. */
|
|
_close_open_fds(3, fds_to_keep, fds_to_keep_len);
|
|
}
|
|
|
|
/* This loop matches the Lib/os.py _execvpe()'s PATH search when */
|
|
/* given the executable_list generated by Lib/subprocess.py. */
|
|
saved_errno = 0;
|
|
for (i = 0; exec_array[i] != NULL; ++i) {
|
|
const char *executable = exec_array[i];
|
|
if (envp) {
|
|
execve(executable, argv, envp);
|
|
} else {
|
|
execv(executable, argv);
|
|
}
|
|
if (errno != ENOENT && errno != ENOTDIR && saved_errno == 0) {
|
|
saved_errno = errno;
|
|
}
|
|
}
|
|
/* Report the first exec error, not the last. */
|
|
if (saved_errno)
|
|
errno = saved_errno;
|
|
|
|
error:
|
|
saved_errno = errno;
|
|
/* Report the posix error to our parent process. */
|
|
/* We ignore all write() return values as the total size of our writes is
|
|
less than PIPEBUF and we cannot do anything about an error anyways.
|
|
Use _Py_write_noraise() to retry write() if it is interrupted by a
|
|
signal (fails with EINTR). */
|
|
if (saved_errno) {
|
|
char *cur;
|
|
_Py_write_noraise(errpipe_write, "OSError:", 8);
|
|
cur = hex_errno + sizeof(hex_errno);
|
|
while (saved_errno != 0 && cur != hex_errno) {
|
|
*--cur = Py_hexdigits[saved_errno % 16];
|
|
saved_errno /= 16;
|
|
}
|
|
_Py_write_noraise(errpipe_write, cur, hex_errno + sizeof(hex_errno) - cur);
|
|
_Py_write_noraise(errpipe_write, ":", 1);
|
|
/* We can't call strerror(saved_errno). It is not async signal safe.
|
|
* The parent process will look the error message up. */
|
|
} else {
|
|
_Py_write_noraise(errpipe_write, "SubprocessError:0:", 18);
|
|
}
|
|
_Py_write_noraise(errpipe_write, err_msg, strlen(err_msg));
|
|
}
|
|
|
|
|
|
/* The main purpose of this wrapper function is to isolate vfork() from both
|
|
* subprocess_fork_exec() and child_exec(). A child process created via
|
|
* vfork() executes on the same stack as the parent process while the latter is
|
|
* suspended, so this function should not be inlined to avoid compiler bugs
|
|
* that might clobber data needed by the parent later. Additionally,
|
|
* child_exec() should not be inlined to avoid spurious -Wclobber warnings from
|
|
* GCC (see bpo-35823).
|
|
*/
|
|
Py_NO_INLINE static pid_t
|
|
do_fork_exec(char *const exec_array[],
|
|
char *const argv[],
|
|
char *const envp[],
|
|
const char *cwd,
|
|
int p2cread, int p2cwrite,
|
|
int c2pread, int c2pwrite,
|
|
int errread, int errwrite,
|
|
int errpipe_read, int errpipe_write,
|
|
int close_fds, int restore_signals,
|
|
int call_setsid, pid_t pgid_to_set,
|
|
gid_t gid,
|
|
Py_ssize_t extra_group_size, const gid_t *extra_groups,
|
|
uid_t uid, int child_umask,
|
|
const void *child_sigmask,
|
|
int *fds_to_keep, Py_ssize_t fds_to_keep_len,
|
|
PyObject *preexec_fn,
|
|
PyObject *preexec_fn_args_tuple)
|
|
{
|
|
|
|
pid_t pid;
|
|
|
|
#ifdef VFORK_USABLE
|
|
PyThreadState *vfork_tstate_save;
|
|
if (child_sigmask) {
|
|
/* These are checked by our caller; verify them in debug builds. */
|
|
assert(uid == (uid_t)-1);
|
|
assert(gid == (gid_t)-1);
|
|
assert(extra_group_size < 0);
|
|
assert(preexec_fn == Py_None);
|
|
|
|
/* Drop the GIL so that other threads can continue execution while this
|
|
* thread in the parent remains blocked per vfork-semantics on the
|
|
* child's exec syscall outcome. Exec does filesystem access which
|
|
* can take an arbitrarily long time. This addresses GH-104372.
|
|
*
|
|
* The vfork'ed child still runs in our address space. Per POSIX it
|
|
* must be limited to nothing but exec, but the Linux implementation
|
|
* is a little more usable. See the child_exec() comment - The child
|
|
* MUST NOT re-acquire the GIL.
|
|
*/
|
|
vfork_tstate_save = PyEval_SaveThread();
|
|
pid = vfork();
|
|
if (pid != 0) {
|
|
// Not in the child process, reacquire the GIL.
|
|
PyEval_RestoreThread(vfork_tstate_save);
|
|
}
|
|
if (pid == (pid_t)-1) {
|
|
/* If vfork() fails, fall back to using fork(). When it isn't
|
|
* allowed in a process by the kernel, vfork can return -1
|
|
* with errno EINVAL. https://bugs.python.org/issue47151. */
|
|
pid = fork();
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
pid = fork();
|
|
}
|
|
|
|
if (pid != 0) {
|
|
// Parent process.
|
|
return pid;
|
|
}
|
|
|
|
/* Child process.
|
|
* See the comment above child_exec() for restrictions imposed on
|
|
* the code below.
|
|
*/
|
|
|
|
if (preexec_fn != Py_None) {
|
|
/* We'll be calling back into Python later so we need to do this.
|
|
* This call may not be async-signal-safe but neither is calling
|
|
* back into Python. The user asked us to use hope as a strategy
|
|
* to avoid deadlock... */
|
|
PyOS_AfterFork_Child();
|
|
}
|
|
|
|
child_exec(exec_array, argv, envp, cwd,
|
|
p2cread, p2cwrite, c2pread, c2pwrite,
|
|
errread, errwrite, errpipe_read, errpipe_write,
|
|
close_fds, restore_signals, call_setsid, pgid_to_set,
|
|
gid, extra_group_size, extra_groups,
|
|
uid, child_umask, child_sigmask,
|
|
fds_to_keep, fds_to_keep_len,
|
|
preexec_fn, preexec_fn_args_tuple);
|
|
_exit(255);
|
|
return 0; /* Dead code to avoid a potential compiler warning. */
|
|
}
|
|
|
|
/*[clinic input]
|
|
_posixsubprocess.fork_exec as subprocess_fork_exec
|
|
args as process_args: object
|
|
executable_list: object
|
|
close_fds: bool
|
|
pass_fds as py_fds_to_keep: object(subclass_of='&PyTuple_Type')
|
|
cwd as cwd_obj: object
|
|
env as env_list: object
|
|
p2cread: int
|
|
p2cwrite: int
|
|
c2pread: int
|
|
c2pwrite: int
|
|
errread: int
|
|
errwrite: int
|
|
errpipe_read: int
|
|
errpipe_write: int
|
|
restore_signals: bool
|
|
call_setsid: bool
|
|
pgid_to_set: pid_t
|
|
gid as gid_object: object
|
|
extra_groups as extra_groups_packed: object
|
|
uid as uid_object: object
|
|
child_umask: int
|
|
preexec_fn: object
|
|
allow_vfork: bool
|
|
/
|
|
|
|
Spawn a fresh new child process.
|
|
|
|
Fork a child process, close parent file descriptors as appropriate in the
|
|
child and duplicate the few that are needed before calling exec() in the
|
|
child process.
|
|
|
|
If close_fds is True, close file descriptors 3 and higher, except those listed
|
|
in the sorted tuple pass_fds.
|
|
|
|
The preexec_fn, if supplied, will be called immediately before closing file
|
|
descriptors and exec.
|
|
|
|
WARNING: preexec_fn is NOT SAFE if your application uses threads.
|
|
It may trigger infrequent, difficult to debug deadlocks.
|
|
|
|
If an error occurs in the child process before the exec, it is
|
|
serialized and written to the errpipe_write fd per subprocess.py.
|
|
|
|
Returns: the child process's PID.
|
|
|
|
Raises: Only on an error in the parent process.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
subprocess_fork_exec_impl(PyObject *module, PyObject *process_args,
|
|
PyObject *executable_list, int close_fds,
|
|
PyObject *py_fds_to_keep, PyObject *cwd_obj,
|
|
PyObject *env_list, int p2cread, int p2cwrite,
|
|
int c2pread, int c2pwrite, int errread,
|
|
int errwrite, int errpipe_read, int errpipe_write,
|
|
int restore_signals, int call_setsid,
|
|
pid_t pgid_to_set, PyObject *gid_object,
|
|
PyObject *extra_groups_packed,
|
|
PyObject *uid_object, int child_umask,
|
|
PyObject *preexec_fn, int allow_vfork)
|
|
/*[clinic end generated code: output=7ee4f6ee5cf22b5b input=51757287ef266ffa]*/
|
|
{
|
|
PyObject *converted_args = NULL, *fast_args = NULL;
|
|
PyObject *preexec_fn_args_tuple = NULL;
|
|
gid_t *extra_groups = NULL;
|
|
PyObject *cwd_obj2 = NULL;
|
|
const char *cwd = NULL;
|
|
pid_t pid = -1;
|
|
int need_to_reenable_gc = 0;
|
|
char *const *argv = NULL, *const *envp = NULL;
|
|
int need_after_fork = 0;
|
|
int saved_errno = 0;
|
|
int *c_fds_to_keep = NULL;
|
|
Py_ssize_t fds_to_keep_len = PyTuple_GET_SIZE(py_fds_to_keep);
|
|
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
if ((preexec_fn != Py_None) &&
|
|
_PyInterpreterState_GetFinalizing(interp) != NULL)
|
|
{
|
|
PyErr_SetString(PyExc_PythonFinalizationError,
|
|
"preexec_fn not supported at interpreter shutdown");
|
|
return NULL;
|
|
}
|
|
if ((preexec_fn != Py_None) && (interp != PyInterpreterState_Main())) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"preexec_fn not supported within subinterpreters");
|
|
return NULL;
|
|
}
|
|
|
|
if (close_fds && errpipe_write < 3) { /* precondition */
|
|
PyErr_SetString(PyExc_ValueError, "errpipe_write must be >= 3");
|
|
return NULL;
|
|
}
|
|
if (_sanity_check_python_fd_sequence(py_fds_to_keep)) {
|
|
PyErr_SetString(PyExc_ValueError, "bad value(s) in fds_to_keep");
|
|
return NULL;
|
|
}
|
|
|
|
/* We need to call gc.disable() when we'll be calling preexec_fn */
|
|
if (preexec_fn != Py_None) {
|
|
need_to_reenable_gc = PyGC_Disable();
|
|
}
|
|
|
|
char *const *exec_array = _PySequence_BytesToCharpArray(executable_list);
|
|
if (!exec_array)
|
|
goto cleanup;
|
|
|
|
/* Convert args and env into appropriate arguments for exec() */
|
|
/* These conversions are done in the parent process to avoid allocating
|
|
or freeing memory in the child process. */
|
|
if (process_args != Py_None) {
|
|
Py_ssize_t num_args;
|
|
/* Equivalent to: */
|
|
/* tuple(PyUnicode_FSConverter(arg) for arg in process_args) */
|
|
fast_args = PySequence_Fast(process_args, "argv must be a tuple");
|
|
if (fast_args == NULL)
|
|
goto cleanup;
|
|
num_args = PySequence_Fast_GET_SIZE(fast_args);
|
|
converted_args = PyTuple_New(num_args);
|
|
if (converted_args == NULL)
|
|
goto cleanup;
|
|
for (Py_ssize_t arg_num = 0; arg_num < num_args; ++arg_num) {
|
|
PyObject *borrowed_arg, *converted_arg;
|
|
if (PySequence_Fast_GET_SIZE(fast_args) != num_args) {
|
|
PyErr_SetString(PyExc_RuntimeError, "args changed during iteration");
|
|
goto cleanup;
|
|
}
|
|
borrowed_arg = PySequence_Fast_GET_ITEM(fast_args, arg_num);
|
|
if (PyUnicode_FSConverter(borrowed_arg, &converted_arg) == 0)
|
|
goto cleanup;
|
|
PyTuple_SET_ITEM(converted_args, arg_num, converted_arg);
|
|
}
|
|
|
|
argv = _PySequence_BytesToCharpArray(converted_args);
|
|
Py_CLEAR(converted_args);
|
|
Py_CLEAR(fast_args);
|
|
if (!argv)
|
|
goto cleanup;
|
|
}
|
|
|
|
if (env_list != Py_None) {
|
|
envp = _PySequence_BytesToCharpArray(env_list);
|
|
if (!envp)
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cwd_obj != Py_None) {
|
|
if (PyUnicode_FSConverter(cwd_obj, &cwd_obj2) == 0)
|
|
goto cleanup;
|
|
cwd = PyBytes_AsString(cwd_obj2);
|
|
}
|
|
|
|
// Special initial value meaning that subprocess API was called with
|
|
// extra_groups=None leading to _posixsubprocess.fork_exec(gids=None).
|
|
// We use this to differentiate between code desiring a setgroups(0, NULL)
|
|
// call vs no call at all. The fast vfork() code path could be used when
|
|
// there is no setgroups call.
|
|
Py_ssize_t extra_group_size = -2;
|
|
|
|
if (extra_groups_packed != Py_None) {
|
|
#ifdef HAVE_SETGROUPS
|
|
if (!PyList_Check(extra_groups_packed)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"setgroups argument must be a list");
|
|
goto cleanup;
|
|
}
|
|
extra_group_size = PySequence_Size(extra_groups_packed);
|
|
|
|
if (extra_group_size < 0)
|
|
goto cleanup;
|
|
|
|
if (extra_group_size > MAX_GROUPS) {
|
|
PyErr_SetString(PyExc_ValueError, "too many extra_groups");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Deliberately keep extra_groups == NULL for extra_group_size == 0 */
|
|
if (extra_group_size > 0) {
|
|
extra_groups = PyMem_RawMalloc(extra_group_size * sizeof(gid_t));
|
|
if (extra_groups == NULL) {
|
|
PyErr_SetString(PyExc_MemoryError,
|
|
"failed to allocate memory for group list");
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
for (Py_ssize_t i = 0; i < extra_group_size; i++) {
|
|
PyObject *elem;
|
|
elem = PySequence_GetItem(extra_groups_packed, i);
|
|
if (!elem)
|
|
goto cleanup;
|
|
if (!PyLong_Check(elem)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"extra_groups must be integers");
|
|
Py_DECREF(elem);
|
|
goto cleanup;
|
|
} else {
|
|
gid_t gid;
|
|
if (!_Py_Gid_Converter(elem, &gid)) {
|
|
Py_DECREF(elem);
|
|
PyErr_SetString(PyExc_ValueError, "invalid group id");
|
|
goto cleanup;
|
|
}
|
|
extra_groups[i] = gid;
|
|
}
|
|
Py_DECREF(elem);
|
|
}
|
|
|
|
#else /* HAVE_SETGROUPS */
|
|
PyErr_BadInternalCall();
|
|
goto cleanup;
|
|
#endif /* HAVE_SETGROUPS */
|
|
}
|
|
|
|
gid_t gid = (gid_t)-1;
|
|
if (gid_object != Py_None) {
|
|
#ifdef HAVE_SETREGID
|
|
if (!_Py_Gid_Converter(gid_object, &gid))
|
|
goto cleanup;
|
|
|
|
#else /* HAVE_SETREGID */
|
|
PyErr_BadInternalCall();
|
|
goto cleanup;
|
|
#endif /* HAVE_SETREUID */
|
|
}
|
|
|
|
uid_t uid = (uid_t)-1;
|
|
if (uid_object != Py_None) {
|
|
#ifdef HAVE_SETREUID
|
|
if (!_Py_Uid_Converter(uid_object, &uid))
|
|
goto cleanup;
|
|
|
|
#else /* HAVE_SETREUID */
|
|
PyErr_BadInternalCall();
|
|
goto cleanup;
|
|
#endif /* HAVE_SETREUID */
|
|
}
|
|
|
|
c_fds_to_keep = PyMem_Malloc(fds_to_keep_len * sizeof(int));
|
|
if (c_fds_to_keep == NULL) {
|
|
PyErr_SetString(PyExc_MemoryError, "failed to malloc c_fds_to_keep");
|
|
goto cleanup;
|
|
}
|
|
if (convert_fds_to_keep_to_c(py_fds_to_keep, c_fds_to_keep) < 0) {
|
|
goto cleanup;
|
|
}
|
|
|
|
/* This must be the last thing done before fork() because we do not
|
|
* want to call PyOS_BeforeFork() if there is any chance of another
|
|
* error leading to the cleanup: code without calling fork(). */
|
|
if (preexec_fn != Py_None) {
|
|
preexec_fn_args_tuple = PyTuple_New(0);
|
|
if (!preexec_fn_args_tuple)
|
|
goto cleanup;
|
|
PyOS_BeforeFork();
|
|
need_after_fork = 1;
|
|
}
|
|
|
|
/* NOTE: When old_sigmask is non-NULL, do_fork_exec() may use vfork(). */
|
|
const void *old_sigmask = NULL;
|
|
#ifdef VFORK_USABLE
|
|
/* Use vfork() only if it's safe. See the comment above child_exec(). */
|
|
sigset_t old_sigs;
|
|
if (preexec_fn == Py_None && allow_vfork &&
|
|
uid == (uid_t)-1 && gid == (gid_t)-1 && extra_group_size < 0) {
|
|
/* Block all signals to ensure that no signal handlers are run in the
|
|
* child process while it shares memory with us. Note that signals
|
|
* used internally by C libraries won't be blocked by
|
|
* pthread_sigmask(), but signal handlers installed by C libraries
|
|
* normally service only signals originating from *within the process*,
|
|
* so it should be sufficient to consider any library function that
|
|
* might send such a signal to be vfork-unsafe and do not call it in
|
|
* the child.
|
|
*/
|
|
sigset_t all_sigs;
|
|
sigfillset(&all_sigs);
|
|
if ((saved_errno = pthread_sigmask(SIG_BLOCK, &all_sigs, &old_sigs))) {
|
|
goto cleanup;
|
|
}
|
|
old_sigmask = &old_sigs;
|
|
}
|
|
#endif
|
|
|
|
pid = do_fork_exec(exec_array, argv, envp, cwd,
|
|
p2cread, p2cwrite, c2pread, c2pwrite,
|
|
errread, errwrite, errpipe_read, errpipe_write,
|
|
close_fds, restore_signals, call_setsid, pgid_to_set,
|
|
gid, extra_group_size, extra_groups,
|
|
uid, child_umask, old_sigmask,
|
|
c_fds_to_keep, fds_to_keep_len,
|
|
preexec_fn, preexec_fn_args_tuple);
|
|
|
|
/* Parent (original) process */
|
|
if (pid == (pid_t)-1) {
|
|
/* Capture errno for the exception. */
|
|
saved_errno = errno;
|
|
}
|
|
|
|
#ifdef VFORK_USABLE
|
|
if (old_sigmask) {
|
|
/* vfork() semantics guarantees that the parent is blocked
|
|
* until the child performs _exit() or execve(), so it is safe
|
|
* to unblock signals once we're here.
|
|
* Note that in environments where vfork() is implemented as fork(),
|
|
* such as QEMU user-mode emulation, the parent won't be blocked,
|
|
* but it won't share the address space with the child,
|
|
* so it's still safe to unblock the signals.
|
|
*
|
|
* We don't handle errors here because this call can't fail
|
|
* if valid arguments are given, and because there is no good
|
|
* way for the caller to deal with a failure to restore
|
|
* the thread signal mask. */
|
|
(void) pthread_sigmask(SIG_SETMASK, old_sigmask, NULL);
|
|
}
|
|
#endif
|
|
|
|
if (need_after_fork)
|
|
PyOS_AfterFork_Parent();
|
|
|
|
cleanup:
|
|
if (c_fds_to_keep != NULL) {
|
|
PyMem_Free(c_fds_to_keep);
|
|
}
|
|
|
|
if (saved_errno != 0) {
|
|
errno = saved_errno;
|
|
/* We can't call this above as PyOS_AfterFork_Parent() calls back
|
|
* into Python code which would see the unreturned error. */
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
}
|
|
|
|
Py_XDECREF(preexec_fn_args_tuple);
|
|
PyMem_RawFree(extra_groups);
|
|
Py_XDECREF(cwd_obj2);
|
|
if (envp)
|
|
_Py_FreeCharPArray(envp);
|
|
Py_XDECREF(converted_args);
|
|
Py_XDECREF(fast_args);
|
|
if (argv)
|
|
_Py_FreeCharPArray(argv);
|
|
if (exec_array)
|
|
_Py_FreeCharPArray(exec_array);
|
|
|
|
if (need_to_reenable_gc) {
|
|
PyGC_Enable();
|
|
}
|
|
|
|
return pid == -1 ? NULL : PyLong_FromPid(pid);
|
|
}
|
|
|
|
/* module level code ********************************************************/
|
|
|
|
PyDoc_STRVAR(module_doc,
|
|
"A POSIX helper for the subprocess module.");
|
|
|
|
static PyMethodDef module_methods[] = {
|
|
SUBPROCESS_FORK_EXEC_METHODDEF
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyModuleDef_Slot _posixsubprocess_slots[] = {
|
|
{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
|
|
{0, NULL}
|
|
};
|
|
|
|
static struct PyModuleDef _posixsubprocessmodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
.m_name = "_posixsubprocess",
|
|
.m_doc = module_doc,
|
|
.m_size = 0,
|
|
.m_methods = module_methods,
|
|
.m_slots = _posixsubprocess_slots,
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit__posixsubprocess(void)
|
|
{
|
|
return PyModuleDef_Init(&_posixsubprocessmodule);
|
|
}
|