cpython/Doc/library/annotationlib.rst

350 lines
15 KiB
ReStructuredText

:mod:`!annotationlib` --- Functionality for introspecting annotations
=====================================================================
.. module:: annotationlib
:synopsis: Functionality for introspecting annotations
**Source code:** :source:`Lib/annotationlib.py`
.. testsetup:: default
import annotationlib
from annotationlib import *
--------------
The :mod:`!annotationlib` module provides tools for introspecting
:term:`annotations <annotation>` on modules, classes, and functions.
Annotations are :ref:`lazily evaluated <lazy-evaluation>` and often contain
forward references to objects that are not yet defined when the annotation
is created. This module provides a set of low-level tools that can be used to retrieve annotations in a reliable way, even
in the presence of forward references and other edge cases.
This module supports retrieving annotations in three main formats
(see :class:`Format`), each of which works best for different use cases:
* :attr:`~Format.VALUE` evaluates the annotations and returns their value.
This is most straightforward to work with, but it may raise errors,
for example if the annotations contain references to undefined names.
* :attr:`~Format.FORWARDREF` returns :class:`ForwardRef` objects
for annotations that cannot be resolved, allowing you to inspect the
annotations without evaluating them. This is useful when you need to
work with annotations that may contain unresolved forward references.
* :attr:`~Format.SOURCE` returns the annotations as a string, similar
to how it would appear in the source file. This is useful for documentation
generators that want to display annotations in a readable way.
The :func:`get_annotations` function is the main entry point for
retrieving annotations. Given a function, class, or module, it returns
an annotations dictionary in the requested format. This module also provides
functionality for working directly with the :term:`annotate function`
that is used to evaluate annotations, such as :func:`get_annotate_function`
and :func:`call_annotate_function`, as well as the
:func:`call_evaluate_function` function for working with
:term:`evaluate functions <evaluate function>`.
.. seealso::
:pep:`649` proposed the current model for how annotations work in Python.
:pep:`749` expanded on various aspects of :pep:`649` and introduced the
:mod:`!annotationlib` module.
:ref:`annotations-howto` provides best practices for working with
annotations.
:pypi:`typing-extensions` provides a backport of :func:`get_annotations`
that works on earlier versions of Python.
Annotation semantics
--------------------
The way annotations are evaluated has changed over the history of Python 3,
and currently still depends on a :ref:`future import <future>`.
There have been execution models for annotations:
* *Stock semantics* (default in Python 3.0 through 3.13; see :pep:`3107`
and :pep:`526`): Annotations are evaluated eagerly, as they are
encountered in the source code.
* *Stringified annotations* (used with ``from __future__ import annotations``
in Python 3.7 and newer; see :pep:`563`): Annotations are stored as
strings only.
* *Deferred evaluation* (default in Python 3.14 and newer; see :pep:`649` and
:pep:`749`): Annotations are evaluated lazily, only when they are accessed.
As an example, consider the following program::
def func(a: Cls) -> None:
print(a)
class Cls: pass
print(func.__annotations__)
This will behave as follows:
* Under stock semantics (Python 3.13 and earlier), it will throw a
:exc:`NameError` at the line where ``func`` is defined,
because ``Cls`` is an undefined name at that point.
* Under stringified annotations (if ``from __future__ import annotations``
is used), it will print ``{'a': 'Cls', 'return': 'None'}``.
* Under deferred evaluation (Python 3.14 and later), it will print
``{'a': <class 'Cls'>, 'return': None}``.
Stock semantics were used when function annotations were first introduced
in Python 3.0 (by :pep:`3107`) because this was the simplest, most obvious
way to implement annotations. The same execution model was used when variable
annotations were introduced in Python 3.6 (by :pep:`526`). However,
stock semantics caused problems when using annotations as type hints,
such as a need to refer to names that are not yet defined when the
annotation is encountered. In addition, there were performance problems
with executing annotations at module import time. Therefore, in Python 3.7,
:pep:`563` introduced the ability to store annotations as strings using the
``from __future__ import annotations`` syntax. The plan at the time was to
eventually make this behavior the default, but a problem appeared:
stringified annotations are more difficult to process for those who
introspect annotations at runtime. An alternative proposal, :pep:`649`,
introduced the third execution model, deferred evaluation, and was implemented
in Python 3.14. Stringified annotations are still used if
``from __future__ import annotations`` is present, but this behavior will
eventually be removed.
Classes
-------
.. class:: Format
An :class:`~enum.IntEnum` describing the formats in which annotations
can be returned. Members of the enum, or their equivalent integer values,
can be passed to :func:`get_annotations` and other functions in this
module, as well as to :attr:`~object.__annotate__` functions.
.. attribute:: VALUE
:value: 1
Values are the result of evaluating the annotation expressions.
.. attribute:: FORWARDREF
:value: 2
Values are real annotation values (as per :attr:`Format.VALUE` format)
for defined values, and :class:`ForwardRef` proxies for undefined
values. Real objects may contain references to, :class:`ForwardRef`
proxy objects.
.. attribute:: SOURCE
:value: 3
Values are the text string of the annotation as it appears in the
source code, up to modifications including, but not restricted to,
whitespace normalizations and constant values optimizations.
The exact values of these strings may change in future versions of Python.
.. versionadded:: 3.14
.. class:: ForwardRef
A proxy object for forward references in annotations.
Instances of this class are returned when the :attr:`~Format.FORWARDREF`
format is used and annotations contain a name that cannot be resolved.
This can happen when a forward reference is used in an annotation, such as
when a class is referenced before it is defined.
.. attribute:: __forward_arg__
A string containing the code that was evaluated to produce the
:class:`~ForwardRef`. The string may not be exactly equivalent
to the original source.
.. method:: evaluate(*, globals=None, locals=None, type_params=None, owner=None)
Evaluate the forward reference, returning its value.
This may throw an exception, such as :exc:`NameError`, if the forward
reference refers to names that do not exist. The arguments to this
method can be used to provide bindings for names that would otherwise
be undefined.
:class:`~ForwardRef` instances returned by :func:`get_annotations`
retain references to information about the scope they originated from,
so calling this method with no further arguments may be sufficient to
evaluate such objects. :class:`~ForwardRef` instances created by other
means may not have any information about their scope, so passing
arguments to this method may be necessary to evaluate them successfully.
*globals* and *locals* are passed to :func:`eval`, representing
the global and local namespaces in which the name is evaluated.
*type_params*, if given, must be a tuple of
:ref:`type parameters <type-params>` that are in scope while the forward
reference is being evaluated. *owner* is the object that owns the
annotation from which the forward reference derives, usually a function,
class, or module.
.. important::
Once a :class:`~ForwardRef` instance has been evaluated, it caches
the evaluated value, and future calls to :meth:`evaluate` will return
the cached value, regardless of the parameters passed in.
.. versionadded:: 3.14
Functions
---------
.. function:: call_annotate_function(annotate, format, *, owner=None)
Call the :term:`annotate function` *annotate* with the given *format*,
a member of the :class:`Format` enum, and return the annotations
dictionary produced by the function.
This helper function is required because annotate functions generated by
the compiler for functions, classes, and modules only support
the :attr:`~Format.VALUE` format when called directly.
To support other formats, this function calls the annotate function
in a special environment that allows it to produce annotations in the
other formats. This is a useful building block when implementing
functionality that needs to partially evaluate annotations while a class
is being constructed.
*owner* is the object that owns the annotation function, usually
a function, class, or module. If provided, it is used in the
:attr:`~Format.FORWARDREF` format to produce a :class:`ForwardRef`
object that carries more information.
.. seealso::
:PEP:`PEP 649 <649#the-stringizer-and-the-fake-globals-environment>`
contains an explanation of the implementation technique used by this
function.
.. versionadded:: 3.14
.. function:: call_evaluate_function(evaluate, format, *, owner=None)
Call the :term:`evaluate function` *evaluate* with the given *format*,
a member of the :class:`Format` enum, and return the value produced by
the function. This is similar to :func:`call_annotate_function`,
but the latter always returns a dictionary mapping strings to annotations,
while this function returns a single value.
This is intended for use with the evaluate functions generated for lazily
evaluated elements related to type aliases and type parameters:
* :meth:`typing.TypeAliasType.evaluate_value`, the value of type aliases
* :meth:`typing.TypeVar.evaluate_bound`, the bound of type variables
* :meth:`typing.TypeVar.evaluate_constraints`, the constraints of
type variables
* :meth:`typing.TypeVar.evaluate_default`, the default value of
type variables
* :meth:`typing.ParamSpec.evaluate_default`, the default value of
parameter specifications
* :meth:`typing.TypeVarTuple.evaluate_default`, the default value of
type variable tuples
*owner* is the object that owns the evaluate function, such as the type
alias or type variable object.
*format* can be used to control the format in which the value is returned:
.. doctest::
>>> type Alias = undefined
>>> call_evaluate_function(Alias.evaluate_value, Format.VALUE)
Traceback (most recent call last):
...
NameError: name 'undefined' is not defined
>>> call_evaluate_function(Alias.evaluate_value, Format.FORWARDREF)
ForwardRef('undefined')
>>> call_evaluate_function(Alias.evaluate_value, Format.SOURCE)
'undefined'
.. versionadded:: 3.14
.. function:: get_annotate_function(obj)
Retrieve the :term:`annotate function` for *obj*. Return :const:`!None`
if *obj* does not have an annotate function.
This is usually equivalent to accessing the :attr:`~object.__annotate__`
attribute of *obj*, but direct access to the attribute may return the wrong
object in certain situations involving metaclasses. This function should be
used instead of accessing the attribute directly.
.. versionadded:: 3.14
.. function:: get_annotations(obj, *, globals=None, locals=None, eval_str=False, format=Format.VALUE)
Compute the annotations dict for an object.
*obj* may be a callable, class, module, or other object with
:attr:`~object.__annotate__` and :attr:`~object.__annotations__` attributes.
Passing in an object of any other type raises :exc:`TypeError`.
The *format* parameter controls the format in which annotations are returned,
and must be a member of the :class:`Format` enum or its integer equivalent.
Returns a dict. :func:`!get_annotations` returns a new dict every time
it's called; calling it twice on the same object will return two
different but equivalent dicts.
This function handles several details for you:
* If *eval_str* is true, values of type :class:`!str` will
be un-stringized using :func:`eval`. This is intended
for use with stringized annotations
(``from __future__ import annotations``). It is an error
to set *eval_str* to true with formats other than :attr:`Format.VALUE`.
* If *obj* doesn't have an annotations dict, returns an
empty dict. (Functions and methods always have an
annotations dict; classes, modules, and other types of
callables may not.)
* Ignores inherited annotations on classes, as well as annotations
on metaclasses. If a class
doesn't have its own annotations dict, returns an empty dict.
* All accesses to object members and dict values are done
using ``getattr()`` and ``dict.get()`` for safety.
*eval_str* controls whether or not values of type :class:`!str` are
replaced with the result of calling :func:`eval` on those values:
* If eval_str is true, :func:`eval` is called on values of type
:class:`!str`. (Note that :func:`!get_annotations` doesn't catch
exceptions; if :func:`eval` raises an exception, it will unwind
the stack past the :func:`!get_annotations` call.)
* If *eval_str* is false (the default), values of type :class:`!str` are
unchanged.
*globals* and *locals* are passed in to :func:`eval`; see the documentation
for :func:`eval` for more information. If *globals* or *locals*
is :const:`!None`, this function may replace that value with a
context-specific default, contingent on ``type(obj)``:
* If *obj* is a module, *globals* defaults to ``obj.__dict__``.
* If *obj* is a class, *globals* defaults to
``sys.modules[obj.__module__].__dict__`` and *locals* defaults
to the *obj* class namespace.
* If *obj* is a callable, *globals* defaults to
:attr:`obj.__globals__ <function.__globals__>`,
although if *obj* is a wrapped function (using
:func:`functools.update_wrapper`) or a :class:`functools.partial` object,
it is unwrapped until a non-wrapped function is found.
Calling :func:`!get_annotations` is best practice for accessing the
annotations dict of any object. See :ref:`annotations-howto` for
more information on annotations best practices.
.. doctest::
>>> def f(a: int, b: str) -> float:
... pass
>>> get_annotations(f)
{'a': <class 'int'>, 'b': <class 'str'>, 'return': <class 'float'>}
.. versionadded:: 3.14