cpython/Doc/library/asyncio-sync.rst

461 lines
12 KiB
ReStructuredText

.. currentmodule:: asyncio
.. _asyncio-sync:
==========================
Synchronization Primitives
==========================
**Source code:** :source:`Lib/asyncio/locks.py`
-----------------------------------------------
asyncio synchronization primitives are designed to be similar to
those of the :mod:`threading` module with two important caveats:
* asyncio primitives are not thread-safe, therefore they should not
be used for OS thread synchronization (use :mod:`threading` for
that);
* methods of these synchronization primitives do not accept the *timeout*
argument; use the :func:`asyncio.wait_for` function to perform
operations with timeouts.
asyncio has the following basic synchronization primitives:
* :class:`Lock`
* :class:`Event`
* :class:`Condition`
* :class:`Semaphore`
* :class:`BoundedSemaphore`
* :class:`Barrier`
---------
Lock
====
.. class:: Lock()
Implements a mutex lock for asyncio tasks. Not thread-safe.
An asyncio lock can be used to guarantee exclusive access to a
shared resource.
The preferred way to use a Lock is an :keyword:`async with`
statement::
lock = asyncio.Lock()
# ... later
async with lock:
# access shared state
which is equivalent to::
lock = asyncio.Lock()
# ... later
await lock.acquire()
try:
# access shared state
finally:
lock.release()
.. versionchanged:: 3.10
Removed the *loop* parameter.
.. coroutinemethod:: acquire()
Acquire the lock.
This method waits until the lock is *unlocked*, sets it to
*locked* and returns ``True``.
When more than one coroutine is blocked in :meth:`acquire`
waiting for the lock to be unlocked, only one coroutine
eventually proceeds.
Acquiring a lock is *fair*: the coroutine that proceeds will be
the first coroutine that started waiting on the lock.
.. method:: release()
Release the lock.
When the lock is *locked*, reset it to *unlocked* and return.
If the lock is *unlocked*, a :exc:`RuntimeError` is raised.
.. method:: locked()
Return ``True`` if the lock is *locked*.
Event
=====
.. class:: Event()
An event object. Not thread-safe.
An asyncio event can be used to notify multiple asyncio tasks
that some event has happened.
An Event object manages an internal flag that can be set to *true*
with the :meth:`~Event.set` method and reset to *false* with the
:meth:`clear` method. The :meth:`~Event.wait` method blocks until the
flag is set to *true*. The flag is set to *false* initially.
.. versionchanged:: 3.10
Removed the *loop* parameter.
.. _asyncio_example_sync_event:
Example::
async def waiter(event):
print('waiting for it ...')
await event.wait()
print('... got it!')
async def main():
# Create an Event object.
event = asyncio.Event()
# Spawn a Task to wait until 'event' is set.
waiter_task = asyncio.create_task(waiter(event))
# Sleep for 1 second and set the event.
await asyncio.sleep(1)
event.set()
# Wait until the waiter task is finished.
await waiter_task
asyncio.run(main())
.. coroutinemethod:: wait()
Wait until the event is set.
If the event is set, return ``True`` immediately.
Otherwise block until another task calls :meth:`~Event.set`.
.. method:: set()
Set the event.
All tasks waiting for event to be set will be immediately
awakened.
.. method:: clear()
Clear (unset) the event.
Tasks awaiting on :meth:`~Event.wait` will now block until the
:meth:`~Event.set` method is called again.
.. method:: is_set()
Return ``True`` if the event is set.
Condition
=========
.. class:: Condition(lock=None)
A Condition object. Not thread-safe.
An asyncio condition primitive can be used by a task to wait for
some event to happen and then get exclusive access to a shared
resource.
In essence, a Condition object combines the functionality
of an :class:`Event` and a :class:`Lock`. It is possible to have
multiple Condition objects share one Lock, which allows coordinating
exclusive access to a shared resource between different tasks
interested in particular states of that shared resource.
The optional *lock* argument must be a :class:`Lock` object or
``None``. In the latter case a new Lock object is created
automatically.
.. versionchanged:: 3.10
Removed the *loop* parameter.
The preferred way to use a Condition is an :keyword:`async with`
statement::
cond = asyncio.Condition()
# ... later
async with cond:
await cond.wait()
which is equivalent to::
cond = asyncio.Condition()
# ... later
await cond.acquire()
try:
await cond.wait()
finally:
cond.release()
.. coroutinemethod:: acquire()
Acquire the underlying lock.
This method waits until the underlying lock is *unlocked*,
sets it to *locked* and returns ``True``.
.. method:: notify(n=1)
Wake up at most *n* tasks (1 by default) waiting on this
condition. The method is no-op if no tasks are waiting.
The lock must be acquired before this method is called and
released shortly after. If called with an *unlocked* lock
a :exc:`RuntimeError` error is raised.
.. method:: locked()
Return ``True`` if the underlying lock is acquired.
.. method:: notify_all()
Wake up all tasks waiting on this condition.
This method acts like :meth:`notify`, but wakes up all waiting
tasks.
The lock must be acquired before this method is called and
released shortly after. If called with an *unlocked* lock
a :exc:`RuntimeError` error is raised.
.. method:: release()
Release the underlying lock.
When invoked on an unlocked lock, a :exc:`RuntimeError` is
raised.
.. coroutinemethod:: wait()
Wait until notified.
If the calling task has not acquired the lock when this method is
called, a :exc:`RuntimeError` is raised.
This method releases the underlying lock, and then blocks until
it is awakened by a :meth:`notify` or :meth:`notify_all` call.
Once awakened, the Condition re-acquires its lock and this method
returns ``True``.
.. coroutinemethod:: wait_for(predicate)
Wait until a predicate becomes *true*.
The predicate must be a callable which result will be
interpreted as a boolean value. The final value is the
return value.
Semaphore
=========
.. class:: Semaphore(value=1)
A Semaphore object. Not thread-safe.
A semaphore manages an internal counter which is decremented by each
:meth:`acquire` call and incremented by each :meth:`release` call.
The counter can never go below zero; when :meth:`acquire` finds
that it is zero, it blocks, waiting until some task calls
:meth:`release`.
The optional *value* argument gives the initial value for the
internal counter (``1`` by default). If the given value is
less than ``0`` a :exc:`ValueError` is raised.
.. versionchanged:: 3.10
Removed the *loop* parameter.
The preferred way to use a Semaphore is an :keyword:`async with`
statement::
sem = asyncio.Semaphore(10)
# ... later
async with sem:
# work with shared resource
which is equivalent to::
sem = asyncio.Semaphore(10)
# ... later
await sem.acquire()
try:
# work with shared resource
finally:
sem.release()
.. coroutinemethod:: acquire()
Acquire a semaphore.
If the internal counter is greater than zero, decrement
it by one and return ``True`` immediately. If it is zero, wait
until a :meth:`release` is called and return ``True``.
.. method:: locked()
Returns ``True`` if semaphore can not be acquired immediately.
.. method:: release()
Release a semaphore, incrementing the internal counter by one.
Can wake up a task waiting to acquire the semaphore.
Unlike :class:`BoundedSemaphore`, :class:`Semaphore` allows
making more ``release()`` calls than ``acquire()`` calls.
BoundedSemaphore
================
.. class:: BoundedSemaphore(value=1)
A bounded semaphore object. Not thread-safe.
Bounded Semaphore is a version of :class:`Semaphore` that raises
a :exc:`ValueError` in :meth:`~Semaphore.release` if it
increases the internal counter above the initial *value*.
.. versionchanged:: 3.10
Removed the *loop* parameter.
Barrier
=======
.. class:: Barrier(parties, action=None)
A barrier object. Not thread-safe.
A barrier is a simple synchronization primitive that allows to block until
*parties* number of tasks are waiting on it.
Tasks can wait on the :meth:`~Barrier.wait` method and would be blocked until
the specified number of tasks end up waiting on :meth:`~Barrier.wait`.
At that point all of the waiting tasks would unblock simultaneously.
:keyword:`async with` can be used as an alternative to awaiting on
:meth:`~Barrier.wait`.
The barrier can be reused any number of times.
.. _asyncio_example_barrier:
Example::
async def example_barrier():
# barrier with 3 parties
b = asyncio.Barrier(3)
# create 2 new waiting tasks
asyncio.create_task(b.wait())
asyncio.create_task(b.wait())
await asyncio.sleep(0)
print(b)
# The third .wait() call passes the barrier
await b.wait()
print(b)
print("barrier passed")
await asyncio.sleep(0)
print(b)
asyncio.run(example_barrier())
Result of this example is::
<asyncio.locks.Barrier object at 0x... [filling, waiters:2/3]>
<asyncio.locks.Barrier object at 0x... [draining, waiters:0/3]>
barrier passed
<asyncio.locks.Barrier object at 0x... [filling, waiters:0/3]>
.. versionadded:: 3.11
.. coroutinemethod:: wait()
Pass the barrier. When all the tasks party to the barrier have called
this function, they are all unblocked simultaneously.
When a waiting or blocked task in the barrier is cancelled,
this task exits the barrier which stays in the same state.
If the state of the barrier is "filling", the number of waiting task
decreases by 1.
The return value is an integer in the range of 0 to ``parties-1``, different
for each task. This can be used to select a task to do some special
housekeeping, e.g.::
...
async with barrier as position:
if position == 0:
# Only one task print this
print('End of *draining phasis*')
This method may raise a :class:`BrokenBarrierError` exception if the
barrier is broken or reset while a task is waiting.
It could raise a :exc:`CancelledError` if a task is cancelled.
.. coroutinemethod:: reset()
Return the barrier to the default, empty state. Any tasks waiting on it
will receive the :class:`BrokenBarrierError` exception.
If a barrier is broken it may be better to just leave it and create a new one.
.. coroutinemethod:: abort()
Put the barrier into a broken state. This causes any active or future
calls to :meth:`wait` to fail with the :class:`BrokenBarrierError`.
Use this for example if one of the taks needs to abort, to avoid infinite
waiting tasks.
.. attribute:: parties
The number of tasks required to pass the barrier.
.. attribute:: n_waiting
The number of tasks currently waiting in the barrier while filling.
.. attribute:: broken
A boolean that is ``True`` if the barrier is in the broken state.
.. exception:: BrokenBarrierError
This exception, a subclass of :exc:`RuntimeError`, is raised when the
:class:`Barrier` object is reset or broken.
---------
.. versionchanged:: 3.9
Acquiring a lock using ``await lock`` or ``yield from lock`` and/or
:keyword:`with` statement (``with await lock``, ``with (yield from
lock)``) was removed. Use ``async with lock`` instead.