cpython/Python/ceval.c

3023 lines
91 KiB
C

/* Execute compiled code */
#define _PY_INTERPRETER
#include "Python.h"
#include "pycore_abstract.h" // _PyIndex_Check()
#include "pycore_backoff.h"
#include "pycore_call.h" // _PyObject_CallNoArgs()
#include "pycore_cell.h" // PyCell_GetRef()
#include "pycore_ceval.h"
#include "pycore_code.h"
#include "pycore_emscripten_signal.h" // _Py_CHECK_EMSCRIPTEN_SIGNALS
#include "pycore_function.h"
#include "pycore_instruments.h"
#include "pycore_intrinsics.h"
#include "pycore_jit.h"
#include "pycore_long.h" // _PyLong_GetZero()
#include "pycore_moduleobject.h" // PyModuleObject
#include "pycore_object.h" // _PyObject_GC_TRACK()
#include "pycore_opcode_metadata.h" // EXTRA_CASES
#include "pycore_optimizer.h" // _PyUOpExecutor_Type
#include "pycore_opcode_utils.h" // MAKE_FUNCTION_*
#include "pycore_pyatomic_ft_wrappers.h" // FT_ATOMIC_*
#include "pycore_pyerrors.h" // _PyErr_GetRaisedException()
#include "pycore_pystate.h" // _PyInterpreterState_GET()
#include "pycore_range.h" // _PyRangeIterObject
#include "pycore_setobject.h" // _PySet_Update()
#include "pycore_sliceobject.h" // _PyBuildSlice_ConsumeRefs
#include "pycore_sysmodule.h" // _PySys_Audit()
#include "pycore_tuple.h" // _PyTuple_ITEMS()
#include "pycore_typeobject.h" // _PySuper_Lookup()
#include "pycore_uop_ids.h" // Uops
#include "pycore_pyerrors.h"
#include "pycore_dict.h"
#include "dictobject.h"
#include "pycore_frame.h"
#include "frameobject.h" // _PyInterpreterFrame_GetLine
#include "opcode.h"
#include "pydtrace.h"
#include "setobject.h"
#include <stdbool.h> // bool
#ifdef Py_DEBUG
/* For debugging the interpreter: */
# define LLTRACE 1 /* Low-level trace feature */
#endif
#if !defined(Py_BUILD_CORE)
# error "ceval.c must be build with Py_BUILD_CORE define for best performance"
#endif
#if !defined(Py_DEBUG) && !defined(Py_TRACE_REFS) && !defined(Py_GIL_DISABLED)
// GH-89279: The MSVC compiler does not inline these static inline functions
// in PGO build in _PyEval_EvalFrameDefault(), because this function is over
// the limit of PGO, and that limit cannot be configured.
// Define them as macros to make sure that they are always inlined by the
// preprocessor.
// TODO: implement Py_DECREF macro for Py_GIL_DISABLED
#undef Py_DECREF
#define Py_DECREF(arg) \
do { \
PyObject *op = _PyObject_CAST(arg); \
if (_Py_IsImmortal(op)) { \
break; \
} \
_Py_DECREF_STAT_INC(); \
if (--op->ob_refcnt == 0) { \
destructor dealloc = Py_TYPE(op)->tp_dealloc; \
(*dealloc)(op); \
} \
} while (0)
#undef Py_XDECREF
#define Py_XDECREF(arg) \
do { \
PyObject *xop = _PyObject_CAST(arg); \
if (xop != NULL) { \
Py_DECREF(xop); \
} \
} while (0)
#undef Py_IS_TYPE
#define Py_IS_TYPE(ob, type) \
(_PyObject_CAST(ob)->ob_type == (type))
#undef _Py_DECREF_SPECIALIZED
#define _Py_DECREF_SPECIALIZED(arg, dealloc) \
do { \
PyObject *op = _PyObject_CAST(arg); \
if (_Py_IsImmortal(op)) { \
break; \
} \
_Py_DECREF_STAT_INC(); \
if (--op->ob_refcnt == 0) { \
destructor d = (destructor)(dealloc); \
d(op); \
} \
} while (0)
#endif
#ifdef LLTRACE
static void
dump_stack(_PyInterpreterFrame *frame, PyObject **stack_pointer)
{
PyObject **stack_base = _PyFrame_Stackbase(frame);
PyObject *exc = PyErr_GetRaisedException();
printf(" stack=[");
for (PyObject **ptr = stack_base; ptr < stack_pointer; ptr++) {
if (ptr != stack_base) {
printf(", ");
}
if (*ptr == NULL) {
printf("<nil>");
continue;
}
if (
*ptr == Py_None
|| PyBool_Check(*ptr)
|| PyLong_CheckExact(*ptr)
|| PyFloat_CheckExact(*ptr)
|| PyUnicode_CheckExact(*ptr)
) {
if (PyObject_Print(*ptr, stdout, 0) == 0) {
continue;
}
PyErr_Clear();
}
// Don't call __repr__(), it might recurse into the interpreter.
printf("<%s at %p>", Py_TYPE(*ptr)->tp_name, (void *)(*ptr));
}
printf("]\n");
fflush(stdout);
PyErr_SetRaisedException(exc);
}
static void
lltrace_instruction(_PyInterpreterFrame *frame,
PyObject **stack_pointer,
_Py_CODEUNIT *next_instr,
int opcode,
int oparg)
{
if (frame->owner == FRAME_OWNED_BY_CSTACK) {
return;
}
dump_stack(frame, stack_pointer);
const char *opname = _PyOpcode_OpName[opcode];
assert(opname != NULL);
int offset = (int)(next_instr - _PyCode_CODE(_PyFrame_GetCode(frame)));
if (OPCODE_HAS_ARG((int)_PyOpcode_Deopt[opcode])) {
printf("%d: %s %d\n", offset * 2, opname, oparg);
}
else {
printf("%d: %s\n", offset * 2, opname);
}
fflush(stdout);
}
static void
lltrace_resume_frame(_PyInterpreterFrame *frame)
{
PyObject *fobj = frame->f_funcobj;
if (!PyCode_Check(frame->f_executable) ||
fobj == NULL ||
!PyFunction_Check(fobj)
) {
printf("\nResuming frame.\n");
return;
}
PyFunctionObject *f = (PyFunctionObject *)fobj;
PyObject *exc = PyErr_GetRaisedException();
PyObject *name = f->func_qualname;
if (name == NULL) {
name = f->func_name;
}
printf("\nResuming frame");
if (name) {
printf(" for ");
if (PyObject_Print(name, stdout, 0) < 0) {
PyErr_Clear();
}
}
if (f->func_module) {
printf(" in module ");
if (PyObject_Print(f->func_module, stdout, 0) < 0) {
PyErr_Clear();
}
}
printf("\n");
fflush(stdout);
PyErr_SetRaisedException(exc);
}
static int
maybe_lltrace_resume_frame(_PyInterpreterFrame *frame, _PyInterpreterFrame *skip_frame, PyObject *globals)
{
if (globals == NULL) {
return 0;
}
if (frame == skip_frame) {
return 0;
}
int r = PyDict_Contains(globals, &_Py_ID(__lltrace__));
if (r < 0) {
return -1;
}
int lltrace = r * 5; // Levels 1-4 only trace uops
if (!lltrace) {
// Can also be controlled by environment variable
char *python_lltrace = Py_GETENV("PYTHON_LLTRACE");
if (python_lltrace != NULL && *python_lltrace >= '0') {
lltrace = *python_lltrace - '0'; // TODO: Parse an int and all that
}
}
if (lltrace >= 5) {
lltrace_resume_frame(frame);
}
return lltrace;
}
#endif
static void monitor_raise(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr);
static void monitor_reraise(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr);
static int monitor_stop_iteration(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr,
PyObject *value);
static void monitor_unwind(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr);
static int monitor_handled(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr, PyObject *exc);
static void monitor_throw(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr);
static PyObject * import_name(PyThreadState *, _PyInterpreterFrame *,
PyObject *, PyObject *, PyObject *);
static PyObject * import_from(PyThreadState *, PyObject *, PyObject *);
static int check_args_iterable(PyThreadState *, PyObject *func, PyObject *vararg);
static int get_exception_handler(PyCodeObject *, int, int*, int*, int*);
static _PyInterpreterFrame *
_PyEvalFramePushAndInit_Ex(PyThreadState *tstate, PyFunctionObject *func,
PyObject *locals, Py_ssize_t nargs, PyObject *callargs, PyObject *kwargs);
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
int
Py_GetRecursionLimit(void)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
return interp->ceval.recursion_limit;
}
void
Py_SetRecursionLimit(int new_limit)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
interp->ceval.recursion_limit = new_limit;
for (PyThreadState *p = interp->threads.head; p != NULL; p = p->next) {
int depth = p->py_recursion_limit - p->py_recursion_remaining;
p->py_recursion_limit = new_limit;
p->py_recursion_remaining = new_limit - depth;
}
}
/* The function _Py_EnterRecursiveCallTstate() only calls _Py_CheckRecursiveCall()
if the recursion_depth reaches recursion_limit. */
int
_Py_CheckRecursiveCall(PyThreadState *tstate, const char *where)
{
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
++tstate->c_recursion_remaining;
_PyErr_SetString(tstate, PyExc_MemoryError, "Stack overflow");
return -1;
}
#endif
if (tstate->recursion_headroom) {
if (tstate->c_recursion_remaining < -50) {
/* Overflowing while handling an overflow. Give up. */
Py_FatalError("Cannot recover from stack overflow.");
}
}
else {
if (tstate->c_recursion_remaining <= 0) {
tstate->recursion_headroom++;
_PyErr_Format(tstate, PyExc_RecursionError,
"maximum recursion depth exceeded%s",
where);
tstate->recursion_headroom--;
++tstate->c_recursion_remaining;
return -1;
}
}
return 0;
}
const binaryfunc _PyEval_BinaryOps[] = {
[NB_ADD] = PyNumber_Add,
[NB_AND] = PyNumber_And,
[NB_FLOOR_DIVIDE] = PyNumber_FloorDivide,
[NB_LSHIFT] = PyNumber_Lshift,
[NB_MATRIX_MULTIPLY] = PyNumber_MatrixMultiply,
[NB_MULTIPLY] = PyNumber_Multiply,
[NB_REMAINDER] = PyNumber_Remainder,
[NB_OR] = PyNumber_Or,
[NB_POWER] = _PyNumber_PowerNoMod,
[NB_RSHIFT] = PyNumber_Rshift,
[NB_SUBTRACT] = PyNumber_Subtract,
[NB_TRUE_DIVIDE] = PyNumber_TrueDivide,
[NB_XOR] = PyNumber_Xor,
[NB_INPLACE_ADD] = PyNumber_InPlaceAdd,
[NB_INPLACE_AND] = PyNumber_InPlaceAnd,
[NB_INPLACE_FLOOR_DIVIDE] = PyNumber_InPlaceFloorDivide,
[NB_INPLACE_LSHIFT] = PyNumber_InPlaceLshift,
[NB_INPLACE_MATRIX_MULTIPLY] = PyNumber_InPlaceMatrixMultiply,
[NB_INPLACE_MULTIPLY] = PyNumber_InPlaceMultiply,
[NB_INPLACE_REMAINDER] = PyNumber_InPlaceRemainder,
[NB_INPLACE_OR] = PyNumber_InPlaceOr,
[NB_INPLACE_POWER] = _PyNumber_InPlacePowerNoMod,
[NB_INPLACE_RSHIFT] = PyNumber_InPlaceRshift,
[NB_INPLACE_SUBTRACT] = PyNumber_InPlaceSubtract,
[NB_INPLACE_TRUE_DIVIDE] = PyNumber_InPlaceTrueDivide,
[NB_INPLACE_XOR] = PyNumber_InPlaceXor,
};
const conversion_func _PyEval_ConversionFuncs[4] = {
[FVC_STR] = PyObject_Str,
[FVC_REPR] = PyObject_Repr,
[FVC_ASCII] = PyObject_ASCII
};
const _Py_SpecialMethod _Py_SpecialMethods[] = {
[SPECIAL___ENTER__] = {
.name = &_Py_ID(__enter__),
.error = "'%.200s' object does not support the "
"context manager protocol (missed __enter__ method)",
},
[SPECIAL___EXIT__] = {
.name = &_Py_ID(__exit__),
.error = "'%.200s' object does not support the "
"context manager protocol (missed __exit__ method)",
},
[SPECIAL___AENTER__] = {
.name = &_Py_ID(__aenter__),
.error = "'%.200s' object does not support the asynchronous "
"context manager protocol (missed __aenter__ method)",
},
[SPECIAL___AEXIT__] = {
.name = &_Py_ID(__aexit__),
.error = "'%.200s' object does not support the asynchronous "
"context manager protocol (missed __aexit__ method)",
}
};
// PEP 634: Structural Pattern Matching
// Return a tuple of values corresponding to keys, with error checks for
// duplicate/missing keys.
PyObject *
_PyEval_MatchKeys(PyThreadState *tstate, PyObject *map, PyObject *keys)
{
assert(PyTuple_CheckExact(keys));
Py_ssize_t nkeys = PyTuple_GET_SIZE(keys);
if (!nkeys) {
// No keys means no items.
return PyTuple_New(0);
}
PyObject *seen = NULL;
PyObject *dummy = NULL;
PyObject *values = NULL;
PyObject *get = NULL;
// We use the two argument form of map.get(key, default) for two reasons:
// - Atomically check for a key and get its value without error handling.
// - Don't cause key creation or resizing in dict subclasses like
// collections.defaultdict that define __missing__ (or similar).
int meth_found = _PyObject_GetMethod(map, &_Py_ID(get), &get);
if (get == NULL) {
goto fail;
}
seen = PySet_New(NULL);
if (seen == NULL) {
goto fail;
}
// dummy = object()
dummy = _PyObject_CallNoArgs((PyObject *)&PyBaseObject_Type);
if (dummy == NULL) {
goto fail;
}
values = PyTuple_New(nkeys);
if (values == NULL) {
goto fail;
}
for (Py_ssize_t i = 0; i < nkeys; i++) {
PyObject *key = PyTuple_GET_ITEM(keys, i);
if (PySet_Contains(seen, key) || PySet_Add(seen, key)) {
if (!_PyErr_Occurred(tstate)) {
// Seen it before!
_PyErr_Format(tstate, PyExc_ValueError,
"mapping pattern checks duplicate key (%R)", key);
}
goto fail;
}
PyObject *args[] = { map, key, dummy };
PyObject *value = NULL;
if (meth_found) {
value = PyObject_Vectorcall(get, args, 3, NULL);
}
else {
value = PyObject_Vectorcall(get, &args[1], 2, NULL);
}
if (value == NULL) {
goto fail;
}
if (value == dummy) {
// key not in map!
Py_DECREF(value);
Py_DECREF(values);
// Return None:
values = Py_NewRef(Py_None);
goto done;
}
PyTuple_SET_ITEM(values, i, value);
}
// Success:
done:
Py_DECREF(get);
Py_DECREF(seen);
Py_DECREF(dummy);
return values;
fail:
Py_XDECREF(get);
Py_XDECREF(seen);
Py_XDECREF(dummy);
Py_XDECREF(values);
return NULL;
}
// Extract a named attribute from the subject, with additional bookkeeping to
// raise TypeErrors for repeated lookups. On failure, return NULL (with no
// error set). Use _PyErr_Occurred(tstate) to disambiguate.
static PyObject *
match_class_attr(PyThreadState *tstate, PyObject *subject, PyObject *type,
PyObject *name, PyObject *seen)
{
assert(PyUnicode_CheckExact(name));
assert(PySet_CheckExact(seen));
if (PySet_Contains(seen, name) || PySet_Add(seen, name)) {
if (!_PyErr_Occurred(tstate)) {
// Seen it before!
_PyErr_Format(tstate, PyExc_TypeError,
"%s() got multiple sub-patterns for attribute %R",
((PyTypeObject*)type)->tp_name, name);
}
return NULL;
}
PyObject *attr;
(void)PyObject_GetOptionalAttr(subject, name, &attr);
return attr;
}
// On success (match), return a tuple of extracted attributes. On failure (no
// match), return NULL. Use _PyErr_Occurred(tstate) to disambiguate.
PyObject*
_PyEval_MatchClass(PyThreadState *tstate, PyObject *subject, PyObject *type,
Py_ssize_t nargs, PyObject *kwargs)
{
if (!PyType_Check(type)) {
const char *e = "called match pattern must be a class";
_PyErr_Format(tstate, PyExc_TypeError, e);
return NULL;
}
assert(PyTuple_CheckExact(kwargs));
// First, an isinstance check:
if (PyObject_IsInstance(subject, type) <= 0) {
return NULL;
}
// So far so good:
PyObject *seen = PySet_New(NULL);
if (seen == NULL) {
return NULL;
}
PyObject *attrs = PyList_New(0);
if (attrs == NULL) {
Py_DECREF(seen);
return NULL;
}
// NOTE: From this point on, goto fail on failure:
PyObject *match_args = NULL;
// First, the positional subpatterns:
if (nargs) {
int match_self = 0;
if (PyObject_GetOptionalAttr(type, &_Py_ID(__match_args__), &match_args) < 0) {
goto fail;
}
if (match_args) {
if (!PyTuple_CheckExact(match_args)) {
const char *e = "%s.__match_args__ must be a tuple (got %s)";
_PyErr_Format(tstate, PyExc_TypeError, e,
((PyTypeObject *)type)->tp_name,
Py_TYPE(match_args)->tp_name);
goto fail;
}
}
else {
// _Py_TPFLAGS_MATCH_SELF is only acknowledged if the type does not
// define __match_args__. This is natural behavior for subclasses:
// it's as if __match_args__ is some "magic" value that is lost as
// soon as they redefine it.
match_args = PyTuple_New(0);
match_self = PyType_HasFeature((PyTypeObject*)type,
_Py_TPFLAGS_MATCH_SELF);
}
assert(PyTuple_CheckExact(match_args));
Py_ssize_t allowed = match_self ? 1 : PyTuple_GET_SIZE(match_args);
if (allowed < nargs) {
const char *plural = (allowed == 1) ? "" : "s";
_PyErr_Format(tstate, PyExc_TypeError,
"%s() accepts %d positional sub-pattern%s (%d given)",
((PyTypeObject*)type)->tp_name,
allowed, plural, nargs);
goto fail;
}
if (match_self) {
// Easy. Copy the subject itself, and move on to kwargs.
if (PyList_Append(attrs, subject) < 0) {
goto fail;
}
}
else {
for (Py_ssize_t i = 0; i < nargs; i++) {
PyObject *name = PyTuple_GET_ITEM(match_args, i);
if (!PyUnicode_CheckExact(name)) {
_PyErr_Format(tstate, PyExc_TypeError,
"__match_args__ elements must be strings "
"(got %s)", Py_TYPE(name)->tp_name);
goto fail;
}
PyObject *attr = match_class_attr(tstate, subject, type, name,
seen);
if (attr == NULL) {
goto fail;
}
if (PyList_Append(attrs, attr) < 0) {
Py_DECREF(attr);
goto fail;
}
Py_DECREF(attr);
}
}
Py_CLEAR(match_args);
}
// Finally, the keyword subpatterns:
for (Py_ssize_t i = 0; i < PyTuple_GET_SIZE(kwargs); i++) {
PyObject *name = PyTuple_GET_ITEM(kwargs, i);
PyObject *attr = match_class_attr(tstate, subject, type, name, seen);
if (attr == NULL) {
goto fail;
}
if (PyList_Append(attrs, attr) < 0) {
Py_DECREF(attr);
goto fail;
}
Py_DECREF(attr);
}
Py_SETREF(attrs, PyList_AsTuple(attrs));
Py_DECREF(seen);
return attrs;
fail:
// We really don't care whether an error was raised or not... that's our
// caller's problem. All we know is that the match failed.
Py_XDECREF(match_args);
Py_DECREF(seen);
Py_DECREF(attrs);
return NULL;
}
static int do_raise(PyThreadState *tstate, PyObject *exc, PyObject *cause);
PyObject *
PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals)
{
PyThreadState *tstate = _PyThreadState_GET();
if (locals == NULL) {
locals = globals;
}
PyObject *builtins = _PyEval_BuiltinsFromGlobals(tstate, globals); // borrowed ref
if (builtins == NULL) {
return NULL;
}
PyFrameConstructor desc = {
.fc_globals = globals,
.fc_builtins = builtins,
.fc_name = ((PyCodeObject *)co)->co_name,
.fc_qualname = ((PyCodeObject *)co)->co_name,
.fc_code = co,
.fc_defaults = NULL,
.fc_kwdefaults = NULL,
.fc_closure = NULL
};
PyFunctionObject *func = _PyFunction_FromConstructor(&desc);
if (func == NULL) {
return NULL;
}
EVAL_CALL_STAT_INC(EVAL_CALL_LEGACY);
PyObject *res = _PyEval_Vector(tstate, func, locals, NULL, 0, NULL);
Py_DECREF(func);
return res;
}
/* Interpreter main loop */
PyObject *
PyEval_EvalFrame(PyFrameObject *f)
{
/* Function kept for backward compatibility */
PyThreadState *tstate = _PyThreadState_GET();
return _PyEval_EvalFrame(tstate, f->f_frame, 0);
}
PyObject *
PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
{
PyThreadState *tstate = _PyThreadState_GET();
return _PyEval_EvalFrame(tstate, f->f_frame, throwflag);
}
#include "ceval_macros.h"
int _Py_CheckRecursiveCallPy(
PyThreadState *tstate)
{
if (tstate->recursion_headroom) {
if (tstate->py_recursion_remaining < -50) {
/* Overflowing while handling an overflow. Give up. */
Py_FatalError("Cannot recover from Python stack overflow.");
}
}
else {
if (tstate->py_recursion_remaining <= 0) {
tstate->recursion_headroom++;
_PyErr_Format(tstate, PyExc_RecursionError,
"maximum recursion depth exceeded");
tstate->recursion_headroom--;
return -1;
}
}
return 0;
}
static const _Py_CODEUNIT _Py_INTERPRETER_TRAMPOLINE_INSTRUCTIONS[] = {
/* Put a NOP at the start, so that the IP points into
* the code, rather than before it */
{ .op.code = NOP, .op.arg = 0 },
{ .op.code = INTERPRETER_EXIT, .op.arg = 0 }, /* reached on return */
{ .op.code = NOP, .op.arg = 0 },
{ .op.code = INTERPRETER_EXIT, .op.arg = 0 }, /* reached on yield */
{ .op.code = RESUME, .op.arg = RESUME_OPARG_DEPTH1_MASK | RESUME_AT_FUNC_START }
};
extern const struct _PyCode_DEF(8) _Py_InitCleanup;
#ifdef Py_DEBUG
extern void _PyUOpPrint(const _PyUOpInstruction *uop);
#endif
/* Disable unused label warnings. They are handy for debugging, even
if computed gotos aren't used. */
/* TBD - what about other compilers? */
#if defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wunused-label"
#elif defined(_MSC_VER) /* MS_WINDOWS */
# pragma warning(push)
# pragma warning(disable:4102)
#endif
/* _PyEval_EvalFrameDefault() is a *big* function,
* so consume 3 units of C stack */
#define PY_EVAL_C_STACK_UNITS 2
#if defined(_MSC_VER) && defined(_Py_USING_PGO)
/* gh-111786: _PyEval_EvalFrameDefault is too large to optimize for speed with
PGO on MSVC. Disable that optimization temporarily. If this is fixed
upstream, we should gate this on the version of MSVC.
*/
# pragma optimize("t", off)
/* This setting is reversed below following _PyEval_EvalFrameDefault */
#endif
PyObject* _Py_HOT_FUNCTION
_PyEval_EvalFrameDefault(PyThreadState *tstate, _PyInterpreterFrame *frame, int throwflag)
{
_Py_EnsureTstateNotNULL(tstate);
CALL_STAT_INC(pyeval_calls);
#if USE_COMPUTED_GOTOS
/* Import the static jump table */
#include "opcode_targets.h"
#endif
#ifdef Py_STATS
int lastopcode = 0;
#endif
uint8_t opcode; /* Current opcode */
int oparg; /* Current opcode argument, if any */
#ifdef LLTRACE
int lltrace = 0;
#endif
_PyInterpreterFrame entry_frame;
#ifdef Py_DEBUG
/* Set these to invalid but identifiable values for debugging. */
entry_frame.f_funcobj = (PyObject*)0xaaa0;
entry_frame.f_locals = (PyObject*)0xaaa1;
entry_frame.frame_obj = (PyFrameObject*)0xaaa2;
entry_frame.f_globals = (PyObject*)0xaaa3;
entry_frame.f_builtins = (PyObject*)0xaaa4;
#endif
entry_frame.f_executable = Py_None;
entry_frame.instr_ptr = (_Py_CODEUNIT *)_Py_INTERPRETER_TRAMPOLINE_INSTRUCTIONS + 1;
entry_frame.stacktop = 0;
entry_frame.owner = FRAME_OWNED_BY_CSTACK;
entry_frame.return_offset = 0;
/* Push frame */
entry_frame.previous = tstate->current_frame;
frame->previous = &entry_frame;
tstate->current_frame = frame;
tstate->c_recursion_remaining -= (PY_EVAL_C_STACK_UNITS - 1);
if (_Py_EnterRecursiveCallTstate(tstate, "")) {
tstate->c_recursion_remaining--;
tstate->py_recursion_remaining--;
goto exit_unwind;
}
/* support for generator.throw() */
if (throwflag) {
if (_Py_EnterRecursivePy(tstate)) {
goto exit_unwind;
}
/* Because this avoids the RESUME,
* we need to update instrumentation */
_Py_Instrument(_PyFrame_GetCode(frame), tstate->interp);
monitor_throw(tstate, frame, frame->instr_ptr);
/* TO DO -- Monitor throw entry. */
goto resume_with_error;
}
/* Local "register" variables.
* These are cached values from the frame and code object. */
_Py_CODEUNIT *next_instr;
PyObject **stack_pointer;
#if defined(_Py_TIER2) && !defined(_Py_JIT)
/* Tier 2 interpreter state */
_PyExecutorObject *current_executor = NULL;
const _PyUOpInstruction *next_uop = NULL;
#endif
start_frame:
if (_Py_EnterRecursivePy(tstate)) {
goto exit_unwind;
}
next_instr = frame->instr_ptr;
resume_frame:
stack_pointer = _PyFrame_GetStackPointer(frame);
#ifdef LLTRACE
lltrace = maybe_lltrace_resume_frame(frame, &entry_frame, GLOBALS());
if (lltrace < 0) {
goto exit_unwind;
}
#endif
#ifdef Py_DEBUG
/* _PyEval_EvalFrameDefault() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!_PyErr_Occurred(tstate));
#endif
DISPATCH();
{
/* Start instructions */
#if !USE_COMPUTED_GOTOS
dispatch_opcode:
switch (opcode)
#endif
{
#include "generated_cases.c.h"
/* INSTRUMENTED_LINE has to be here, rather than in bytecodes.c,
* because it needs to capture frame->instr_ptr before it is updated,
* as happens in the standard instruction prologue.
*/
#if USE_COMPUTED_GOTOS
TARGET_INSTRUMENTED_LINE:
#else
case INSTRUMENTED_LINE:
#endif
{
_Py_CODEUNIT *prev = frame->instr_ptr;
_Py_CODEUNIT *here = frame->instr_ptr = next_instr;
int original_opcode = 0;
if (tstate->tracing) {
PyCodeObject *code = _PyFrame_GetCode(frame);
original_opcode = code->_co_monitoring->lines[(int)(here - _PyCode_CODE(code))].original_opcode;
} else {
_PyFrame_SetStackPointer(frame, stack_pointer);
original_opcode = _Py_call_instrumentation_line(
tstate, frame, here, prev);
stack_pointer = _PyFrame_GetStackPointer(frame);
if (original_opcode < 0) {
next_instr = here+1;
goto error;
}
next_instr = frame->instr_ptr;
if (next_instr != here) {
DISPATCH();
}
}
if (_PyOpcode_Caches[original_opcode]) {
_PyBinaryOpCache *cache = (_PyBinaryOpCache *)(next_instr+1);
/* Prevent the underlying instruction from specializing
* and overwriting the instrumentation. */
PAUSE_ADAPTIVE_COUNTER(cache->counter);
}
opcode = original_opcode;
DISPATCH_GOTO();
}
#if USE_COMPUTED_GOTOS
_unknown_opcode:
#else
EXTRA_CASES // From pycore_opcode_metadata.h, a 'case' for each unused opcode
#endif
/* Tell C compilers not to hold the opcode variable in the loop.
next_instr points the current instruction without TARGET(). */
opcode = next_instr->op.code;
_PyErr_Format(tstate, PyExc_SystemError,
"%U:%d: unknown opcode %d",
_PyFrame_GetCode(frame)->co_filename,
PyUnstable_InterpreterFrame_GetLine(frame),
opcode);
goto error;
} /* End instructions */
/* This should never be reached. Every opcode should end with DISPATCH()
or goto error. */
Py_UNREACHABLE();
pop_4_error:
STACK_SHRINK(1);
pop_3_error:
STACK_SHRINK(1);
pop_2_error:
STACK_SHRINK(1);
pop_1_error:
STACK_SHRINK(1);
error:
/* Double-check exception status. */
#ifdef NDEBUG
if (!_PyErr_Occurred(tstate)) {
_PyErr_SetString(tstate, PyExc_SystemError,
"error return without exception set");
}
#else
assert(_PyErr_Occurred(tstate));
#endif
/* Log traceback info. */
assert(frame != &entry_frame);
if (!_PyFrame_IsIncomplete(frame)) {
PyFrameObject *f = _PyFrame_GetFrameObject(frame);
if (f != NULL) {
PyTraceBack_Here(f);
}
}
monitor_raise(tstate, frame, next_instr-1);
exception_unwind:
{
/* We can't use frame->instr_ptr here, as RERAISE may have set it */
int offset = INSTR_OFFSET()-1;
int level, handler, lasti;
if (get_exception_handler(_PyFrame_GetCode(frame), offset, &level, &handler, &lasti) == 0) {
// No handlers, so exit.
assert(_PyErr_Occurred(tstate));
/* Pop remaining stack entries. */
PyObject **stackbase = _PyFrame_Stackbase(frame);
while (stack_pointer > stackbase) {
PyObject *o = POP();
Py_XDECREF(o);
}
assert(STACK_LEVEL() == 0);
_PyFrame_SetStackPointer(frame, stack_pointer);
monitor_unwind(tstate, frame, next_instr-1);
goto exit_unwind;
}
assert(STACK_LEVEL() >= level);
PyObject **new_top = _PyFrame_Stackbase(frame) + level;
while (stack_pointer > new_top) {
PyObject *v = POP();
Py_XDECREF(v);
}
if (lasti) {
int frame_lasti = _PyInterpreterFrame_LASTI(frame);
PyObject *lasti = PyLong_FromLong(frame_lasti);
if (lasti == NULL) {
goto exception_unwind;
}
PUSH(lasti);
}
/* Make the raw exception data
available to the handler,
so a program can emulate the
Python main loop. */
PyObject *exc = _PyErr_GetRaisedException(tstate);
PUSH(exc);
next_instr = _PyCode_CODE(_PyFrame_GetCode(frame)) + handler;
if (monitor_handled(tstate, frame, next_instr, exc) < 0) {
goto exception_unwind;
}
/* Resume normal execution */
#ifdef LLTRACE
if (lltrace >= 5) {
lltrace_resume_frame(frame);
}
#endif
DISPATCH();
}
}
exit_unwind:
assert(_PyErr_Occurred(tstate));
_Py_LeaveRecursiveCallPy(tstate);
assert(frame != &entry_frame);
// GH-99729: We need to unlink the frame *before* clearing it:
_PyInterpreterFrame *dying = frame;
frame = tstate->current_frame = dying->previous;
_PyEval_FrameClearAndPop(tstate, dying);
frame->return_offset = 0;
if (frame == &entry_frame) {
/* Restore previous frame and exit */
tstate->current_frame = frame->previous;
tstate->c_recursion_remaining += PY_EVAL_C_STACK_UNITS;
return NULL;
}
resume_with_error:
next_instr = frame->instr_ptr;
stack_pointer = _PyFrame_GetStackPointer(frame);
goto error;
#ifdef _Py_TIER2
// Tier 2 is also here!
enter_tier_two:
#ifdef _Py_JIT
assert(0);
#else
#undef LOAD_IP
#define LOAD_IP(UNUSED) (void)0
#undef GOTO_ERROR
#define GOTO_ERROR(LABEL) goto LABEL ## _tier_two
#ifdef Py_STATS
// Disable these macros that apply to Tier 1 stats when we are in Tier 2
#undef STAT_INC
#define STAT_INC(opname, name) ((void)0)
#undef STAT_DEC
#define STAT_DEC(opname, name) ((void)0)
#endif
#undef ENABLE_SPECIALIZATION
#define ENABLE_SPECIALIZATION 0
#ifdef Py_DEBUG
#define DPRINTF(level, ...) \
if (lltrace >= (level)) { printf(__VA_ARGS__); }
#else
#define DPRINTF(level, ...)
#endif
; // dummy statement after a label, before a declaration
uint16_t uopcode;
#ifdef Py_STATS
int lastuop = 0;
uint64_t trace_uop_execution_counter = 0;
#endif
assert(next_uop->opcode == _START_EXECUTOR || next_uop->opcode == _COLD_EXIT);
tier2_dispatch:
for (;;) {
uopcode = next_uop->opcode;
#ifdef Py_DEBUG
if (lltrace >= 3) {
if (next_uop->opcode == _START_EXECUTOR || next_uop->opcode == _COLD_EXIT) {
printf("%4d uop: ", 0);
}
else {
printf("%4d uop: ", (int)(next_uop - current_executor->trace));
}
_PyUOpPrint(next_uop);
printf(" stack_level=%d\n",
(int)(stack_pointer - _PyFrame_Stackbase(frame)));
}
#endif
next_uop++;
OPT_STAT_INC(uops_executed);
UOP_STAT_INC(uopcode, execution_count);
UOP_PAIR_INC(uopcode, lastuop);
#ifdef Py_STATS
trace_uop_execution_counter++;
#endif
switch (uopcode) {
#include "executor_cases.c.h"
default:
#ifdef Py_DEBUG
{
printf("Unknown uop: ");
_PyUOpPrint(&next_uop[-1]);
printf(" @ %d\n", (int)(next_uop - current_executor->trace - 1));
Py_FatalError("Unknown uop");
}
#else
Py_UNREACHABLE();
#endif
}
}
jump_to_error_target:
#ifdef Py_DEBUG
if (lltrace >= 2) {
printf("Error: [UOp ");
_PyUOpPrint(&next_uop[-1]);
printf(" @ %d -> %s]\n",
(int)(next_uop - current_executor->trace - 1),
_PyOpcode_OpName[frame->instr_ptr->op.code]);
}
#endif
assert (next_uop[-1].format == UOP_FORMAT_JUMP);
uint16_t target = uop_get_error_target(&next_uop[-1]);
next_uop = current_executor->trace + target;
goto tier2_dispatch;
error_tier_two:
OPT_HIST(trace_uop_execution_counter, trace_run_length_hist);
assert(next_uop[-1].format == UOP_FORMAT_TARGET);
frame->return_offset = 0; // Don't leave this random
_PyFrame_SetStackPointer(frame, stack_pointer);
Py_DECREF(current_executor);
tstate->previous_executor = NULL;
goto resume_with_error;
jump_to_jump_target:
assert(next_uop[-1].format == UOP_FORMAT_JUMP);
target = uop_get_jump_target(&next_uop[-1]);
next_uop = current_executor->trace + target;
goto tier2_dispatch;
exit_to_tier1_dynamic:
next_instr = frame->instr_ptr;
goto goto_to_tier1;
exit_to_tier1:
assert(next_uop[-1].format == UOP_FORMAT_TARGET);
next_instr = next_uop[-1].target + _PyCode_CODE(_PyFrame_GetCode(frame));
goto_to_tier1:
#ifdef Py_DEBUG
if (lltrace >= 2) {
printf("DEOPT: [UOp ");
_PyUOpPrint(&next_uop[-1]);
printf(" -> %s]\n",
_PyOpcode_OpName[next_instr->op.code]);
}
#endif
OPT_HIST(trace_uop_execution_counter, trace_run_length_hist);
Py_DECREF(current_executor);
tstate->previous_executor = NULL;
DISPATCH();
exit_to_trace:
assert(next_uop[-1].format == UOP_FORMAT_EXIT);
OPT_HIST(trace_uop_execution_counter, trace_run_length_hist);
uint32_t exit_index = next_uop[-1].exit_index;
assert(exit_index < current_executor->exit_count);
_PyExitData *exit = &current_executor->exits[exit_index];
#ifdef Py_DEBUG
if (lltrace >= 2) {
printf("SIDE EXIT: [UOp ");
_PyUOpPrint(&next_uop[-1]);
printf(", exit %u, temp %d, target %d -> %s]\n",
exit_index, exit->temperature.as_counter, exit->target,
_PyOpcode_OpName[_PyCode_CODE(_PyFrame_GetCode(frame))[exit->target].op.code]);
}
#endif
Py_INCREF(exit->executor);
tstate->previous_executor = (PyObject *)current_executor;
GOTO_TIER_TWO(exit->executor);
#endif // _Py_JIT
#endif // _Py_TIER2
}
#if defined(__GNUC__)
# pragma GCC diagnostic pop
#elif defined(_MSC_VER) /* MS_WINDOWS */
# pragma warning(pop)
# pragma optimize("", on)
#endif
static void
format_missing(PyThreadState *tstate, const char *kind,
PyCodeObject *co, PyObject *names, PyObject *qualname)
{
int err;
Py_ssize_t len = PyList_GET_SIZE(names);
PyObject *name_str, *comma, *tail, *tmp;
assert(PyList_CheckExact(names));
assert(len >= 1);
/* Deal with the joys of natural language. */
switch (len) {
case 1:
name_str = PyList_GET_ITEM(names, 0);
Py_INCREF(name_str);
break;
case 2:
name_str = PyUnicode_FromFormat("%U and %U",
PyList_GET_ITEM(names, len - 2),
PyList_GET_ITEM(names, len - 1));
break;
default:
tail = PyUnicode_FromFormat(", %U, and %U",
PyList_GET_ITEM(names, len - 2),
PyList_GET_ITEM(names, len - 1));
if (tail == NULL)
return;
/* Chop off the last two objects in the list. This shouldn't actually
fail, but we can't be too careful. */
err = PyList_SetSlice(names, len - 2, len, NULL);
if (err == -1) {
Py_DECREF(tail);
return;
}
/* Stitch everything up into a nice comma-separated list. */
comma = PyUnicode_FromString(", ");
if (comma == NULL) {
Py_DECREF(tail);
return;
}
tmp = PyUnicode_Join(comma, names);
Py_DECREF(comma);
if (tmp == NULL) {
Py_DECREF(tail);
return;
}
name_str = PyUnicode_Concat(tmp, tail);
Py_DECREF(tmp);
Py_DECREF(tail);
break;
}
if (name_str == NULL)
return;
_PyErr_Format(tstate, PyExc_TypeError,
"%U() missing %i required %s argument%s: %U",
qualname,
len,
kind,
len == 1 ? "" : "s",
name_str);
Py_DECREF(name_str);
}
static void
missing_arguments(PyThreadState *tstate, PyCodeObject *co,
Py_ssize_t missing, Py_ssize_t defcount,
PyObject **localsplus, PyObject *qualname)
{
Py_ssize_t i, j = 0;
Py_ssize_t start, end;
int positional = (defcount != -1);
const char *kind = positional ? "positional" : "keyword-only";
PyObject *missing_names;
/* Compute the names of the arguments that are missing. */
missing_names = PyList_New(missing);
if (missing_names == NULL)
return;
if (positional) {
start = 0;
end = co->co_argcount - defcount;
}
else {
start = co->co_argcount;
end = start + co->co_kwonlyargcount;
}
for (i = start; i < end; i++) {
if (localsplus[i] == NULL) {
PyObject *raw = PyTuple_GET_ITEM(co->co_localsplusnames, i);
PyObject *name = PyObject_Repr(raw);
if (name == NULL) {
Py_DECREF(missing_names);
return;
}
PyList_SET_ITEM(missing_names, j++, name);
}
}
assert(j == missing);
format_missing(tstate, kind, co, missing_names, qualname);
Py_DECREF(missing_names);
}
static void
too_many_positional(PyThreadState *tstate, PyCodeObject *co,
Py_ssize_t given, PyObject *defaults,
PyObject **localsplus, PyObject *qualname)
{
int plural;
Py_ssize_t kwonly_given = 0;
Py_ssize_t i;
PyObject *sig, *kwonly_sig;
Py_ssize_t co_argcount = co->co_argcount;
assert((co->co_flags & CO_VARARGS) == 0);
/* Count missing keyword-only args. */
for (i = co_argcount; i < co_argcount + co->co_kwonlyargcount; i++) {
if (localsplus[i] != NULL) {
kwonly_given++;
}
}
Py_ssize_t defcount = defaults == NULL ? 0 : PyTuple_GET_SIZE(defaults);
if (defcount) {
Py_ssize_t atleast = co_argcount - defcount;
plural = 1;
sig = PyUnicode_FromFormat("from %zd to %zd", atleast, co_argcount);
}
else {
plural = (co_argcount != 1);
sig = PyUnicode_FromFormat("%zd", co_argcount);
}
if (sig == NULL)
return;
if (kwonly_given) {
const char *format = " positional argument%s (and %zd keyword-only argument%s)";
kwonly_sig = PyUnicode_FromFormat(format,
given != 1 ? "s" : "",
kwonly_given,
kwonly_given != 1 ? "s" : "");
if (kwonly_sig == NULL) {
Py_DECREF(sig);
return;
}
}
else {
/* This will not fail. */
kwonly_sig = PyUnicode_FromString("");
assert(kwonly_sig != NULL);
}
_PyErr_Format(tstate, PyExc_TypeError,
"%U() takes %U positional argument%s but %zd%U %s given",
qualname,
sig,
plural ? "s" : "",
given,
kwonly_sig,
given == 1 && !kwonly_given ? "was" : "were");
Py_DECREF(sig);
Py_DECREF(kwonly_sig);
}
static int
positional_only_passed_as_keyword(PyThreadState *tstate, PyCodeObject *co,
Py_ssize_t kwcount, PyObject* kwnames,
PyObject *qualname)
{
int posonly_conflicts = 0;
PyObject* posonly_names = PyList_New(0);
if (posonly_names == NULL) {
goto fail;
}
for(int k=0; k < co->co_posonlyargcount; k++){
PyObject* posonly_name = PyTuple_GET_ITEM(co->co_localsplusnames, k);
for (int k2=0; k2<kwcount; k2++){
/* Compare the pointers first and fallback to PyObject_RichCompareBool*/
PyObject* kwname = PyTuple_GET_ITEM(kwnames, k2);
if (kwname == posonly_name){
if(PyList_Append(posonly_names, kwname) != 0) {
goto fail;
}
posonly_conflicts++;
continue;
}
int cmp = PyObject_RichCompareBool(posonly_name, kwname, Py_EQ);
if ( cmp > 0) {
if(PyList_Append(posonly_names, kwname) != 0) {
goto fail;
}
posonly_conflicts++;
} else if (cmp < 0) {
goto fail;
}
}
}
if (posonly_conflicts) {
PyObject* comma = PyUnicode_FromString(", ");
if (comma == NULL) {
goto fail;
}
PyObject* error_names = PyUnicode_Join(comma, posonly_names);
Py_DECREF(comma);
if (error_names == NULL) {
goto fail;
}
_PyErr_Format(tstate, PyExc_TypeError,
"%U() got some positional-only arguments passed"
" as keyword arguments: '%U'",
qualname, error_names);
Py_DECREF(error_names);
goto fail;
}
Py_DECREF(posonly_names);
return 0;
fail:
Py_XDECREF(posonly_names);
return 1;
}
static inline unsigned char *
scan_back_to_entry_start(unsigned char *p) {
for (; (p[0]&128) == 0; p--);
return p;
}
static inline unsigned char *
skip_to_next_entry(unsigned char *p, unsigned char *end) {
while (p < end && ((p[0] & 128) == 0)) {
p++;
}
return p;
}
#define MAX_LINEAR_SEARCH 40
static int
get_exception_handler(PyCodeObject *code, int index, int *level, int *handler, int *lasti)
{
unsigned char *start = (unsigned char *)PyBytes_AS_STRING(code->co_exceptiontable);
unsigned char *end = start + PyBytes_GET_SIZE(code->co_exceptiontable);
/* Invariants:
* start_table == end_table OR
* start_table points to a legal entry and end_table points
* beyond the table or to a legal entry that is after index.
*/
if (end - start > MAX_LINEAR_SEARCH) {
int offset;
parse_varint(start, &offset);
if (offset > index) {
return 0;
}
do {
unsigned char * mid = start + ((end-start)>>1);
mid = scan_back_to_entry_start(mid);
parse_varint(mid, &offset);
if (offset > index) {
end = mid;
}
else {
start = mid;
}
} while (end - start > MAX_LINEAR_SEARCH);
}
unsigned char *scan = start;
while (scan < end) {
int start_offset, size;
scan = parse_varint(scan, &start_offset);
if (start_offset > index) {
break;
}
scan = parse_varint(scan, &size);
if (start_offset + size > index) {
scan = parse_varint(scan, handler);
int depth_and_lasti;
parse_varint(scan, &depth_and_lasti);
*level = depth_and_lasti >> 1;
*lasti = depth_and_lasti & 1;
return 1;
}
scan = skip_to_next_entry(scan, end);
}
return 0;
}
static int
initialize_locals(PyThreadState *tstate, PyFunctionObject *func,
PyObject **localsplus, PyObject *const *args,
Py_ssize_t argcount, PyObject *kwnames)
{
PyCodeObject *co = (PyCodeObject*)func->func_code;
const Py_ssize_t total_args = co->co_argcount + co->co_kwonlyargcount;
/* Create a dictionary for keyword parameters (**kwags) */
PyObject *kwdict;
Py_ssize_t i;
if (co->co_flags & CO_VARKEYWORDS) {
kwdict = PyDict_New();
if (kwdict == NULL) {
goto fail_pre_positional;
}
i = total_args;
if (co->co_flags & CO_VARARGS) {
i++;
}
assert(localsplus[i] == NULL);
localsplus[i] = kwdict;
}
else {
kwdict = NULL;
}
/* Copy all positional arguments into local variables */
Py_ssize_t j, n;
if (argcount > co->co_argcount) {
n = co->co_argcount;
}
else {
n = argcount;
}
for (j = 0; j < n; j++) {
PyObject *x = args[j];
assert(localsplus[j] == NULL);
localsplus[j] = x;
}
/* Pack other positional arguments into the *args argument */
if (co->co_flags & CO_VARARGS) {
PyObject *u = NULL;
if (argcount == n) {
u = (PyObject *)&_Py_SINGLETON(tuple_empty);
}
else {
assert(args != NULL);
u = _PyTuple_FromArraySteal(args + n, argcount - n);
}
if (u == NULL) {
goto fail_post_positional;
}
assert(localsplus[total_args] == NULL);
localsplus[total_args] = u;
}
else if (argcount > n) {
/* Too many positional args. Error is reported later */
for (j = n; j < argcount; j++) {
Py_DECREF(args[j]);
}
}
/* Handle keyword arguments */
if (kwnames != NULL) {
Py_ssize_t kwcount = PyTuple_GET_SIZE(kwnames);
for (i = 0; i < kwcount; i++) {
PyObject **co_varnames;
PyObject *keyword = PyTuple_GET_ITEM(kwnames, i);
PyObject *value = args[i+argcount];
Py_ssize_t j;
if (keyword == NULL || !PyUnicode_Check(keyword)) {
_PyErr_Format(tstate, PyExc_TypeError,
"%U() keywords must be strings",
func->func_qualname);
goto kw_fail;
}
/* Speed hack: do raw pointer compares. As names are
normally interned this should almost always hit. */
co_varnames = ((PyTupleObject *)(co->co_localsplusnames))->ob_item;
for (j = co->co_posonlyargcount; j < total_args; j++) {
PyObject *varname = co_varnames[j];
if (varname == keyword) {
goto kw_found;
}
}
/* Slow fallback, just in case */
for (j = co->co_posonlyargcount; j < total_args; j++) {
PyObject *varname = co_varnames[j];
int cmp = PyObject_RichCompareBool( keyword, varname, Py_EQ);
if (cmp > 0) {
goto kw_found;
}
else if (cmp < 0) {
goto kw_fail;
}
}
assert(j >= total_args);
if (kwdict == NULL) {
if (co->co_posonlyargcount
&& positional_only_passed_as_keyword(tstate, co,
kwcount, kwnames,
func->func_qualname))
{
goto kw_fail;
}
PyObject* suggestion_keyword = NULL;
if (total_args > co->co_posonlyargcount) {
PyObject* possible_keywords = PyList_New(total_args - co->co_posonlyargcount);
if (!possible_keywords) {
PyErr_Clear();
} else {
for (Py_ssize_t k = co->co_posonlyargcount; k < total_args; k++) {
PyList_SET_ITEM(possible_keywords, k - co->co_posonlyargcount, co_varnames[k]);
}
suggestion_keyword = _Py_CalculateSuggestions(possible_keywords, keyword);
Py_DECREF(possible_keywords);
}
}
if (suggestion_keyword) {
_PyErr_Format(tstate, PyExc_TypeError,
"%U() got an unexpected keyword argument '%S'. Did you mean '%S'?",
func->func_qualname, keyword, suggestion_keyword);
Py_DECREF(suggestion_keyword);
} else {
_PyErr_Format(tstate, PyExc_TypeError,
"%U() got an unexpected keyword argument '%S'",
func->func_qualname, keyword);
}
goto kw_fail;
}
if (PyDict_SetItem(kwdict, keyword, value) == -1) {
goto kw_fail;
}
Py_DECREF(value);
continue;
kw_fail:
for (;i < kwcount; i++) {
PyObject *value = args[i+argcount];
Py_DECREF(value);
}
goto fail_post_args;
kw_found:
if (localsplus[j] != NULL) {
_PyErr_Format(tstate, PyExc_TypeError,
"%U() got multiple values for argument '%S'",
func->func_qualname, keyword);
goto kw_fail;
}
localsplus[j] = value;
}
}
/* Check the number of positional arguments */
if ((argcount > co->co_argcount) && !(co->co_flags & CO_VARARGS)) {
too_many_positional(tstate, co, argcount, func->func_defaults, localsplus,
func->func_qualname);
goto fail_post_args;
}
/* Add missing positional arguments (copy default values from defs) */
if (argcount < co->co_argcount) {
Py_ssize_t defcount = func->func_defaults == NULL ? 0 : PyTuple_GET_SIZE(func->func_defaults);
Py_ssize_t m = co->co_argcount - defcount;
Py_ssize_t missing = 0;
for (i = argcount; i < m; i++) {
if (localsplus[i] == NULL) {
missing++;
}
}
if (missing) {
missing_arguments(tstate, co, missing, defcount, localsplus,
func->func_qualname);
goto fail_post_args;
}
if (n > m)
i = n - m;
else
i = 0;
if (defcount) {
PyObject **defs = &PyTuple_GET_ITEM(func->func_defaults, 0);
for (; i < defcount; i++) {
if (localsplus[m+i] == NULL) {
PyObject *def = defs[i];
localsplus[m+i] = Py_NewRef(def);
}
}
}
}
/* Add missing keyword arguments (copy default values from kwdefs) */
if (co->co_kwonlyargcount > 0) {
Py_ssize_t missing = 0;
for (i = co->co_argcount; i < total_args; i++) {
if (localsplus[i] != NULL)
continue;
PyObject *varname = PyTuple_GET_ITEM(co->co_localsplusnames, i);
if (func->func_kwdefaults != NULL) {
PyObject *def;
if (PyDict_GetItemRef(func->func_kwdefaults, varname, &def) < 0) {
goto fail_post_args;
}
if (def) {
localsplus[i] = def;
continue;
}
}
missing++;
}
if (missing) {
missing_arguments(tstate, co, missing, -1, localsplus,
func->func_qualname);
goto fail_post_args;
}
}
return 0;
fail_pre_positional:
for (j = 0; j < argcount; j++) {
Py_DECREF(args[j]);
}
/* fall through */
fail_post_positional:
if (kwnames) {
Py_ssize_t kwcount = PyTuple_GET_SIZE(kwnames);
for (j = argcount; j < argcount+kwcount; j++) {
Py_DECREF(args[j]);
}
}
/* fall through */
fail_post_args:
return -1;
}
static void
clear_thread_frame(PyThreadState *tstate, _PyInterpreterFrame * frame)
{
assert(frame->owner == FRAME_OWNED_BY_THREAD);
// Make sure that this is, indeed, the top frame. We can't check this in
// _PyThreadState_PopFrame, since f_code is already cleared at that point:
assert((PyObject **)frame + _PyFrame_GetCode(frame)->co_framesize ==
tstate->datastack_top);
tstate->c_recursion_remaining--;
assert(frame->frame_obj == NULL || frame->frame_obj->f_frame == frame);
_PyFrame_ClearExceptCode(frame);
Py_DECREF(frame->f_executable);
tstate->c_recursion_remaining++;
_PyThreadState_PopFrame(tstate, frame);
}
static void
clear_gen_frame(PyThreadState *tstate, _PyInterpreterFrame * frame)
{
assert(frame->owner == FRAME_OWNED_BY_GENERATOR);
PyGenObject *gen = _PyGen_GetGeneratorFromFrame(frame);
gen->gi_frame_state = FRAME_CLEARED;
assert(tstate->exc_info == &gen->gi_exc_state);
tstate->exc_info = gen->gi_exc_state.previous_item;
gen->gi_exc_state.previous_item = NULL;
tstate->c_recursion_remaining--;
assert(frame->frame_obj == NULL || frame->frame_obj->f_frame == frame);
_PyFrame_ClearExceptCode(frame);
_PyErr_ClearExcState(&gen->gi_exc_state);
tstate->c_recursion_remaining++;
frame->previous = NULL;
}
void
_PyEval_FrameClearAndPop(PyThreadState *tstate, _PyInterpreterFrame * frame)
{
if (frame->owner == FRAME_OWNED_BY_THREAD) {
clear_thread_frame(tstate, frame);
}
else {
clear_gen_frame(tstate, frame);
}
}
/* Consumes references to func, locals and all the args */
_PyInterpreterFrame *
_PyEvalFramePushAndInit(PyThreadState *tstate, PyFunctionObject *func,
PyObject *locals, PyObject* const* args,
size_t argcount, PyObject *kwnames)
{
PyCodeObject * code = (PyCodeObject *)func->func_code;
CALL_STAT_INC(frames_pushed);
_PyInterpreterFrame *frame = _PyThreadState_PushFrame(tstate, code->co_framesize);
if (frame == NULL) {
goto fail;
}
_PyFrame_Initialize(frame, func, locals, code, 0);
if (initialize_locals(tstate, func, frame->localsplus, args, argcount, kwnames)) {
assert(frame->owner == FRAME_OWNED_BY_THREAD);
clear_thread_frame(tstate, frame);
return NULL;
}
return frame;
fail:
/* Consume the references */
Py_DECREF(func);
Py_XDECREF(locals);
for (size_t i = 0; i < argcount; i++) {
Py_DECREF(args[i]);
}
if (kwnames) {
Py_ssize_t kwcount = PyTuple_GET_SIZE(kwnames);
for (Py_ssize_t i = 0; i < kwcount; i++) {
Py_DECREF(args[i+argcount]);
}
}
PyErr_NoMemory();
return NULL;
}
/* Same as _PyEvalFramePushAndInit but takes an args tuple and kwargs dict.
Steals references to func, callargs and kwargs.
*/
static _PyInterpreterFrame *
_PyEvalFramePushAndInit_Ex(PyThreadState *tstate, PyFunctionObject *func,
PyObject *locals, Py_ssize_t nargs, PyObject *callargs, PyObject *kwargs)
{
bool has_dict = (kwargs != NULL && PyDict_GET_SIZE(kwargs) > 0);
PyObject *kwnames = NULL;
PyObject *const *newargs;
if (has_dict) {
newargs = _PyStack_UnpackDict(tstate, _PyTuple_ITEMS(callargs), nargs, kwargs, &kwnames);
if (newargs == NULL) {
Py_DECREF(func);
goto error;
}
}
else {
newargs = &PyTuple_GET_ITEM(callargs, 0);
/* We need to incref all our args since the new frame steals the references. */
for (Py_ssize_t i = 0; i < nargs; ++i) {
Py_INCREF(PyTuple_GET_ITEM(callargs, i));
}
}
_PyInterpreterFrame *new_frame = _PyEvalFramePushAndInit(
tstate, (PyFunctionObject *)func, locals,
newargs, nargs, kwnames
);
if (has_dict) {
_PyStack_UnpackDict_FreeNoDecRef(newargs, kwnames);
}
/* No need to decref func here because the reference has been stolen by
_PyEvalFramePushAndInit.
*/
Py_DECREF(callargs);
Py_XDECREF(kwargs);
return new_frame;
error:
Py_DECREF(callargs);
Py_XDECREF(kwargs);
return NULL;
}
PyObject *
_PyEval_Vector(PyThreadState *tstate, PyFunctionObject *func,
PyObject *locals,
PyObject* const* args, size_t argcount,
PyObject *kwnames)
{
/* _PyEvalFramePushAndInit consumes the references
* to func, locals and all its arguments */
Py_INCREF(func);
Py_XINCREF(locals);
for (size_t i = 0; i < argcount; i++) {
Py_INCREF(args[i]);
}
if (kwnames) {
Py_ssize_t kwcount = PyTuple_GET_SIZE(kwnames);
for (Py_ssize_t i = 0; i < kwcount; i++) {
Py_INCREF(args[i+argcount]);
}
}
_PyInterpreterFrame *frame = _PyEvalFramePushAndInit(
tstate, func, locals, args, argcount, kwnames);
if (frame == NULL) {
return NULL;
}
EVAL_CALL_STAT_INC(EVAL_CALL_VECTOR);
return _PyEval_EvalFrame(tstate, frame, 0);
}
/* Legacy API */
PyObject *
PyEval_EvalCodeEx(PyObject *_co, PyObject *globals, PyObject *locals,
PyObject *const *args, int argcount,
PyObject *const *kws, int kwcount,
PyObject *const *defs, int defcount,
PyObject *kwdefs, PyObject *closure)
{
PyThreadState *tstate = _PyThreadState_GET();
PyObject *res = NULL;
PyObject *defaults = _PyTuple_FromArray(defs, defcount);
if (defaults == NULL) {
return NULL;
}
PyObject *builtins = _PyEval_BuiltinsFromGlobals(tstate, globals); // borrowed ref
if (builtins == NULL) {
Py_DECREF(defaults);
return NULL;
}
if (locals == NULL) {
locals = globals;
}
PyObject *kwnames = NULL;
PyObject *const *allargs;
PyObject **newargs = NULL;
PyFunctionObject *func = NULL;
if (kwcount == 0) {
allargs = args;
}
else {
kwnames = PyTuple_New(kwcount);
if (kwnames == NULL) {
goto fail;
}
newargs = PyMem_Malloc(sizeof(PyObject *)*(kwcount+argcount));
if (newargs == NULL) {
goto fail;
}
for (int i = 0; i < argcount; i++) {
newargs[i] = args[i];
}
for (int i = 0; i < kwcount; i++) {
PyTuple_SET_ITEM(kwnames, i, Py_NewRef(kws[2*i]));
newargs[argcount+i] = kws[2*i+1];
}
allargs = newargs;
}
PyFrameConstructor constr = {
.fc_globals = globals,
.fc_builtins = builtins,
.fc_name = ((PyCodeObject *)_co)->co_name,
.fc_qualname = ((PyCodeObject *)_co)->co_name,
.fc_code = _co,
.fc_defaults = defaults,
.fc_kwdefaults = kwdefs,
.fc_closure = closure
};
func = _PyFunction_FromConstructor(&constr);
if (func == NULL) {
goto fail;
}
EVAL_CALL_STAT_INC(EVAL_CALL_LEGACY);
res = _PyEval_Vector(tstate, func, locals,
allargs, argcount,
kwnames);
fail:
Py_XDECREF(func);
Py_XDECREF(kwnames);
PyMem_Free(newargs);
Py_DECREF(defaults);
return res;
}
/* Logic for the raise statement (too complicated for inlining).
This *consumes* a reference count to each of its arguments. */
static int
do_raise(PyThreadState *tstate, PyObject *exc, PyObject *cause)
{
PyObject *type = NULL, *value = NULL;
if (exc == NULL) {
/* Reraise */
_PyErr_StackItem *exc_info = _PyErr_GetTopmostException(tstate);
exc = exc_info->exc_value;
if (Py_IsNone(exc) || exc == NULL) {
_PyErr_SetString(tstate, PyExc_RuntimeError,
"No active exception to reraise");
return 0;
}
Py_INCREF(exc);
assert(PyExceptionInstance_Check(exc));
_PyErr_SetRaisedException(tstate, exc);
return 1;
}
/* We support the following forms of raise:
raise
raise <instance>
raise <type> */
if (PyExceptionClass_Check(exc)) {
type = exc;
value = _PyObject_CallNoArgs(exc);
if (value == NULL)
goto raise_error;
if (!PyExceptionInstance_Check(value)) {
_PyErr_Format(tstate, PyExc_TypeError,
"calling %R should have returned an instance of "
"BaseException, not %R",
type, Py_TYPE(value));
goto raise_error;
}
}
else if (PyExceptionInstance_Check(exc)) {
value = exc;
type = PyExceptionInstance_Class(exc);
Py_INCREF(type);
}
else {
/* Not something you can raise. You get an exception
anyway, just not what you specified :-) */
Py_DECREF(exc);
_PyErr_SetString(tstate, PyExc_TypeError,
"exceptions must derive from BaseException");
goto raise_error;
}
assert(type != NULL);
assert(value != NULL);
if (cause) {
PyObject *fixed_cause;
if (PyExceptionClass_Check(cause)) {
fixed_cause = _PyObject_CallNoArgs(cause);
if (fixed_cause == NULL)
goto raise_error;
if (!PyExceptionInstance_Check(fixed_cause)) {
_PyErr_Format(tstate, PyExc_TypeError,
"calling %R should have returned an instance of "
"BaseException, not %R",
cause, Py_TYPE(fixed_cause));
goto raise_error;
}
Py_DECREF(cause);
}
else if (PyExceptionInstance_Check(cause)) {
fixed_cause = cause;
}
else if (Py_IsNone(cause)) {
Py_DECREF(cause);
fixed_cause = NULL;
}
else {
_PyErr_SetString(tstate, PyExc_TypeError,
"exception causes must derive from "
"BaseException");
goto raise_error;
}
PyException_SetCause(value, fixed_cause);
}
_PyErr_SetObject(tstate, type, value);
/* _PyErr_SetObject incref's its arguments */
Py_DECREF(value);
Py_DECREF(type);
return 0;
raise_error:
Py_XDECREF(value);
Py_XDECREF(type);
Py_XDECREF(cause);
return 0;
}
/* Logic for matching an exception in an except* clause (too
complicated for inlining).
*/
int
_PyEval_ExceptionGroupMatch(PyObject* exc_value, PyObject *match_type,
PyObject **match, PyObject **rest)
{
if (Py_IsNone(exc_value)) {
*match = Py_NewRef(Py_None);
*rest = Py_NewRef(Py_None);
return 0;
}
assert(PyExceptionInstance_Check(exc_value));
if (PyErr_GivenExceptionMatches(exc_value, match_type)) {
/* Full match of exc itself */
bool is_eg = _PyBaseExceptionGroup_Check(exc_value);
if (is_eg) {
*match = Py_NewRef(exc_value);
}
else {
/* naked exception - wrap it */
PyObject *excs = PyTuple_Pack(1, exc_value);
if (excs == NULL) {
return -1;
}
PyObject *wrapped = _PyExc_CreateExceptionGroup("", excs);
Py_DECREF(excs);
if (wrapped == NULL) {
return -1;
}
*match = wrapped;
}
*rest = Py_NewRef(Py_None);
return 0;
}
/* exc_value does not match match_type.
* Check for partial match if it's an exception group.
*/
if (_PyBaseExceptionGroup_Check(exc_value)) {
PyObject *pair = PyObject_CallMethod(exc_value, "split", "(O)",
match_type);
if (pair == NULL) {
return -1;
}
assert(PyTuple_CheckExact(pair));
assert(PyTuple_GET_SIZE(pair) == 2);
*match = Py_NewRef(PyTuple_GET_ITEM(pair, 0));
*rest = Py_NewRef(PyTuple_GET_ITEM(pair, 1));
Py_DECREF(pair);
return 0;
}
/* no match */
*match = Py_NewRef(Py_None);
*rest = Py_NewRef(exc_value);
return 0;
}
/* Iterate v argcnt times and store the results on the stack (via decreasing
sp). Return 1 for success, 0 if error.
If argcntafter == -1, do a simple unpack. If it is >= 0, do an unpack
with a variable target.
*/
int
_PyEval_UnpackIterable(PyThreadState *tstate, PyObject *v,
int argcnt, int argcntafter, PyObject **sp)
{
int i = 0, j = 0;
Py_ssize_t ll = 0;
PyObject *it; /* iter(v) */
PyObject *w;
PyObject *l = NULL; /* variable list */
assert(v != NULL);
it = PyObject_GetIter(v);
if (it == NULL) {
if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError) &&
Py_TYPE(v)->tp_iter == NULL && !PySequence_Check(v))
{
_PyErr_Format(tstate, PyExc_TypeError,
"cannot unpack non-iterable %.200s object",
Py_TYPE(v)->tp_name);
}
return 0;
}
for (; i < argcnt; i++) {
w = PyIter_Next(it);
if (w == NULL) {
/* Iterator done, via error or exhaustion. */
if (!_PyErr_Occurred(tstate)) {
if (argcntafter == -1) {
_PyErr_Format(tstate, PyExc_ValueError,
"not enough values to unpack "
"(expected %d, got %d)",
argcnt, i);
}
else {
_PyErr_Format(tstate, PyExc_ValueError,
"not enough values to unpack "
"(expected at least %d, got %d)",
argcnt + argcntafter, i);
}
}
goto Error;
}
*--sp = w;
}
if (argcntafter == -1) {
/* We better have exhausted the iterator now. */
w = PyIter_Next(it);
if (w == NULL) {
if (_PyErr_Occurred(tstate))
goto Error;
Py_DECREF(it);
return 1;
}
Py_DECREF(w);
_PyErr_Format(tstate, PyExc_ValueError,
"too many values to unpack (expected %d)",
argcnt);
goto Error;
}
l = PySequence_List(it);
if (l == NULL)
goto Error;
*--sp = l;
i++;
ll = PyList_GET_SIZE(l);
if (ll < argcntafter) {
_PyErr_Format(tstate, PyExc_ValueError,
"not enough values to unpack (expected at least %d, got %zd)",
argcnt + argcntafter, argcnt + ll);
goto Error;
}
/* Pop the "after-variable" args off the list. */
for (j = argcntafter; j > 0; j--, i++) {
*--sp = PyList_GET_ITEM(l, ll - j);
}
/* Resize the list. */
Py_SET_SIZE(l, ll - argcntafter);
Py_DECREF(it);
return 1;
Error:
for (; i > 0; i--, sp++)
Py_DECREF(*sp);
Py_XDECREF(it);
return 0;
}
static int
do_monitor_exc(PyThreadState *tstate, _PyInterpreterFrame *frame,
_Py_CODEUNIT *instr, int event)
{
assert(event < _PY_MONITORING_UNGROUPED_EVENTS);
if (_PyFrame_GetCode(frame)->co_flags & CO_NO_MONITORING_EVENTS) {
return 0;
}
PyObject *exc = PyErr_GetRaisedException();
assert(exc != NULL);
int err = _Py_call_instrumentation_arg(tstate, event, frame, instr, exc);
if (err == 0) {
PyErr_SetRaisedException(exc);
}
else {
assert(PyErr_Occurred());
Py_DECREF(exc);
}
return err;
}
static inline bool
no_tools_for_global_event(PyThreadState *tstate, int event)
{
return tstate->interp->monitors.tools[event] == 0;
}
static inline bool
no_tools_for_local_event(PyThreadState *tstate, _PyInterpreterFrame *frame, int event)
{
assert(event < _PY_MONITORING_LOCAL_EVENTS);
_PyCoMonitoringData *data = _PyFrame_GetCode(frame)->_co_monitoring;
if (data) {
return data->active_monitors.tools[event] == 0;
}
else {
return no_tools_for_global_event(tstate, event);
}
}
static void
monitor_raise(PyThreadState *tstate, _PyInterpreterFrame *frame,
_Py_CODEUNIT *instr)
{
if (no_tools_for_global_event(tstate, PY_MONITORING_EVENT_RAISE)) {
return;
}
do_monitor_exc(tstate, frame, instr, PY_MONITORING_EVENT_RAISE);
}
static void
monitor_reraise(PyThreadState *tstate, _PyInterpreterFrame *frame,
_Py_CODEUNIT *instr)
{
if (no_tools_for_global_event(tstate, PY_MONITORING_EVENT_RERAISE)) {
return;
}
do_monitor_exc(tstate, frame, instr, PY_MONITORING_EVENT_RERAISE);
}
static int
monitor_stop_iteration(PyThreadState *tstate, _PyInterpreterFrame *frame,
_Py_CODEUNIT *instr, PyObject *value)
{
if (no_tools_for_local_event(tstate, frame, PY_MONITORING_EVENT_STOP_ITERATION)) {
return 0;
}
assert(!PyErr_Occurred());
PyErr_SetObject(PyExc_StopIteration, value);
int res = do_monitor_exc(tstate, frame, instr, PY_MONITORING_EVENT_STOP_ITERATION);
if (res < 0) {
return res;
}
PyErr_SetRaisedException(NULL);
return 0;
}
static void
monitor_unwind(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr)
{
if (no_tools_for_global_event(tstate, PY_MONITORING_EVENT_PY_UNWIND)) {
return;
}
do_monitor_exc(tstate, frame, instr, PY_MONITORING_EVENT_PY_UNWIND);
}
static int
monitor_handled(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr, PyObject *exc)
{
if (no_tools_for_global_event(tstate, PY_MONITORING_EVENT_EXCEPTION_HANDLED)) {
return 0;
}
return _Py_call_instrumentation_arg(tstate, PY_MONITORING_EVENT_EXCEPTION_HANDLED, frame, instr, exc);
}
static void
monitor_throw(PyThreadState *tstate,
_PyInterpreterFrame *frame,
_Py_CODEUNIT *instr)
{
if (no_tools_for_global_event(tstate, PY_MONITORING_EVENT_PY_THROW)) {
return;
}
do_monitor_exc(tstate, frame, instr, PY_MONITORING_EVENT_PY_THROW);
}
void
PyThreadState_EnterTracing(PyThreadState *tstate)
{
assert(tstate->tracing >= 0);
tstate->tracing++;
}
void
PyThreadState_LeaveTracing(PyThreadState *tstate)
{
assert(tstate->tracing > 0);
tstate->tracing--;
}
PyObject*
_PyEval_CallTracing(PyObject *func, PyObject *args)
{
// Save and disable tracing
PyThreadState *tstate = _PyThreadState_GET();
int save_tracing = tstate->tracing;
tstate->tracing = 0;
// Call the tracing function
PyObject *result = PyObject_Call(func, args, NULL);
// Restore tracing
tstate->tracing = save_tracing;
return result;
}
void
PyEval_SetProfile(Py_tracefunc func, PyObject *arg)
{
PyThreadState *tstate = _PyThreadState_GET();
if (_PyEval_SetProfile(tstate, func, arg) < 0) {
/* Log _PySys_Audit() error */
PyErr_FormatUnraisable("Exception ignored in PyEval_SetProfile");
}
}
void
PyEval_SetProfileAllThreads(Py_tracefunc func, PyObject *arg)
{
PyThreadState *this_tstate = _PyThreadState_GET();
PyInterpreterState* interp = this_tstate->interp;
_PyRuntimeState *runtime = &_PyRuntime;
HEAD_LOCK(runtime);
PyThreadState* ts = PyInterpreterState_ThreadHead(interp);
HEAD_UNLOCK(runtime);
while (ts) {
if (_PyEval_SetProfile(ts, func, arg) < 0) {
PyErr_FormatUnraisable("Exception ignored in PyEval_SetProfileAllThreads");
}
HEAD_LOCK(runtime);
ts = PyThreadState_Next(ts);
HEAD_UNLOCK(runtime);
}
}
void
PyEval_SetTrace(Py_tracefunc func, PyObject *arg)
{
PyThreadState *tstate = _PyThreadState_GET();
if (_PyEval_SetTrace(tstate, func, arg) < 0) {
/* Log _PySys_Audit() error */
PyErr_FormatUnraisable("Exception ignored in PyEval_SetTrace");
}
}
void
PyEval_SetTraceAllThreads(Py_tracefunc func, PyObject *arg)
{
PyThreadState *this_tstate = _PyThreadState_GET();
PyInterpreterState* interp = this_tstate->interp;
_PyRuntimeState *runtime = &_PyRuntime;
HEAD_LOCK(runtime);
PyThreadState* ts = PyInterpreterState_ThreadHead(interp);
HEAD_UNLOCK(runtime);
while (ts) {
if (_PyEval_SetTrace(ts, func, arg) < 0) {
PyErr_FormatUnraisable("Exception ignored in PyEval_SetTraceAllThreads");
}
HEAD_LOCK(runtime);
ts = PyThreadState_Next(ts);
HEAD_UNLOCK(runtime);
}
}
int
_PyEval_SetCoroutineOriginTrackingDepth(int depth)
{
PyThreadState *tstate = _PyThreadState_GET();
if (depth < 0) {
_PyErr_SetString(tstate, PyExc_ValueError, "depth must be >= 0");
return -1;
}
tstate->coroutine_origin_tracking_depth = depth;
return 0;
}
int
_PyEval_GetCoroutineOriginTrackingDepth(void)
{
PyThreadState *tstate = _PyThreadState_GET();
return tstate->coroutine_origin_tracking_depth;
}
int
_PyEval_SetAsyncGenFirstiter(PyObject *firstiter)
{
PyThreadState *tstate = _PyThreadState_GET();
if (_PySys_Audit(tstate, "sys.set_asyncgen_hook_firstiter", NULL) < 0) {
return -1;
}
Py_XSETREF(tstate->async_gen_firstiter, Py_XNewRef(firstiter));
return 0;
}
PyObject *
_PyEval_GetAsyncGenFirstiter(void)
{
PyThreadState *tstate = _PyThreadState_GET();
return tstate->async_gen_firstiter;
}
int
_PyEval_SetAsyncGenFinalizer(PyObject *finalizer)
{
PyThreadState *tstate = _PyThreadState_GET();
if (_PySys_Audit(tstate, "sys.set_asyncgen_hook_finalizer", NULL) < 0) {
return -1;
}
Py_XSETREF(tstate->async_gen_finalizer, Py_XNewRef(finalizer));
return 0;
}
PyObject *
_PyEval_GetAsyncGenFinalizer(void)
{
PyThreadState *tstate = _PyThreadState_GET();
return tstate->async_gen_finalizer;
}
_PyInterpreterFrame *
_PyEval_GetFrame(void)
{
PyThreadState *tstate = _PyThreadState_GET();
return _PyThreadState_GetFrame(tstate);
}
PyFrameObject *
PyEval_GetFrame(void)
{
_PyInterpreterFrame *frame = _PyEval_GetFrame();
if (frame == NULL) {
return NULL;
}
PyFrameObject *f = _PyFrame_GetFrameObject(frame);
if (f == NULL) {
PyErr_Clear();
}
return f;
}
PyObject *
_PyEval_GetBuiltins(PyThreadState *tstate)
{
_PyInterpreterFrame *frame = _PyThreadState_GetFrame(tstate);
if (frame != NULL) {
return frame->f_builtins;
}
return tstate->interp->builtins;
}
PyObject *
PyEval_GetBuiltins(void)
{
PyThreadState *tstate = _PyThreadState_GET();
return _PyEval_GetBuiltins(tstate);
}
/* Convenience function to get a builtin from its name */
PyObject *
_PyEval_GetBuiltin(PyObject *name)
{
PyObject *attr;
if (PyMapping_GetOptionalItem(PyEval_GetBuiltins(), name, &attr) == 0) {
PyErr_SetObject(PyExc_AttributeError, name);
}
return attr;
}
PyObject *
_PyEval_GetBuiltinId(_Py_Identifier *name)
{
return _PyEval_GetBuiltin(_PyUnicode_FromId(name));
}
PyObject *
PyEval_GetLocals(void)
{
PyThreadState *tstate = _PyThreadState_GET();
_PyInterpreterFrame *current_frame = _PyThreadState_GetFrame(tstate);
if (current_frame == NULL) {
_PyErr_SetString(tstate, PyExc_SystemError, "frame does not exist");
return NULL;
}
PyObject *locals = _PyEval_GetFrameLocals();
return locals;
}
PyObject *
_PyEval_GetFrameLocals(void)
{
PyThreadState *tstate = _PyThreadState_GET();
_PyInterpreterFrame *current_frame = _PyThreadState_GetFrame(tstate);
if (current_frame == NULL) {
_PyErr_SetString(tstate, PyExc_SystemError, "frame does not exist");
return NULL;
}
PyObject *locals = _PyFrame_GetLocals(current_frame);
if (locals == NULL) {
return NULL;
}
if (PyFrameLocalsProxy_Check(locals)) {
PyObject* ret = PyDict_New();
if (ret == NULL) {
Py_DECREF(locals);
return NULL;
}
if (PyDict_Update(ret, locals) < 0) {
Py_DECREF(ret);
Py_DECREF(locals);
return NULL;
}
Py_DECREF(locals);
return ret;
}
assert(PyMapping_Check(locals));
return locals;
}
PyObject *
PyEval_GetGlobals(void)
{
PyThreadState *tstate = _PyThreadState_GET();
_PyInterpreterFrame *current_frame = _PyThreadState_GetFrame(tstate);
if (current_frame == NULL) {
return NULL;
}
return current_frame->f_globals;
}
PyObject*
PyEval_GetFrameLocals(void)
{
return _PyEval_GetFrameLocals();
}
PyObject* PyEval_GetFrameGlobals(void)
{
PyThreadState *tstate = _PyThreadState_GET();
_PyInterpreterFrame *current_frame = _PyThreadState_GetFrame(tstate);
if (current_frame == NULL) {
return NULL;
}
return Py_XNewRef(current_frame->f_globals);
}
PyObject* PyEval_GetFrameBuiltins(void)
{
PyThreadState *tstate = _PyThreadState_GET();
return Py_XNewRef(_PyEval_GetBuiltins(tstate));
}
int
PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
{
PyThreadState *tstate = _PyThreadState_GET();
_PyInterpreterFrame *current_frame = tstate->current_frame;
int result = cf->cf_flags != 0;
if (current_frame != NULL) {
const int codeflags = _PyFrame_GetCode(current_frame)->co_flags;
const int compilerflags = codeflags & PyCF_MASK;
if (compilerflags) {
result = 1;
cf->cf_flags |= compilerflags;
}
}
return result;
}
const char *
PyEval_GetFuncName(PyObject *func)
{
if (PyMethod_Check(func))
return PyEval_GetFuncName(PyMethod_GET_FUNCTION(func));
else if (PyFunction_Check(func))
return PyUnicode_AsUTF8(((PyFunctionObject*)func)->func_name);
else if (PyCFunction_Check(func))
return ((PyCFunctionObject*)func)->m_ml->ml_name;
else
return Py_TYPE(func)->tp_name;
}
const char *
PyEval_GetFuncDesc(PyObject *func)
{
if (PyMethod_Check(func))
return "()";
else if (PyFunction_Check(func))
return "()";
else if (PyCFunction_Check(func))
return "()";
else
return " object";
}
/* Extract a slice index from a PyLong or an object with the
nb_index slot defined, and store in *pi.
Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX,
and silently boost values less than PY_SSIZE_T_MIN to PY_SSIZE_T_MIN.
Return 0 on error, 1 on success.
*/
int
_PyEval_SliceIndex(PyObject *v, Py_ssize_t *pi)
{
PyThreadState *tstate = _PyThreadState_GET();
if (!Py_IsNone(v)) {
Py_ssize_t x;
if (_PyIndex_Check(v)) {
x = PyNumber_AsSsize_t(v, NULL);
if (x == -1 && _PyErr_Occurred(tstate))
return 0;
}
else {
_PyErr_SetString(tstate, PyExc_TypeError,
"slice indices must be integers or "
"None or have an __index__ method");
return 0;
}
*pi = x;
}
return 1;
}
int
_PyEval_SliceIndexNotNone(PyObject *v, Py_ssize_t *pi)
{
PyThreadState *tstate = _PyThreadState_GET();
Py_ssize_t x;
if (_PyIndex_Check(v)) {
x = PyNumber_AsSsize_t(v, NULL);
if (x == -1 && _PyErr_Occurred(tstate))
return 0;
}
else {
_PyErr_SetString(tstate, PyExc_TypeError,
"slice indices must be integers or "
"have an __index__ method");
return 0;
}
*pi = x;
return 1;
}
static PyObject *
import_name(PyThreadState *tstate, _PyInterpreterFrame *frame,
PyObject *name, PyObject *fromlist, PyObject *level)
{
PyObject *import_func;
if (PyMapping_GetOptionalItem(frame->f_builtins, &_Py_ID(__import__), &import_func) < 0) {
return NULL;
}
if (import_func == NULL) {
_PyErr_SetString(tstate, PyExc_ImportError, "__import__ not found");
return NULL;
}
PyObject *locals = frame->f_locals;
if (locals == NULL) {
locals = Py_None;
}
/* Fast path for not overloaded __import__. */
if (_PyImport_IsDefaultImportFunc(tstate->interp, import_func)) {
Py_DECREF(import_func);
int ilevel = PyLong_AsInt(level);
if (ilevel == -1 && _PyErr_Occurred(tstate)) {
return NULL;
}
return PyImport_ImportModuleLevelObject(
name,
frame->f_globals,
locals,
fromlist,
ilevel);
}
PyObject* args[5] = {name, frame->f_globals, locals, fromlist, level};
PyObject *res = PyObject_Vectorcall(import_func, args, 5, NULL);
Py_DECREF(import_func);
return res;
}
static PyObject *
import_from(PyThreadState *tstate, PyObject *v, PyObject *name)
{
PyObject *x;
PyObject *fullmodname, *pkgname, *pkgpath, *pkgname_or_unknown, *errmsg;
if (PyObject_GetOptionalAttr(v, name, &x) != 0) {
return x;
}
/* Issue #17636: in case this failed because of a circular relative
import, try to fallback on reading the module directly from
sys.modules. */
if (PyObject_GetOptionalAttr(v, &_Py_ID(__name__), &pkgname) < 0) {
return NULL;
}
if (pkgname == NULL || !PyUnicode_Check(pkgname)) {
Py_CLEAR(pkgname);
goto error;
}
fullmodname = PyUnicode_FromFormat("%U.%U", pkgname, name);
if (fullmodname == NULL) {
Py_DECREF(pkgname);
return NULL;
}
x = PyImport_GetModule(fullmodname);
Py_DECREF(fullmodname);
if (x == NULL && !_PyErr_Occurred(tstate)) {
goto error;
}
Py_DECREF(pkgname);
return x;
error:
if (pkgname == NULL) {
pkgname_or_unknown = PyUnicode_FromString("<unknown module name>");
if (pkgname_or_unknown == NULL) {
return NULL;
}
} else {
pkgname_or_unknown = pkgname;
}
pkgpath = NULL;
if (PyModule_Check(v)) {
pkgpath = PyModule_GetFilenameObject(v);
if (pkgpath == NULL) {
if (!PyErr_ExceptionMatches(PyExc_SystemError)) {
Py_DECREF(pkgname_or_unknown);
return NULL;
}
// module filename missing
_PyErr_Clear(tstate);
}
}
if (pkgpath == NULL || !PyUnicode_Check(pkgpath)) {
Py_CLEAR(pkgpath);
errmsg = PyUnicode_FromFormat(
"cannot import name %R from %R (unknown location)",
name, pkgname_or_unknown
);
}
else {
PyObject *spec;
int rc = PyObject_GetOptionalAttr(v, &_Py_ID(__spec__), &spec);
if (rc > 0) {
rc = _PyModuleSpec_IsInitializing(spec);
Py_DECREF(spec);
}
if (rc < 0) {
Py_DECREF(pkgname_or_unknown);
Py_DECREF(pkgpath);
return NULL;
}
const char *fmt =
rc ?
"cannot import name %R from partially initialized module %R "
"(most likely due to a circular import) (%S)" :
"cannot import name %R from %R (%S)";
errmsg = PyUnicode_FromFormat(fmt, name, pkgname_or_unknown, pkgpath);
}
/* NULL checks for errmsg and pkgname done by PyErr_SetImportError. */
_PyErr_SetImportErrorWithNameFrom(errmsg, pkgname, pkgpath, name);
Py_XDECREF(errmsg);
Py_DECREF(pkgname_or_unknown);
Py_XDECREF(pkgpath);
return NULL;
}
#define CANNOT_CATCH_MSG "catching classes that do not inherit from "\
"BaseException is not allowed"
#define CANNOT_EXCEPT_STAR_EG "catching ExceptionGroup with except* "\
"is not allowed. Use except instead."
int
_PyEval_CheckExceptTypeValid(PyThreadState *tstate, PyObject* right)
{
if (PyTuple_Check(right)) {
Py_ssize_t i, length;
length = PyTuple_GET_SIZE(right);
for (i = 0; i < length; i++) {
PyObject *exc = PyTuple_GET_ITEM(right, i);
if (!PyExceptionClass_Check(exc)) {
_PyErr_SetString(tstate, PyExc_TypeError,
CANNOT_CATCH_MSG);
return -1;
}
}
}
else {
if (!PyExceptionClass_Check(right)) {
_PyErr_SetString(tstate, PyExc_TypeError,
CANNOT_CATCH_MSG);
return -1;
}
}
return 0;
}
int
_PyEval_CheckExceptStarTypeValid(PyThreadState *tstate, PyObject* right)
{
if (_PyEval_CheckExceptTypeValid(tstate, right) < 0) {
return -1;
}
/* reject except *ExceptionGroup */
int is_subclass = 0;
if (PyTuple_Check(right)) {
Py_ssize_t length = PyTuple_GET_SIZE(right);
for (Py_ssize_t i = 0; i < length; i++) {
PyObject *exc = PyTuple_GET_ITEM(right, i);
is_subclass = PyObject_IsSubclass(exc, PyExc_BaseExceptionGroup);
if (is_subclass < 0) {
return -1;
}
if (is_subclass) {
break;
}
}
}
else {
is_subclass = PyObject_IsSubclass(right, PyExc_BaseExceptionGroup);
if (is_subclass < 0) {
return -1;
}
}
if (is_subclass) {
_PyErr_SetString(tstate, PyExc_TypeError,
CANNOT_EXCEPT_STAR_EG);
return -1;
}
return 0;
}
static int
check_args_iterable(PyThreadState *tstate, PyObject *func, PyObject *args)
{
if (Py_TYPE(args)->tp_iter == NULL && !PySequence_Check(args)) {
/* check_args_iterable() may be called with a live exception:
* clear it to prevent calling _PyObject_FunctionStr() with an
* exception set. */
_PyErr_Clear(tstate);
PyObject *funcstr = _PyObject_FunctionStr(func);
if (funcstr != NULL) {
_PyErr_Format(tstate, PyExc_TypeError,
"%U argument after * must be an iterable, not %.200s",
funcstr, Py_TYPE(args)->tp_name);
Py_DECREF(funcstr);
}
return -1;
}
return 0;
}
void
_PyEval_FormatKwargsError(PyThreadState *tstate, PyObject *func, PyObject *kwargs)
{
/* _PyDict_MergeEx raises attribute
* error (percolated from an attempt
* to get 'keys' attribute) instead of
* a type error if its second argument
* is not a mapping.
*/
if (_PyErr_ExceptionMatches(tstate, PyExc_AttributeError)) {
_PyErr_Clear(tstate);
PyObject *funcstr = _PyObject_FunctionStr(func);
if (funcstr != NULL) {
_PyErr_Format(
tstate, PyExc_TypeError,
"%U argument after ** must be a mapping, not %.200s",
funcstr, Py_TYPE(kwargs)->tp_name);
Py_DECREF(funcstr);
}
}
else if (_PyErr_ExceptionMatches(tstate, PyExc_KeyError)) {
PyObject *exc = _PyErr_GetRaisedException(tstate);
PyObject *args = ((PyBaseExceptionObject *)exc)->args;
if (exc && PyTuple_Check(args) && PyTuple_GET_SIZE(args) == 1) {
_PyErr_Clear(tstate);
PyObject *funcstr = _PyObject_FunctionStr(func);
if (funcstr != NULL) {
PyObject *key = PyTuple_GET_ITEM(args, 0);
_PyErr_Format(
tstate, PyExc_TypeError,
"%U got multiple values for keyword argument '%S'",
funcstr, key);
Py_DECREF(funcstr);
}
Py_XDECREF(exc);
}
else {
_PyErr_SetRaisedException(tstate, exc);
}
}
}
void
_PyEval_FormatExcCheckArg(PyThreadState *tstate, PyObject *exc,
const char *format_str, PyObject *obj)
{
const char *obj_str;
if (!obj)
return;
obj_str = PyUnicode_AsUTF8(obj);
if (!obj_str)
return;
_PyErr_Format(tstate, exc, format_str, obj_str);
if (exc == PyExc_NameError) {
// Include the name in the NameError exceptions to offer suggestions later.
PyObject *exc = PyErr_GetRaisedException();
if (PyErr_GivenExceptionMatches(exc, PyExc_NameError)) {
if (((PyNameErrorObject*)exc)->name == NULL) {
// We do not care if this fails because we are going to restore the
// NameError anyway.
(void)PyObject_SetAttr(exc, &_Py_ID(name), obj);
}
}
PyErr_SetRaisedException(exc);
}
}
void
_PyEval_FormatExcUnbound(PyThreadState *tstate, PyCodeObject *co, int oparg)
{
PyObject *name;
/* Don't stomp existing exception */
if (_PyErr_Occurred(tstate))
return;
name = PyTuple_GET_ITEM(co->co_localsplusnames, oparg);
if (oparg < PyUnstable_Code_GetFirstFree(co)) {
_PyEval_FormatExcCheckArg(tstate, PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG, name);
} else {
_PyEval_FormatExcCheckArg(tstate, PyExc_NameError,
UNBOUNDFREE_ERROR_MSG, name);
}
}
void
_PyEval_FormatAwaitableError(PyThreadState *tstate, PyTypeObject *type, int oparg)
{
if (type->tp_as_async == NULL || type->tp_as_async->am_await == NULL) {
if (oparg == 1) {
_PyErr_Format(tstate, PyExc_TypeError,
"'async with' received an object from __aenter__ "
"that does not implement __await__: %.100s",
type->tp_name);
}
else if (oparg == 2) {
_PyErr_Format(tstate, PyExc_TypeError,
"'async with' received an object from __aexit__ "
"that does not implement __await__: %.100s",
type->tp_name);
}
}
}
Py_ssize_t
PyUnstable_Eval_RequestCodeExtraIndex(freefunc free)
{
PyInterpreterState *interp = _PyInterpreterState_GET();
Py_ssize_t new_index;
if (interp->co_extra_user_count == MAX_CO_EXTRA_USERS - 1) {
return -1;
}
new_index = interp->co_extra_user_count++;
interp->co_extra_freefuncs[new_index] = free;
return new_index;
}
/* Implement Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() as functions
for the limited API. */
int Py_EnterRecursiveCall(const char *where)
{
return _Py_EnterRecursiveCall(where);
}
void Py_LeaveRecursiveCall(void)
{
_Py_LeaveRecursiveCall();
}