mirror of https://github.com/python/cpython
2414 lines
93 KiB
TeX
2414 lines
93 KiB
TeX
\documentclass{howto}
|
|
\usepackage{distutils}
|
|
% $Id$
|
|
|
|
% Fix XXX comments
|
|
% Count up the patches and bugs
|
|
|
|
\title{What's New in Python 2.5}
|
|
\release{0.3}
|
|
\author{A.M. Kuchling}
|
|
\authoraddress{\email{amk@amk.ca}}
|
|
|
|
\begin{document}
|
|
\maketitle
|
|
\tableofcontents
|
|
|
|
This article explains the new features in Python 2.5. The final
|
|
release of Python 2.5 is scheduled for August 2006;
|
|
\pep{356} describes the planned release schedule.
|
|
|
|
The changes in Python 2.5 are an interesting mix of language and
|
|
library improvements. The library enhancements will be more important
|
|
to Python's user community, I think, because several widely-useful
|
|
packages were added. New modules include ElementTree for XML
|
|
processing (section~\ref{module-etree}), the SQLite database module
|
|
(section~\ref{module-sqlite}), and the \module{ctypes} module for
|
|
calling C functions (section~\ref{module-ctypes}).
|
|
|
|
The language changes are of middling significance. Some pleasant new
|
|
features were added, but most of them aren't features that you'll use
|
|
every day. Conditional expressions were finally added to the language
|
|
using a novel syntax; see section~\ref{pep-308}. The new
|
|
'\keyword{with}' statement will make writing cleanup code easier
|
|
(section~\ref{pep-343}). Values can now be passed into generators
|
|
(section~\ref{pep-342}). Imports are now visible as either absolute
|
|
or relative (section~\ref{pep-328}). Some corner cases of exception
|
|
handling are handled better (section~\ref{pep-341}). All these
|
|
improvements are worthwhile, but they're improvements to one specific
|
|
language feature or another; none of them are broad modifications to
|
|
Python's semantics.
|
|
|
|
This article doesn't try to be a complete specification of the new
|
|
features; instead changes are briefly introduced using helpful
|
|
examples. For full details, you should always refer to the
|
|
documentation for Python 2.5.
|
|
% XXX add hyperlink when the documentation becomes available online.
|
|
If you want to understand the complete implementation and design
|
|
rationale, refer to the PEP for a particular new feature.
|
|
|
|
Comments, suggestions, and error reports for this document are
|
|
welcome; please e-mail them to the author or open a bug in the Python
|
|
bug tracker.
|
|
|
|
%======================================================================
|
|
\section{PEP 308: Conditional Expressions\label{pep-308}}
|
|
|
|
For a long time, people have been requesting a way to write
|
|
conditional expressions, which are expressions that return value A or
|
|
value B depending on whether a Boolean value is true or false. A
|
|
conditional expression lets you write a single assignment statement
|
|
that has the same effect as the following:
|
|
|
|
\begin{verbatim}
|
|
if condition:
|
|
x = true_value
|
|
else:
|
|
x = false_value
|
|
\end{verbatim}
|
|
|
|
There have been endless tedious discussions of syntax on both
|
|
python-dev and comp.lang.python. A vote was even held that found the
|
|
majority of voters wanted conditional expressions in some form,
|
|
but there was no syntax that was preferred by a clear majority.
|
|
Candidates included C's \code{cond ? true_v : false_v},
|
|
\code{if cond then true_v else false_v}, and 16 other variations.
|
|
|
|
GvR eventually chose a surprising syntax:
|
|
|
|
\begin{verbatim}
|
|
x = true_value if condition else false_value
|
|
\end{verbatim}
|
|
|
|
Evaluation is still lazy as in existing Boolean expressions, so the
|
|
order of evaluation jumps around a bit. The \var{condition}
|
|
expression in the middle is evaluated first, and the \var{true_value}
|
|
expression is evaluated only if the condition was true. Similarly,
|
|
the \var{false_value} expression is only evaluated when the condition
|
|
is false.
|
|
|
|
This syntax may seem strange and backwards; why does the condition go
|
|
in the \emph{middle} of the expression, and not in the front as in C's
|
|
\code{c ? x : y}? The decision was checked by applying the new syntax
|
|
to the modules in the standard library and seeing how the resulting
|
|
code read. In many cases where a conditional expression is used, one
|
|
value seems to be the 'common case' and one value is an 'exceptional
|
|
case', used only on rarer occasions when the condition isn't met. The
|
|
conditional syntax makes this pattern a bit more obvious:
|
|
|
|
\begin{verbatim}
|
|
contents = ((doc + '\n') if doc else '')
|
|
\end{verbatim}
|
|
|
|
I read the above statement as meaning ``here \var{contents} is
|
|
usually assigned a value of \code{doc+'\e n'}; sometimes
|
|
\var{doc} is empty, in which special case an empty string is returned.''
|
|
I doubt I will use conditional expressions very often where there
|
|
isn't a clear common and uncommon case.
|
|
|
|
There was some discussion of whether the language should require
|
|
surrounding conditional expressions with parentheses. The decision
|
|
was made to \emph{not} require parentheses in the Python language's
|
|
grammar, but as a matter of style I think you should always use them.
|
|
Consider these two statements:
|
|
|
|
\begin{verbatim}
|
|
# First version -- no parens
|
|
level = 1 if logging else 0
|
|
|
|
# Second version -- with parens
|
|
level = (1 if logging else 0)
|
|
\end{verbatim}
|
|
|
|
In the first version, I think a reader's eye might group the statement
|
|
into 'level = 1', 'if logging', 'else 0', and think that the condition
|
|
decides whether the assignment to \var{level} is performed. The
|
|
second version reads better, in my opinion, because it makes it clear
|
|
that the assignment is always performed and the choice is being made
|
|
between two values.
|
|
|
|
Another reason for including the brackets: a few odd combinations of
|
|
list comprehensions and lambdas could look like incorrect conditional
|
|
expressions. See \pep{308} for some examples. If you put parentheses
|
|
around your conditional expressions, you won't run into this case.
|
|
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{308}{Conditional Expressions}{PEP written by
|
|
Guido van~Rossum and Raymond D. Hettinger; implemented by Thomas
|
|
Wouters.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 309: Partial Function Application\label{pep-309}}
|
|
|
|
The \module{functools} module is intended to contain tools for
|
|
functional-style programming.
|
|
|
|
One useful tool in this module is the \function{partial()} function.
|
|
For programs written in a functional style, you'll sometimes want to
|
|
construct variants of existing functions that have some of the
|
|
parameters filled in. Consider a Python function \code{f(a, b, c)};
|
|
you could create a new function \code{g(b, c)} that was equivalent to
|
|
\code{f(1, b, c)}. This is called ``partial function application''.
|
|
|
|
\function{partial} takes the arguments
|
|
\code{(\var{function}, \var{arg1}, \var{arg2}, ...
|
|
\var{kwarg1}=\var{value1}, \var{kwarg2}=\var{value2})}. The resulting
|
|
object is callable, so you can just call it to invoke \var{function}
|
|
with the filled-in arguments.
|
|
|
|
Here's a small but realistic example:
|
|
|
|
\begin{verbatim}
|
|
import functools
|
|
|
|
def log (message, subsystem):
|
|
"Write the contents of 'message' to the specified subsystem."
|
|
print '%s: %s' % (subsystem, message)
|
|
...
|
|
|
|
server_log = functools.partial(log, subsystem='server')
|
|
server_log('Unable to open socket')
|
|
\end{verbatim}
|
|
|
|
Here's another example, from a program that uses PyGTK. Here a
|
|
context-sensitive pop-up menu is being constructed dynamically. The
|
|
callback provided for the menu option is a partially applied version
|
|
of the \method{open_item()} method, where the first argument has been
|
|
provided.
|
|
|
|
\begin{verbatim}
|
|
...
|
|
class Application:
|
|
def open_item(self, path):
|
|
...
|
|
def init (self):
|
|
open_func = functools.partial(self.open_item, item_path)
|
|
popup_menu.append( ("Open", open_func, 1) )
|
|
\end{verbatim}
|
|
|
|
|
|
Another function in the \module{functools} module is the
|
|
\function{update_wrapper(\var{wrapper}, \var{wrapped})} function that
|
|
helps you write well-behaved decorators. \function{update_wrapper()}
|
|
copies the name, module, and docstring attribute to a wrapper function
|
|
so that tracebacks inside the wrapped function are easier to
|
|
understand. For example, you might write:
|
|
|
|
\begin{verbatim}
|
|
def my_decorator(f):
|
|
def wrapper(*args, **kwds):
|
|
print 'Calling decorated function'
|
|
return f(*args, **kwds)
|
|
functools.update_wrapper(wrapper, f)
|
|
return wrapper
|
|
\end{verbatim}
|
|
|
|
\function{wraps()} is a decorator that can be used inside your own
|
|
decorators to copy the wrapped function's information. An alternate
|
|
version of the previous example would be:
|
|
|
|
\begin{verbatim}
|
|
def my_decorator(f):
|
|
@functools.wraps(f)
|
|
def wrapper(*args, **kwds):
|
|
print 'Calling decorated function'
|
|
return f(*args, **kwds)
|
|
return wrapper
|
|
\end{verbatim}
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{309}{Partial Function Application}{PEP proposed and written by
|
|
Peter Harris; implemented by Hye-Shik Chang and Nick Coghlan, with
|
|
adaptations by Raymond Hettinger.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 314: Metadata for Python Software Packages v1.1\label{pep-314}}
|
|
|
|
Some simple dependency support was added to Distutils. The
|
|
\function{setup()} function now has \code{requires}, \code{provides},
|
|
and \code{obsoletes} keyword parameters. When you build a source
|
|
distribution using the \code{sdist} command, the dependency
|
|
information will be recorded in the \file{PKG-INFO} file.
|
|
|
|
Another new keyword parameter is \code{download_url}, which should be
|
|
set to a URL for the package's source code. This means it's now
|
|
possible to look up an entry in the package index, determine the
|
|
dependencies for a package, and download the required packages.
|
|
|
|
\begin{verbatim}
|
|
VERSION = '1.0'
|
|
setup(name='PyPackage',
|
|
version=VERSION,
|
|
requires=['numarray', 'zlib (>=1.1.4)'],
|
|
obsoletes=['OldPackage']
|
|
download_url=('http://www.example.com/pypackage/dist/pkg-%s.tar.gz'
|
|
% VERSION),
|
|
)
|
|
\end{verbatim}
|
|
|
|
Another new enhancement to the Python package index at
|
|
\url{http://cheeseshop.python.org} is storing source and binary
|
|
archives for a package. The new \command{upload} Distutils command
|
|
will upload a package to the repository.
|
|
|
|
Before a package can be uploaded, you must be able to build a
|
|
distribution using the \command{sdist} Distutils command. Once that
|
|
works, you can run \code{python setup.py upload} to add your package
|
|
to the PyPI archive. Optionally you can GPG-sign the package by
|
|
supplying the \longprogramopt{sign} and
|
|
\longprogramopt{identity} options.
|
|
|
|
Package uploading was implemented by Martin von~L\"owis and Richard Jones.
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{314}{Metadata for Python Software Packages v1.1}{PEP proposed
|
|
and written by A.M. Kuchling, Richard Jones, and Fred Drake;
|
|
implemented by Richard Jones and Fred Drake.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 328: Absolute and Relative Imports\label{pep-328}}
|
|
|
|
The simpler part of PEP 328 was implemented in Python 2.4: parentheses
|
|
could now be used to enclose the names imported from a module using
|
|
the \code{from ... import ...} statement, making it easier to import
|
|
many different names.
|
|
|
|
The more complicated part has been implemented in Python 2.5:
|
|
importing a module can be specified to use absolute or
|
|
package-relative imports. The plan is to move toward making absolute
|
|
imports the default in future versions of Python.
|
|
|
|
Let's say you have a package directory like this:
|
|
\begin{verbatim}
|
|
pkg/
|
|
pkg/__init__.py
|
|
pkg/main.py
|
|
pkg/string.py
|
|
\end{verbatim}
|
|
|
|
This defines a package named \module{pkg} containing the
|
|
\module{pkg.main} and \module{pkg.string} submodules.
|
|
|
|
Consider the code in the \file{main.py} module. What happens if it
|
|
executes the statement \code{import string}? In Python 2.4 and
|
|
earlier, it will first look in the package's directory to perform a
|
|
relative import, finds \file{pkg/string.py}, imports the contents of
|
|
that file as the \module{pkg.string} module, and that module is bound
|
|
to the name \samp{string} in the \module{pkg.main} module's namespace.
|
|
|
|
That's fine if \module{pkg.string} was what you wanted. But what if
|
|
you wanted Python's standard \module{string} module? There's no clean
|
|
way to ignore \module{pkg.string} and look for the standard module;
|
|
generally you had to look at the contents of \code{sys.modules}, which
|
|
is slightly unclean.
|
|
Holger Krekel's \module{py.std} package provides a tidier way to perform
|
|
imports from the standard library, \code{import py ; py.std.string.join()},
|
|
but that package isn't available on all Python installations.
|
|
|
|
Reading code which relies on relative imports is also less clear,
|
|
because a reader may be confused about which module, \module{string}
|
|
or \module{pkg.string}, is intended to be used. Python users soon
|
|
learned not to duplicate the names of standard library modules in the
|
|
names of their packages' submodules, but you can't protect against
|
|
having your submodule's name being used for a new module added in a
|
|
future version of Python.
|
|
|
|
In Python 2.5, you can switch \keyword{import}'s behaviour to
|
|
absolute imports using a \code{from __future__ import absolute_import}
|
|
directive. This absolute-import behaviour will become the default in
|
|
a future version (probably Python 2.7). Once absolute imports
|
|
are the default, \code{import string} will
|
|
always find the standard library's version.
|
|
It's suggested that users should begin using absolute imports as much
|
|
as possible, so it's preferable to begin writing \code{from pkg import
|
|
string} in your code.
|
|
|
|
Relative imports are still possible by adding a leading period
|
|
to the module name when using the \code{from ... import} form:
|
|
|
|
\begin{verbatim}
|
|
# Import names from pkg.string
|
|
from .string import name1, name2
|
|
# Import pkg.string
|
|
from . import string
|
|
\end{verbatim}
|
|
|
|
This imports the \module{string} module relative to the current
|
|
package, so in \module{pkg.main} this will import \var{name1} and
|
|
\var{name2} from \module{pkg.string}. Additional leading periods
|
|
perform the relative import starting from the parent of the current
|
|
package. For example, code in the \module{A.B.C} module can do:
|
|
|
|
\begin{verbatim}
|
|
from . import D # Imports A.B.D
|
|
from .. import E # Imports A.E
|
|
from ..F import G # Imports A.F.G
|
|
\end{verbatim}
|
|
|
|
Leading periods cannot be used with the \code{import \var{modname}}
|
|
form of the import statement, only the \code{from ... import} form.
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{328}{Imports: Multi-Line and Absolute/Relative}
|
|
{PEP written by Aahz; implemented by Thomas Wouters.}
|
|
|
|
\seeurl{http://codespeak.net/py/current/doc/index.html}
|
|
{The py library by Holger Krekel, which contains the \module{py.std} package.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 338: Executing Modules as Scripts\label{pep-338}}
|
|
|
|
The \programopt{-m} switch added in Python 2.4 to execute a module as
|
|
a script gained a few more abilities. Instead of being implemented in
|
|
C code inside the Python interpreter, the switch now uses an
|
|
implementation in a new module, \module{runpy}.
|
|
|
|
The \module{runpy} module implements a more sophisticated import
|
|
mechanism so that it's now possible to run modules in a package such
|
|
as \module{pychecker.checker}. The module also supports alternative
|
|
import mechanisms such as the \module{zipimport} module. This means
|
|
you can add a .zip archive's path to \code{sys.path} and then use the
|
|
\programopt{-m} switch to execute code from the archive.
|
|
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{338}{Executing modules as scripts}{PEP written and
|
|
implemented by Nick Coghlan.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 341: Unified try/except/finally\label{pep-341}}
|
|
|
|
Until Python 2.5, the \keyword{try} statement came in two
|
|
flavours. You could use a \keyword{finally} block to ensure that code
|
|
is always executed, or one or more \keyword{except} blocks to catch
|
|
specific exceptions. You couldn't combine both \keyword{except} blocks and a
|
|
\keyword{finally} block, because generating the right bytecode for the
|
|
combined version was complicated and it wasn't clear what the
|
|
semantics of the combined should be.
|
|
|
|
GvR spent some time working with Java, which does support the
|
|
equivalent of combining \keyword{except} blocks and a
|
|
\keyword{finally} block, and this clarified what the statement should
|
|
mean. In Python 2.5, you can now write:
|
|
|
|
\begin{verbatim}
|
|
try:
|
|
block-1 ...
|
|
except Exception1:
|
|
handler-1 ...
|
|
except Exception2:
|
|
handler-2 ...
|
|
else:
|
|
else-block
|
|
finally:
|
|
final-block
|
|
\end{verbatim}
|
|
|
|
The code in \var{block-1} is executed. If the code raises an
|
|
exception, the various \keyword{except} blocks are tested: if the
|
|
exception is of class \class{Exception1}, \var{handler-1} is executed;
|
|
otherwise if it's of class \class{Exception2}, \var{handler-2} is
|
|
executed, and so forth. If no exception is raised, the
|
|
\var{else-block} is executed.
|
|
|
|
No matter what happened previously, the \var{final-block} is executed
|
|
once the code block is complete and any raised exceptions handled.
|
|
Even if there's an error in an exception handler or the
|
|
\var{else-block} and a new exception is raised, the
|
|
code in the \var{final-block} is still run.
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{341}{Unifying try-except and try-finally}{PEP written by Georg Brandl;
|
|
implementation by Thomas Lee.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 342: New Generator Features\label{pep-342}}
|
|
|
|
Python 2.5 adds a simple way to pass values \emph{into} a generator.
|
|
As introduced in Python 2.3, generators only produce output; once a
|
|
generator's code was invoked to create an iterator, there was no way to
|
|
pass any new information into the function when its execution is
|
|
resumed. Sometimes the ability to pass in some information would be
|
|
useful. Hackish solutions to this include making the generator's code
|
|
look at a global variable and then changing the global variable's
|
|
value, or passing in some mutable object that callers then modify.
|
|
|
|
To refresh your memory of basic generators, here's a simple example:
|
|
|
|
\begin{verbatim}
|
|
def counter (maximum):
|
|
i = 0
|
|
while i < maximum:
|
|
yield i
|
|
i += 1
|
|
\end{verbatim}
|
|
|
|
When you call \code{counter(10)}, the result is an iterator that
|
|
returns the values from 0 up to 9. On encountering the
|
|
\keyword{yield} statement, the iterator returns the provided value and
|
|
suspends the function's execution, preserving the local variables.
|
|
Execution resumes on the following call to the iterator's
|
|
\method{next()} method, picking up after the \keyword{yield} statement.
|
|
|
|
In Python 2.3, \keyword{yield} was a statement; it didn't return any
|
|
value. In 2.5, \keyword{yield} is now an expression, returning a
|
|
value that can be assigned to a variable or otherwise operated on:
|
|
|
|
\begin{verbatim}
|
|
val = (yield i)
|
|
\end{verbatim}
|
|
|
|
I recommend that you always put parentheses around a \keyword{yield}
|
|
expression when you're doing something with the returned value, as in
|
|
the above example. The parentheses aren't always necessary, but it's
|
|
easier to always add them instead of having to remember when they're
|
|
needed.
|
|
|
|
(\pep{342} explains the exact rules, which are that a
|
|
\keyword{yield}-expression must always be parenthesized except when it
|
|
occurs at the top-level expression on the right-hand side of an
|
|
assignment. This means you can write \code{val = yield i} but have to
|
|
use parentheses when there's an operation, as in \code{val = (yield i)
|
|
+ 12}.)
|
|
|
|
Values are sent into a generator by calling its
|
|
\method{send(\var{value})} method. The generator's code is then
|
|
resumed and the \keyword{yield} expression returns the specified
|
|
\var{value}. If the regular \method{next()} method is called, the
|
|
\keyword{yield} returns \constant{None}.
|
|
|
|
Here's the previous example, modified to allow changing the value of
|
|
the internal counter.
|
|
|
|
\begin{verbatim}
|
|
def counter (maximum):
|
|
i = 0
|
|
while i < maximum:
|
|
val = (yield i)
|
|
# If value provided, change counter
|
|
if val is not None:
|
|
i = val
|
|
else:
|
|
i += 1
|
|
\end{verbatim}
|
|
|
|
And here's an example of changing the counter:
|
|
|
|
\begin{verbatim}
|
|
>>> it = counter(10)
|
|
>>> print it.next()
|
|
0
|
|
>>> print it.next()
|
|
1
|
|
>>> print it.send(8)
|
|
8
|
|
>>> print it.next()
|
|
9
|
|
>>> print it.next()
|
|
Traceback (most recent call last):
|
|
File ``t.py'', line 15, in ?
|
|
print it.next()
|
|
StopIteration
|
|
\end{verbatim}
|
|
|
|
Because \keyword{yield} will often be returning \constant{None}, you
|
|
should always check for this case. Don't just use its value in
|
|
expressions unless you're sure that the \method{send()} method
|
|
will be the only method used resume your generator function.
|
|
|
|
In addition to \method{send()}, there are two other new methods on
|
|
generators:
|
|
|
|
\begin{itemize}
|
|
|
|
\item \method{throw(\var{type}, \var{value}=None,
|
|
\var{traceback}=None)} is used to raise an exception inside the
|
|
generator; the exception is raised by the \keyword{yield} expression
|
|
where the generator's execution is paused.
|
|
|
|
\item \method{close()} raises a new \exception{GeneratorExit}
|
|
exception inside the generator to terminate the iteration.
|
|
On receiving this
|
|
exception, the generator's code must either raise
|
|
\exception{GeneratorExit} or \exception{StopIteration}; catching the
|
|
exception and doing anything else is illegal and will trigger
|
|
a \exception{RuntimeError}. \method{close()} will also be called by
|
|
Python's garbage collector when the generator is garbage-collected.
|
|
|
|
If you need to run cleanup code when a \exception{GeneratorExit} occurs,
|
|
I suggest using a \code{try: ... finally:} suite instead of
|
|
catching \exception{GeneratorExit}.
|
|
|
|
\end{itemize}
|
|
|
|
The cumulative effect of these changes is to turn generators from
|
|
one-way producers of information into both producers and consumers.
|
|
|
|
Generators also become \emph{coroutines}, a more generalized form of
|
|
subroutines. Subroutines are entered at one point and exited at
|
|
another point (the top of the function, and a \keyword{return}
|
|
statement), but coroutines can be entered, exited, and resumed at
|
|
many different points (the \keyword{yield} statements). We'll have to
|
|
figure out patterns for using coroutines effectively in Python.
|
|
|
|
The addition of the \method{close()} method has one side effect that
|
|
isn't obvious. \method{close()} is called when a generator is
|
|
garbage-collected, so this means the generator's code gets one last
|
|
chance to run before the generator is destroyed. This last chance
|
|
means that \code{try...finally} statements in generators can now be
|
|
guaranteed to work; the \keyword{finally} clause will now always get a
|
|
chance to run. The syntactic restriction that you couldn't mix
|
|
\keyword{yield} statements with a \code{try...finally} suite has
|
|
therefore been removed. This seems like a minor bit of language
|
|
trivia, but using generators and \code{try...finally} is actually
|
|
necessary in order to implement the \keyword{with} statement
|
|
described by PEP 343. I'll look at this new statement in the following
|
|
section.
|
|
|
|
Another even more esoteric effect of this change: previously, the
|
|
\member{gi_frame} attribute of a generator was always a frame object.
|
|
It's now possible for \member{gi_frame} to be \code{None}
|
|
once the generator has been exhausted.
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{342}{Coroutines via Enhanced Generators}{PEP written by
|
|
Guido van~Rossum and Phillip J. Eby;
|
|
implemented by Phillip J. Eby. Includes examples of
|
|
some fancier uses of generators as coroutines.}
|
|
|
|
\seeurl{http://en.wikipedia.org/wiki/Coroutine}{The Wikipedia entry for
|
|
coroutines.}
|
|
|
|
\seeurl{http://www.sidhe.org/\~{}dan/blog/archives/000178.html}{An
|
|
explanation of coroutines from a Perl point of view, written by Dan
|
|
Sugalski.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 343: The 'with' statement\label{pep-343}}
|
|
|
|
The '\keyword{with}' statement clarifies code that previously would
|
|
use \code{try...finally} blocks to ensure that clean-up code is
|
|
executed. In this section, I'll discuss the statement as it will
|
|
commonly be used. In the next section, I'll examine the
|
|
implementation details and show how to write objects for use with this
|
|
statement.
|
|
|
|
The '\keyword{with}' statement is a new control-flow structure whose
|
|
basic structure is:
|
|
|
|
\begin{verbatim}
|
|
with expression [as variable]:
|
|
with-block
|
|
\end{verbatim}
|
|
|
|
The expression is evaluated, and it should result in an object that
|
|
supports the context management protocol. This object may return a
|
|
value that can optionally be bound to the name \var{variable}. (Note
|
|
carefully that \var{variable} is \emph{not} assigned the result of
|
|
\var{expression}.) The object can then run set-up code
|
|
before \var{with-block} is executed and some clean-up code
|
|
is executed after the block is done, even if the block raised an exception.
|
|
|
|
To enable the statement in Python 2.5, you need
|
|
to add the following directive to your module:
|
|
|
|
\begin{verbatim}
|
|
from __future__ import with_statement
|
|
\end{verbatim}
|
|
|
|
The statement will always be enabled in Python 2.6.
|
|
|
|
Some standard Python objects now support the context management
|
|
protocol and can be used with the '\keyword{with}' statement. File
|
|
objects are one example:
|
|
|
|
\begin{verbatim}
|
|
with open('/etc/passwd', 'r') as f:
|
|
for line in f:
|
|
print line
|
|
... more processing code ...
|
|
\end{verbatim}
|
|
|
|
After this statement has executed, the file object in \var{f} will
|
|
have been automatically closed, even if the 'for' loop
|
|
raised an exception part-way through the block.
|
|
|
|
The \module{threading} module's locks and condition variables
|
|
also support the '\keyword{with}' statement:
|
|
|
|
\begin{verbatim}
|
|
lock = threading.Lock()
|
|
with lock:
|
|
# Critical section of code
|
|
...
|
|
\end{verbatim}
|
|
|
|
The lock is acquired before the block is executed and always released once
|
|
the block is complete.
|
|
|
|
The \module{decimal} module's contexts, which encapsulate the desired
|
|
precision and rounding characteristics for computations, provide a
|
|
\method{context_manager()} method for getting a context manager:
|
|
|
|
\begin{verbatim}
|
|
import decimal
|
|
|
|
# Displays with default precision of 28 digits
|
|
v1 = decimal.Decimal('578')
|
|
print v1.sqrt()
|
|
|
|
ctx = decimal.Context(prec=16)
|
|
with ctx.context_manager():
|
|
# All code in this block uses a precision of 16 digits.
|
|
# The original context is restored on exiting the block.
|
|
print v1.sqrt()
|
|
\end{verbatim}
|
|
|
|
\subsection{Writing Context Managers\label{context-managers}}
|
|
|
|
Under the hood, the '\keyword{with}' statement is fairly complicated.
|
|
Most people will only use '\keyword{with}' in company with existing
|
|
objects and don't need to know these details, so you can skip the rest
|
|
of this section if you like. Authors of new objects will need to
|
|
understand the details of the underlying implementation and should
|
|
keep reading.
|
|
|
|
A high-level explanation of the context management protocol is:
|
|
|
|
\begin{itemize}
|
|
|
|
\item The expression is evaluated and should result in an object
|
|
called a ``context manager''. The context manager must have
|
|
\method{__enter__()} and \method{__exit__()} methods.
|
|
|
|
\item The context manager's \method{__enter__()} method is called. The value
|
|
returned is assigned to \var{VAR}. If no \code{'as \var{VAR}'} clause
|
|
is present, the value is simply discarded.
|
|
|
|
\item The code in \var{BLOCK} is executed.
|
|
|
|
\item If \var{BLOCK} raises an exception, the
|
|
\method{__exit__(\var{type}, \var{value}, \var{traceback})} is called
|
|
with the exception details, the same values returned by
|
|
\function{sys.exc_info()}. The method's return value controls whether
|
|
the exception is re-raised: any false value re-raises the exception,
|
|
and \code{True} will result in suppressing it. You'll only rarely
|
|
want to suppress the exception, because if you do
|
|
the author of the code containing the
|
|
'\keyword{with}' statement will never realize anything went wrong.
|
|
|
|
\item If \var{BLOCK} didn't raise an exception,
|
|
the \method{__exit__()} method is still called,
|
|
but \var{type}, \var{value}, and \var{traceback} are all \code{None}.
|
|
|
|
\end{itemize}
|
|
|
|
Let's think through an example. I won't present detailed code but
|
|
will only sketch the methods necessary for a database that supports
|
|
transactions.
|
|
|
|
(For people unfamiliar with database terminology: a set of changes to
|
|
the database are grouped into a transaction. Transactions can be
|
|
either committed, meaning that all the changes are written into the
|
|
database, or rolled back, meaning that the changes are all discarded
|
|
and the database is unchanged. See any database textbook for more
|
|
information.)
|
|
% XXX find a shorter reference?
|
|
|
|
Let's assume there's an object representing a database connection.
|
|
Our goal will be to let the user write code like this:
|
|
|
|
\begin{verbatim}
|
|
db_connection = DatabaseConnection()
|
|
with db_connection as cursor:
|
|
cursor.execute('insert into ...')
|
|
cursor.execute('delete from ...')
|
|
# ... more operations ...
|
|
\end{verbatim}
|
|
|
|
The transaction should be committed if the code in the block
|
|
runs flawlessly or rolled back if there's an exception.
|
|
Here's the basic interface
|
|
for \class{DatabaseConnection} that I'll assume:
|
|
|
|
\begin{verbatim}
|
|
class DatabaseConnection:
|
|
# Database interface
|
|
def cursor (self):
|
|
"Returns a cursor object and starts a new transaction"
|
|
def commit (self):
|
|
"Commits current transaction"
|
|
def rollback (self):
|
|
"Rolls back current transaction"
|
|
\end{verbatim}
|
|
|
|
The \method {__enter__()} method is pretty easy, having only to start
|
|
a new transaction. For this application the resulting cursor object
|
|
would be a useful result, so the method will return it. The user can
|
|
then add \code{as cursor} to their '\keyword{with}' statement to bind
|
|
the cursor to a variable name.
|
|
|
|
\begin{verbatim}
|
|
class DatabaseConnection:
|
|
...
|
|
def __enter__ (self):
|
|
# Code to start a new transaction
|
|
cursor = self.cursor()
|
|
return cursor
|
|
\end{verbatim}
|
|
|
|
The \method{__exit__()} method is the most complicated because it's
|
|
where most of the work has to be done. The method has to check if an
|
|
exception occurred. If there was no exception, the transaction is
|
|
committed. The transaction is rolled back if there was an exception.
|
|
|
|
In the code below, execution will just fall off the end of the
|
|
function, returning the default value of \code{None}. \code{None} is
|
|
false, so the exception will be re-raised automatically. If you
|
|
wished, you could be more explicit and add a \keyword{return}
|
|
statement at the marked location.
|
|
|
|
\begin{verbatim}
|
|
class DatabaseConnection:
|
|
...
|
|
def __exit__ (self, type, value, tb):
|
|
if tb is None:
|
|
# No exception, so commit
|
|
self.commit()
|
|
else:
|
|
# Exception occurred, so rollback.
|
|
self.rollback()
|
|
# return False
|
|
\end{verbatim}
|
|
|
|
|
|
\subsection{The contextlib module\label{module-contextlib}}
|
|
|
|
The new \module{contextlib} module provides some functions and a
|
|
decorator that are useful for writing objects for use with the
|
|
'\keyword{with}' statement.
|
|
|
|
The decorator is called \function{contextmanager}, and lets you write
|
|
a single generator function instead of defining a new class. The generator
|
|
should yield exactly one value. The code up to the \keyword{yield}
|
|
will be executed as the \method{__enter__()} method, and the value
|
|
yielded will be the method's return value that will get bound to the
|
|
variable in the '\keyword{with}' statement's \keyword{as} clause, if
|
|
any. The code after the \keyword{yield} will be executed in the
|
|
\method{__exit__()} method. Any exception raised in the block will be
|
|
raised by the \keyword{yield} statement.
|
|
|
|
Our database example from the previous section could be written
|
|
using this decorator as:
|
|
|
|
\begin{verbatim}
|
|
from contextlib import contextmanager
|
|
|
|
@contextmanager
|
|
def db_transaction (connection):
|
|
cursor = connection.cursor()
|
|
try:
|
|
yield cursor
|
|
except:
|
|
connection.rollback()
|
|
raise
|
|
else:
|
|
connection.commit()
|
|
|
|
db = DatabaseConnection()
|
|
with db_transaction(db) as cursor:
|
|
...
|
|
\end{verbatim}
|
|
|
|
The \module{contextlib} module also has a \function{nested(\var{mgr1},
|
|
\var{mgr2}, ...)} function that combines a number of context managers so you
|
|
don't need to write nested '\keyword{with}' statements. In this
|
|
example, the single '\keyword{with}' statement both starts a database
|
|
transaction and acquires a thread lock:
|
|
|
|
\begin{verbatim}
|
|
lock = threading.Lock()
|
|
with nested (db_transaction(db), lock) as (cursor, locked):
|
|
...
|
|
\end{verbatim}
|
|
|
|
Finally, the \function{closing(\var{object})} function
|
|
returns \var{object} so that it can be bound to a variable,
|
|
and calls \code{\var{object}.close()} at the end of the block.
|
|
|
|
\begin{verbatim}
|
|
import urllib, sys
|
|
from contextlib import closing
|
|
|
|
with closing(urllib.urlopen('http://www.yahoo.com')) as f:
|
|
for line in f:
|
|
sys.stdout.write(line)
|
|
\end{verbatim}
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{343}{The ``with'' statement}{PEP written by Guido van~Rossum
|
|
and Nick Coghlan; implemented by Mike Bland, Guido van~Rossum, and
|
|
Neal Norwitz. The PEP shows the code generated for a '\keyword{with}'
|
|
statement, which can be helpful in learning how the statement works.}
|
|
|
|
\seeurl{../lib/module-contextlib.html}{The documentation
|
|
for the \module{contextlib} module.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 352: Exceptions as New-Style Classes\label{pep-352}}
|
|
|
|
Exception classes can now be new-style classes, not just classic
|
|
classes, and the built-in \exception{Exception} class and all the
|
|
standard built-in exceptions (\exception{NameError},
|
|
\exception{ValueError}, etc.) are now new-style classes.
|
|
|
|
The inheritance hierarchy for exceptions has been rearranged a bit.
|
|
In 2.5, the inheritance relationships are:
|
|
|
|
\begin{verbatim}
|
|
BaseException # New in Python 2.5
|
|
|- KeyboardInterrupt
|
|
|- SystemExit
|
|
|- Exception
|
|
|- (all other current built-in exceptions)
|
|
\end{verbatim}
|
|
|
|
This rearrangement was done because people often want to catch all
|
|
exceptions that indicate program errors. \exception{KeyboardInterrupt} and
|
|
\exception{SystemExit} aren't errors, though, and usually represent an explicit
|
|
action such as the user hitting Control-C or code calling
|
|
\function{sys.exit()}. A bare \code{except:} will catch all exceptions,
|
|
so you commonly need to list \exception{KeyboardInterrupt} and
|
|
\exception{SystemExit} in order to re-raise them. The usual pattern is:
|
|
|
|
\begin{verbatim}
|
|
try:
|
|
...
|
|
except (KeyboardInterrupt, SystemExit):
|
|
raise
|
|
except:
|
|
# Log error...
|
|
# Continue running program...
|
|
\end{verbatim}
|
|
|
|
In Python 2.5, you can now write \code{except Exception} to achieve
|
|
the same result, catching all the exceptions that usually indicate errors
|
|
but leaving \exception{KeyboardInterrupt} and
|
|
\exception{SystemExit} alone. As in previous versions,
|
|
a bare \code{except:} still catches all exceptions.
|
|
|
|
The goal for Python 3.0 is to require any class raised as an exception
|
|
to derive from \exception{BaseException} or some descendant of
|
|
\exception{BaseException}, and future releases in the
|
|
Python 2.x series may begin to enforce this constraint. Therefore, I
|
|
suggest you begin making all your exception classes derive from
|
|
\exception{Exception} now. It's been suggested that the bare
|
|
\code{except:} form should be removed in Python 3.0, but Guido van~Rossum
|
|
hasn't decided whether to do this or not.
|
|
|
|
Raising of strings as exceptions, as in the statement \code{raise
|
|
"Error occurred"}, is deprecated in Python 2.5 and will trigger a
|
|
warning. The aim is to be able to remove the string-exception feature
|
|
in a few releases.
|
|
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{352}{Required Superclass for Exceptions}{PEP written by
|
|
Brett Cannon and Guido van~Rossum; implemented by Brett Cannon.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 353: Using ssize_t as the index type\label{pep-353}}
|
|
|
|
A wide-ranging change to Python's C API, using a new
|
|
\ctype{Py_ssize_t} type definition instead of \ctype{int},
|
|
will permit the interpreter to handle more data on 64-bit platforms.
|
|
This change doesn't affect Python's capacity on 32-bit platforms.
|
|
|
|
Various pieces of the Python interpreter used C's \ctype{int} type to
|
|
store sizes or counts; for example, the number of items in a list or
|
|
tuple were stored in an \ctype{int}. The C compilers for most 64-bit
|
|
platforms still define \ctype{int} as a 32-bit type, so that meant
|
|
that lists could only hold up to \code{2**31 - 1} = 2147483647 items.
|
|
(There are actually a few different programming models that 64-bit C
|
|
compilers can use -- see
|
|
\url{http://www.unix.org/version2/whatsnew/lp64_wp.html} for a
|
|
discussion -- but the most commonly available model leaves \ctype{int}
|
|
as 32 bits.)
|
|
|
|
A limit of 2147483647 items doesn't really matter on a 32-bit platform
|
|
because you'll run out of memory before hitting the length limit.
|
|
Each list item requires space for a pointer, which is 4 bytes, plus
|
|
space for a \ctype{PyObject} representing the item. 2147483647*4 is
|
|
already more bytes than a 32-bit address space can contain.
|
|
|
|
It's possible to address that much memory on a 64-bit platform,
|
|
however. The pointers for a list that size would only require 16~GiB
|
|
of space, so it's not unreasonable that Python programmers might
|
|
construct lists that large. Therefore, the Python interpreter had to
|
|
be changed to use some type other than \ctype{int}, and this will be a
|
|
64-bit type on 64-bit platforms. The change will cause
|
|
incompatibilities on 64-bit machines, so it was deemed worth making
|
|
the transition now, while the number of 64-bit users is still
|
|
relatively small. (In 5 or 10 years, we may \emph{all} be on 64-bit
|
|
machines, and the transition would be more painful then.)
|
|
|
|
This change most strongly affects authors of C extension modules.
|
|
Python strings and container types such as lists and tuples
|
|
now use \ctype{Py_ssize_t} to store their size.
|
|
Functions such as \cfunction{PyList_Size()}
|
|
now return \ctype{Py_ssize_t}. Code in extension modules
|
|
may therefore need to have some variables changed to
|
|
\ctype{Py_ssize_t}.
|
|
|
|
The \cfunction{PyArg_ParseTuple()} and \cfunction{Py_BuildValue()} functions
|
|
have a new conversion code, \samp{n}, for \ctype{Py_ssize_t}.
|
|
\cfunction{PyArg_ParseTuple()}'s \samp{s\#} and \samp{t\#} still output
|
|
\ctype{int} by default, but you can define the macro
|
|
\csimplemacro{PY_SSIZE_T_CLEAN} before including \file{Python.h}
|
|
to make them return \ctype{Py_ssize_t}.
|
|
|
|
\pep{353} has a section on conversion guidelines that
|
|
extension authors should read to learn about supporting 64-bit
|
|
platforms.
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{353}{Using ssize_t as the index type}{PEP written and implemented by Martin von~L\"owis.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{PEP 357: The '__index__' method\label{pep-357}}
|
|
|
|
The NumPy developers had a problem that could only be solved by adding
|
|
a new special method, \method{__index__}. When using slice notation,
|
|
as in \code{[\var{start}:\var{stop}:\var{step}]}, the values of the
|
|
\var{start}, \var{stop}, and \var{step} indexes must all be either
|
|
integers or long integers. NumPy defines a variety of specialized
|
|
integer types corresponding to unsigned and signed integers of 8, 16,
|
|
32, and 64 bits, but there was no way to signal that these types could
|
|
be used as slice indexes.
|
|
|
|
Slicing can't just use the existing \method{__int__} method because
|
|
that method is also used to implement coercion to integers. If
|
|
slicing used \method{__int__}, floating-point numbers would also
|
|
become legal slice indexes and that's clearly an undesirable
|
|
behaviour.
|
|
|
|
Instead, a new special method called \method{__index__} was added. It
|
|
takes no arguments and returns an integer giving the slice index to
|
|
use. For example:
|
|
|
|
\begin{verbatim}
|
|
class C:
|
|
def __index__ (self):
|
|
return self.value
|
|
\end{verbatim}
|
|
|
|
The return value must be either a Python integer or long integer.
|
|
The interpreter will check that the type returned is correct, and
|
|
raises a \exception{TypeError} if this requirement isn't met.
|
|
|
|
A corresponding \member{nb_index} slot was added to the C-level
|
|
\ctype{PyNumberMethods} structure to let C extensions implement this
|
|
protocol. \cfunction{PyNumber_Index(\var{obj})} can be used in
|
|
extension code to call the \method{__index__} function and retrieve
|
|
its result.
|
|
|
|
\begin{seealso}
|
|
|
|
\seepep{357}{Allowing Any Object to be Used for Slicing}{PEP written
|
|
and implemented by Travis Oliphant.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\section{Other Language Changes\label{other-lang}}
|
|
|
|
Here are all of the changes that Python 2.5 makes to the core Python
|
|
language.
|
|
|
|
\begin{itemize}
|
|
|
|
\item The \class{dict} type has a new hook for letting subclasses
|
|
provide a default value when a key isn't contained in the dictionary.
|
|
When a key isn't found, the dictionary's
|
|
\method{__missing__(\var{key})}
|
|
method will be called. This hook is used to implement
|
|
the new \class{defaultdict} class in the \module{collections}
|
|
module. The following example defines a dictionary
|
|
that returns zero for any missing key:
|
|
|
|
\begin{verbatim}
|
|
class zerodict (dict):
|
|
def __missing__ (self, key):
|
|
return 0
|
|
|
|
d = zerodict({1:1, 2:2})
|
|
print d[1], d[2] # Prints 1, 2
|
|
print d[3], d[4] # Prints 0, 0
|
|
\end{verbatim}
|
|
|
|
\item Both 8-bit and Unicode strings have new \method{partition(sep)}
|
|
and \method{rpartition(sep)} methods that simplify a common use case.
|
|
The \method{find(S)} method is often used to get an index which is
|
|
then used to slice the string and obtain the pieces that are before
|
|
and after the separator.
|
|
|
|
\method{partition(sep)} condenses this
|
|
pattern into a single method call that returns a 3-tuple containing
|
|
the substring before the separator, the separator itself, and the
|
|
substring after the separator. If the separator isn't found, the
|
|
first element of the tuple is the entire string and the other two
|
|
elements are empty. \method{rpartition(sep)} also returns a 3-tuple
|
|
but starts searching from the end of the string; the \samp{r} stands
|
|
for 'reverse'.
|
|
|
|
Some examples:
|
|
|
|
\begin{verbatim}
|
|
>>> ('http://www.python.org').partition('://')
|
|
('http', '://', 'www.python.org')
|
|
>>> (u'Subject: a quick question').partition(':')
|
|
(u'Subject', u':', u' a quick question')
|
|
>>> ('file:/usr/share/doc/index.html').partition('://')
|
|
('file:/usr/share/doc/index.html', '', '')
|
|
>>> 'www.python.org'.rpartition('.')
|
|
('www.python', '.', 'org')
|
|
\end{verbatim}
|
|
|
|
(Implemented by Fredrik Lundh following a suggestion by Raymond Hettinger.)
|
|
|
|
\item The \method{startswith()} and \method{endswith()} methods
|
|
of string types now accept tuples of strings to check for.
|
|
|
|
\begin{verbatim}
|
|
def is_image_file (filename):
|
|
return filename.endswith(('.gif', '.jpg', '.tiff'))
|
|
\end{verbatim}
|
|
|
|
(Implemented by Georg Brandl following a suggestion by Tom Lynn.)
|
|
% RFE #1491485
|
|
|
|
\item The \function{min()} and \function{max()} built-in functions
|
|
gained a \code{key} keyword parameter analogous to the \code{key}
|
|
argument for \method{sort()}. This parameter supplies a function that
|
|
takes a single argument and is called for every value in the list;
|
|
\function{min()}/\function{max()} will return the element with the
|
|
smallest/largest return value from this function.
|
|
For example, to find the longest string in a list, you can do:
|
|
|
|
\begin{verbatim}
|
|
L = ['medium', 'longest', 'short']
|
|
# Prints 'longest'
|
|
print max(L, key=len)
|
|
# Prints 'short', because lexicographically 'short' has the largest value
|
|
print max(L)
|
|
\end{verbatim}
|
|
|
|
(Contributed by Steven Bethard and Raymond Hettinger.)
|
|
|
|
\item Two new built-in functions, \function{any()} and
|
|
\function{all()}, evaluate whether an iterator contains any true or
|
|
false values. \function{any()} returns \constant{True} if any value
|
|
returned by the iterator is true; otherwise it will return
|
|
\constant{False}. \function{all()} returns \constant{True} only if
|
|
all of the values returned by the iterator evaluate as being true.
|
|
(Suggested by GvR, and implemented by Raymond Hettinger.)
|
|
|
|
\item ASCII is now the default encoding for modules. It's now
|
|
a syntax error if a module contains string literals with 8-bit
|
|
characters but doesn't have an encoding declaration. In Python 2.4
|
|
this triggered a warning, not a syntax error. See \pep{263}
|
|
for how to declare a module's encoding; for example, you might add
|
|
a line like this near the top of the source file:
|
|
|
|
\begin{verbatim}
|
|
# -*- coding: latin1 -*-
|
|
\end{verbatim}
|
|
|
|
\item One error that Python programmers sometimes make is forgetting
|
|
to include an \file{__init__.py} module in a package directory.
|
|
Debugging this mistake can be confusing, and usually requires running
|
|
Python with the \programopt{-v} switch to log all the paths searched.
|
|
In Python 2.5, a new \exception{ImportWarning} warning is triggered when
|
|
an import would have picked up a directory as a package but no
|
|
\file{__init__.py} was found. This warning is silently ignored by default;
|
|
provide the \programopt{-Wd} option when running the Python executable
|
|
to display the warning message.
|
|
(Implemented by Thomas Wouters.)
|
|
|
|
\item The list of base classes in a class definition can now be empty.
|
|
As an example, this is now legal:
|
|
|
|
\begin{verbatim}
|
|
class C():
|
|
pass
|
|
\end{verbatim}
|
|
(Implemented by Brett Cannon.)
|
|
|
|
\end{itemize}
|
|
|
|
|
|
%======================================================================
|
|
\subsection{Interactive Interpreter Changes\label{interactive}}
|
|
|
|
In the interactive interpreter, \code{quit} and \code{exit}
|
|
have long been strings so that new users get a somewhat helpful message
|
|
when they try to quit:
|
|
|
|
\begin{verbatim}
|
|
>>> quit
|
|
'Use Ctrl-D (i.e. EOF) to exit.'
|
|
\end{verbatim}
|
|
|
|
In Python 2.5, \code{quit} and \code{exit} are now objects that still
|
|
produce string representations of themselves, but are also callable.
|
|
Newbies who try \code{quit()} or \code{exit()} will now exit the
|
|
interpreter as they expect. (Implemented by Georg Brandl.)
|
|
|
|
|
|
%======================================================================
|
|
\subsection{Optimizations\label{opts}}
|
|
|
|
Several of the optimizations were developed at the NeedForSpeed
|
|
sprint, an event held in Reykjavik, Iceland, from May 21--28 2006.
|
|
The sprint focused on speed enhancements to the CPython implementation
|
|
and was funded by EWT LLC with local support from CCP Games. Those
|
|
optimizations added at this sprint are specially marked in the
|
|
following list.
|
|
|
|
\begin{itemize}
|
|
|
|
\item When they were introduced
|
|
in Python 2.4, the built-in \class{set} and \class{frozenset} types
|
|
were built on top of Python's dictionary type.
|
|
In 2.5 the internal data structure has been customized for implementing sets,
|
|
and as a result sets will use a third less memory and are somewhat faster.
|
|
(Implemented by Raymond Hettinger.)
|
|
|
|
\item The speed of some Unicode operations, such as finding
|
|
substrings, string splitting, and character map encoding and decoding,
|
|
has been improved. (Substring search and splitting improvements were
|
|
added by Fredrik Lundh and Andrew Dalke at the NeedForSpeed
|
|
sprint. Character maps were improved by Walter D\"orwald and
|
|
Martin von~L\"owis.)
|
|
% Patch 1313939, 1359618
|
|
|
|
\item The \function{long(\var{str}, \var{base})} function is now
|
|
faster on long digit strings because fewer intermediate results are
|
|
calculated. The peak is for strings of around 800--1000 digits where
|
|
the function is 6 times faster.
|
|
(Contributed by Alan McIntyre and committed at the NeedForSpeed sprint.)
|
|
% Patch 1442927
|
|
|
|
\item The \module{struct} module now compiles structure format
|
|
strings into an internal representation and caches this
|
|
representation, yielding a 20\% speedup. (Contributed by Bob Ippolito
|
|
at the NeedForSpeed sprint.)
|
|
|
|
\item The \module{re} module got a 1 or 2\% speedup by switching to
|
|
Python's allocator functions instead of the system's
|
|
\cfunction{malloc()} and \cfunction{free()}.
|
|
(Contributed by Jack Diederich at the NeedForSpeed sprint.)
|
|
|
|
\item The code generator's peephole optimizer now performs
|
|
simple constant folding in expressions. If you write something like
|
|
\code{a = 2+3}, the code generator will do the arithmetic and produce
|
|
code corresponding to \code{a = 5}.
|
|
|
|
\item Function calls are now faster because code objects now keep
|
|
the most recently finished frame (a ``zombie frame'') in an internal
|
|
field of the code object, reusing it the next time the code object is
|
|
invoked. (Original patch by Michael Hudson, modified by Armin Rigo
|
|
and Richard Jones; committed at the NeedForSpeed sprint.)
|
|
% Patch 876206
|
|
|
|
Frame objects are also slightly smaller, which may improve cache locality
|
|
and reduce memory usage a bit. (Contributed by Neal Norwitz.)
|
|
% Patch 1337051
|
|
|
|
\item Python's built-in exceptions are now new-style classes, a change
|
|
that speeds up instantiation considerably. Exception handling in
|
|
Python 2.5 is therefore about 30\% faster than in 2.4.
|
|
(Contributed by Richard Jones, Georg Brandl and Sean Reifschneider at
|
|
the NeedForSpeed sprint.)
|
|
|
|
\item Importing now caches the paths tried, recording whether
|
|
they exist or not so that the interpreter makes fewer
|
|
\cfunction{open()} and \cfunction{stat()} calls on startup.
|
|
(Contributed by Martin von~L\"owis and Georg Brandl.)
|
|
% Patch 921466
|
|
|
|
\end{itemize}
|
|
|
|
The net result of the 2.5 optimizations is that Python 2.5 runs the
|
|
pystone benchmark around XXX\% faster than Python 2.4.
|
|
|
|
|
|
%======================================================================
|
|
\section{New, Improved, and Removed Modules\label{modules}}
|
|
|
|
The standard library received many enhancements and bug fixes in
|
|
Python 2.5. Here's a partial list of the most notable changes, sorted
|
|
alphabetically by module name. Consult the \file{Misc/NEWS} file in
|
|
the source tree for a more complete list of changes, or look through
|
|
the SVN logs for all the details.
|
|
|
|
\begin{itemize}
|
|
|
|
\item The \module{audioop} module now supports the a-LAW encoding,
|
|
and the code for u-LAW encoding has been improved. (Contributed by
|
|
Lars Immisch.)
|
|
|
|
\item The \module{codecs} module gained support for incremental
|
|
codecs. The \function{codec.lookup()} function now
|
|
returns a \class{CodecInfo} instance instead of a tuple.
|
|
\class{CodecInfo} instances behave like a 4-tuple to preserve backward
|
|
compatibility but also have the attributes \member{encode},
|
|
\member{decode}, \member{incrementalencoder}, \member{incrementaldecoder},
|
|
\member{streamwriter}, and \member{streamreader}. Incremental codecs
|
|
can receive input and produce output in multiple chunks; the output is
|
|
the same as if the entire input was fed to the non-incremental codec.
|
|
See the \module{codecs} module documentation for details.
|
|
(Designed and implemented by Walter D\"orwald.)
|
|
% Patch 1436130
|
|
|
|
\item The \module{collections} module gained a new type,
|
|
\class{defaultdict}, that subclasses the standard \class{dict}
|
|
type. The new type mostly behaves like a dictionary but constructs a
|
|
default value when a key isn't present, automatically adding it to the
|
|
dictionary for the requested key value.
|
|
|
|
The first argument to \class{defaultdict}'s constructor is a factory
|
|
function that gets called whenever a key is requested but not found.
|
|
This factory function receives no arguments, so you can use built-in
|
|
type constructors such as \function{list()} or \function{int()}. For
|
|
example,
|
|
you can make an index of words based on their initial letter like this:
|
|
|
|
\begin{verbatim}
|
|
words = """Nel mezzo del cammin di nostra vita
|
|
mi ritrovai per una selva oscura
|
|
che la diritta via era smarrita""".lower().split()
|
|
|
|
index = defaultdict(list)
|
|
|
|
for w in words:
|
|
init_letter = w[0]
|
|
index[init_letter].append(w)
|
|
\end{verbatim}
|
|
|
|
Printing \code{index} results in the following output:
|
|
|
|
\begin{verbatim}
|
|
defaultdict(<type 'list'>, {'c': ['cammin', 'che'], 'e': ['era'],
|
|
'd': ['del', 'di', 'diritta'], 'm': ['mezzo', 'mi'],
|
|
'l': ['la'], 'o': ['oscura'], 'n': ['nel', 'nostra'],
|
|
'p': ['per'], 's': ['selva', 'smarrita'],
|
|
'r': ['ritrovai'], 'u': ['una'], 'v': ['vita', 'via']}
|
|
\end{verbatim}
|
|
|
|
The \class{deque} double-ended queue type supplied by the
|
|
\module{collections} module now has a \method{remove(\var{value})}
|
|
method that removes the first occurrence of \var{value} in the queue,
|
|
raising \exception{ValueError} if the value isn't found.
|
|
|
|
\item New module: The \module{contextlib} module contains helper functions for use
|
|
with the new '\keyword{with}' statement. See
|
|
section~\ref{module-contextlib} for more about this module.
|
|
|
|
\item New module: The \module{cProfile} module is a C implementation of
|
|
the existing \module{profile} module that has much lower overhead.
|
|
The module's interface is the same as \module{profile}: you run
|
|
\code{cProfile.run('main()')} to profile a function, can save profile
|
|
data to a file, etc. It's not yet known if the Hotshot profiler,
|
|
which is also written in C but doesn't match the \module{profile}
|
|
module's interface, will continue to be maintained in future versions
|
|
of Python. (Contributed by Armin Rigo.)
|
|
|
|
Also, the \module{pstats} module for analyzing the data measured by
|
|
the profiler now supports directing the output to any file object
|
|
by supplying a \var{stream} argument to the \class{Stats} constructor.
|
|
(Contributed by Skip Montanaro.)
|
|
|
|
\item The \module{csv} module, which parses files in
|
|
comma-separated value format, received several enhancements and a
|
|
number of bugfixes. You can now set the maximum size in bytes of a
|
|
field by calling the \method{csv.field_size_limit(\var{new_limit})}
|
|
function; omitting the \var{new_limit} argument will return the
|
|
currently-set limit. The \class{reader} class now has a
|
|
\member{line_num} attribute that counts the number of physical lines
|
|
read from the source; records can span multiple physical lines, so
|
|
\member{line_num} is not the same as the number of records read.
|
|
(Contributed by Skip Montanaro and Andrew McNamara.)
|
|
|
|
\item The \class{datetime} class in the \module{datetime}
|
|
module now has a \method{strptime(\var{string}, \var{format})}
|
|
method for parsing date strings, contributed by Josh Spoerri.
|
|
It uses the same format characters as \function{time.strptime()} and
|
|
\function{time.strftime()}:
|
|
|
|
\begin{verbatim}
|
|
from datetime import datetime
|
|
|
|
ts = datetime.strptime('10:13:15 2006-03-07',
|
|
'%H:%M:%S %Y-%m-%d')
|
|
\end{verbatim}
|
|
|
|
\item The \method{SequenceMatcher.get_matching_blocks()} method
|
|
in the \module{difflib} module now guarantees to return a minimal list
|
|
of blocks describing matching subsequences. Previously, the algorithm would
|
|
occasionally break a block of matching elements into two list entries.
|
|
(Enhancement by Tim Peters.)
|
|
|
|
\item The \module{doctest} module gained a \code{SKIP} option that
|
|
keeps an example from being executed at all. This is intended for
|
|
code snippets that are usage examples intended for the reader and
|
|
aren't actually test cases.
|
|
|
|
An \var{encoding} parameter was added to the \function{testfile()}
|
|
function and the \class{DocFileSuite} class to specify the file's
|
|
encoding. This makes it easier to use non-ASCII characters in
|
|
tests contained within a docstring. (Contributed by Bjorn Tillenius.)
|
|
% Patch 1080727
|
|
|
|
\item The \module{email} package has been updated to version 4.0.
|
|
% XXX need to provide some more detail here
|
|
(Contributed by Barry Warsaw.)
|
|
|
|
\item The \module{fileinput} module was made more flexible.
|
|
Unicode filenames are now supported, and a \var{mode} parameter that
|
|
defaults to \code{"r"} was added to the
|
|
\function{input()} function to allow opening files in binary or
|
|
universal-newline mode. Another new parameter, \var{openhook},
|
|
lets you use a function other than \function{open()}
|
|
to open the input files. Once you're iterating over
|
|
the set of files, the \class{FileInput} object's new
|
|
\method{fileno()} returns the file descriptor for the currently opened file.
|
|
(Contributed by Georg Brandl.)
|
|
|
|
\item In the \module{gc} module, the new \function{get_count()} function
|
|
returns a 3-tuple containing the current collection counts for the
|
|
three GC generations. This is accounting information for the garbage
|
|
collector; when these counts reach a specified threshold, a garbage
|
|
collection sweep will be made. The existing \function{gc.collect()}
|
|
function now takes an optional \var{generation} argument of 0, 1, or 2
|
|
to specify which generation to collect.
|
|
(Contributed by Barry Warsaw.)
|
|
|
|
\item The \function{nsmallest()} and
|
|
\function{nlargest()} functions in the \module{heapq} module
|
|
now support a \code{key} keyword parameter similar to the one
|
|
provided by the \function{min()}/\function{max()} functions
|
|
and the \method{sort()} methods. For example:
|
|
|
|
\begin{verbatim}
|
|
>>> import heapq
|
|
>>> L = ["short", 'medium', 'longest', 'longer still']
|
|
>>> heapq.nsmallest(2, L) # Return two lowest elements, lexicographically
|
|
['longer still', 'longest']
|
|
>>> heapq.nsmallest(2, L, key=len) # Return two shortest elements
|
|
['short', 'medium']
|
|
\end{verbatim}
|
|
|
|
(Contributed by Raymond Hettinger.)
|
|
|
|
\item The \function{itertools.islice()} function now accepts
|
|
\code{None} for the start and step arguments. This makes it more
|
|
compatible with the attributes of slice objects, so that you can now write
|
|
the following:
|
|
|
|
\begin{verbatim}
|
|
s = slice(5) # Create slice object
|
|
itertools.islice(iterable, s.start, s.stop, s.step)
|
|
\end{verbatim}
|
|
|
|
(Contributed by Raymond Hettinger.)
|
|
|
|
\item The \module{mailbox} module underwent a massive rewrite to add
|
|
the capability to modify mailboxes in addition to reading them. A new
|
|
set of classes that include \class{mbox}, \class{MH}, and
|
|
\class{Maildir} are used to read mailboxes, and have an
|
|
\method{add(\var{message})} method to add messages,
|
|
\method{remove(\var{key})} to remove messages, and
|
|
\method{lock()}/\method{unlock()} to lock/unlock the mailbox. The
|
|
following example converts a maildir-format mailbox into an mbox-format one:
|
|
|
|
\begin{verbatim}
|
|
import mailbox
|
|
|
|
# 'factory=None' uses email.Message.Message as the class representing
|
|
# individual messages.
|
|
src = mailbox.Maildir('maildir', factory=None)
|
|
dest = mailbox.mbox('/tmp/mbox')
|
|
|
|
for msg in src:
|
|
dest.add(msg)
|
|
\end{verbatim}
|
|
|
|
(Contributed by Gregory K. Johnson. Funding was provided by Google's
|
|
2005 Summer of Code.)
|
|
|
|
\item New module: the \module{msilib} module allows creating
|
|
Microsoft Installer \file{.msi} files and CAB files. Some support
|
|
for reading the \file{.msi} database is also included.
|
|
(Contributed by Martin von~L\"owis.)
|
|
|
|
\item The \module{nis} module now supports accessing domains other
|
|
than the system default domain by supplying a \var{domain} argument to
|
|
the \function{nis.match()} and \function{nis.maps()} functions.
|
|
(Contributed by Ben Bell.)
|
|
|
|
\item The \module{operator} module's \function{itemgetter()}
|
|
and \function{attrgetter()} functions now support multiple fields.
|
|
A call such as \code{operator.attrgetter('a', 'b')}
|
|
will return a function
|
|
that retrieves the \member{a} and \member{b} attributes. Combining
|
|
this new feature with the \method{sort()} method's \code{key} parameter
|
|
lets you easily sort lists using multiple fields.
|
|
(Contributed by Raymond Hettinger.)
|
|
|
|
\item The \module{optparse} module was updated to version 1.5.1 of the
|
|
Optik library. The \class{OptionParser} class gained an
|
|
\member{epilog} attribute, a string that will be printed after the
|
|
help message, and a \method{destroy()} method to break reference
|
|
cycles created by the object. (Contributed by Greg Ward.)
|
|
|
|
\item The \module{os} module underwent several changes. The
|
|
\member{stat_float_times} variable now defaults to true, meaning that
|
|
\function{os.stat()} will now return time values as floats. (This
|
|
doesn't necessarily mean that \function{os.stat()} will return times
|
|
that are precise to fractions of a second; not all systems support
|
|
such precision.)
|
|
|
|
Constants named \member{os.SEEK_SET}, \member{os.SEEK_CUR}, and
|
|
\member{os.SEEK_END} have been added; these are the parameters to the
|
|
\function{os.lseek()} function. Two new constants for locking are
|
|
\member{os.O_SHLOCK} and \member{os.O_EXLOCK}.
|
|
|
|
Two new functions, \function{wait3()} and \function{wait4()}, were
|
|
added. They're similar the \function{waitpid()} function which waits
|
|
for a child process to exit and returns a tuple of the process ID and
|
|
its exit status, but \function{wait3()} and \function{wait4()} return
|
|
additional information. \function{wait3()} doesn't take a process ID
|
|
as input, so it waits for any child process to exit and returns a
|
|
3-tuple of \var{process-id}, \var{exit-status}, \var{resource-usage}
|
|
as returned from the \function{resource.getrusage()} function.
|
|
\function{wait4(\var{pid})} does take a process ID.
|
|
(Contributed by Chad J. Schroeder.)
|
|
|
|
On FreeBSD, the \function{os.stat()} function now returns
|
|
times with nanosecond resolution, and the returned object
|
|
now has \member{st_gen} and \member{st_birthtime}.
|
|
The \member{st_flags} member is also available, if the platform supports it.
|
|
(Contributed by Antti Louko and Diego Petten\`o.)
|
|
% (Patch 1180695, 1212117)
|
|
|
|
\item The Python debugger provided by the \module{pdb} module
|
|
can now store lists of commands to execute when a breakpoint is
|
|
reached and execution stops. Once breakpoint \#1 has been created,
|
|
enter \samp{commands 1} and enter a series of commands to be executed,
|
|
finishing the list with \samp{end}. The command list can include
|
|
commands that resume execution, such as \samp{continue} or
|
|
\samp{next}. (Contributed by Gr\'egoire Dooms.)
|
|
% Patch 790710
|
|
|
|
\item The \module{pickle} and \module{cPickle} modules no
|
|
longer accept a return value of \code{None} from the
|
|
\method{__reduce__()} method; the method must return a tuple of
|
|
arguments instead. The ability to return \code{None} was deprecated
|
|
in Python 2.4, so this completes the removal of the feature.
|
|
|
|
\item The \module{pkgutil} module, containing various utility
|
|
functions for finding packages, was enhanced to support PEP 302's
|
|
import hooks and now also works for packages stored in ZIP-format archives.
|
|
(Contributed by Phillip J. Eby.)
|
|
|
|
\item The pybench benchmark suite by Marc-Andr\'e~Lemburg is now
|
|
included in the \file{Tools/pybench} directory. The pybench suite is
|
|
an improvement on the commonly used \file{pystone.py} program because
|
|
pybench provides a more detailed measurement of the interpreter's
|
|
speed. It times particular operations such as function calls,
|
|
tuple slicing, method lookups, and numeric operations, instead of
|
|
performing many different operations and reducing the result to a
|
|
single number as \file{pystone.py} does.
|
|
|
|
\item The \module{pyexpat} module now uses version 2.0 of the Expat parser.
|
|
(Contributed by Trent Mick.)
|
|
|
|
\item The old \module{regex} and \module{regsub} modules, which have been
|
|
deprecated ever since Python 2.0, have finally been deleted.
|
|
Other deleted modules: \module{statcache}, \module{tzparse},
|
|
\module{whrandom}.
|
|
|
|
\item Also deleted: the \file{lib-old} directory,
|
|
which includes ancient modules such as \module{dircmp} and
|
|
\module{ni}, was removed. \file{lib-old} wasn't on the default
|
|
\code{sys.path}, so unless your programs explicitly added the directory to
|
|
\code{sys.path}, this removal shouldn't affect your code.
|
|
|
|
\item The \module{rlcompleter} module is no longer
|
|
dependent on importing the \module{readline} module and
|
|
therefore now works on non-{\UNIX} platforms.
|
|
(Patch from Robert Kiendl.)
|
|
% Patch #1472854
|
|
|
|
\item The \module{SimpleXMLRPCServer} and \module{DocXMLRPCServer}
|
|
classes now have a \member{rpc_paths} attribute that constrains
|
|
XML-RPC operations to a limited set of URL paths; the default is
|
|
to allow only \code{'/'} and \code{'/RPC2'}. Setting
|
|
\member{rpc_paths} to \code{None} or an empty tuple disables
|
|
this path checking.
|
|
% Bug #1473048
|
|
|
|
\item The \module{socket} module now supports \constant{AF_NETLINK}
|
|
sockets on Linux, thanks to a patch from Philippe Biondi.
|
|
Netlink sockets are a Linux-specific mechanism for communications
|
|
between a user-space process and kernel code; an introductory
|
|
article about them is at \url{http://www.linuxjournal.com/article/7356}.
|
|
In Python code, netlink addresses are represented as a tuple of 2 integers,
|
|
\code{(\var{pid}, \var{group_mask})}.
|
|
|
|
Two new methods on socket objects, \method{recv_buf(\var{buffer})} and
|
|
\method{recvfrom_buf(\var{buffer})}, store the received data in an object
|
|
that supports the buffer protocol instead of returning the data as a
|
|
string. This means you can put the data directly into an array or a
|
|
memory-mapped file.
|
|
|
|
Socket objects also gained \method{getfamily()}, \method{gettype()},
|
|
and \method{getproto()} accessor methods to retrieve the family, type,
|
|
and protocol values for the socket.
|
|
|
|
\item New module: the \module{spwd} module provides functions for
|
|
accessing the shadow password database on systems that support
|
|
shadow passwords.
|
|
|
|
\item The \module{struct} is now faster because it
|
|
compiles format strings into \class{Struct} objects
|
|
with \method{pack()} and \method{unpack()} methods. This is similar
|
|
to how the \module{re} module lets you create compiled regular
|
|
expression objects. You can still use the module-level
|
|
\function{pack()} and \function{unpack()} functions; they'll create
|
|
\class{Struct} objects and cache them. Or you can use
|
|
\class{Struct} instances directly:
|
|
|
|
\begin{verbatim}
|
|
s = struct.Struct('ih3s')
|
|
|
|
data = s.pack(1972, 187, 'abc')
|
|
year, number, name = s.unpack(data)
|
|
\end{verbatim}
|
|
|
|
You can also pack and unpack data to and from buffer objects directly
|
|
using the \method{pack_to(\var{buffer}, \var{offset}, \var{v1},
|
|
\var{v2}, ...)} and \method{unpack_from(\var{buffer}, \var{offset})}
|
|
methods. This lets you store data directly into an array or a
|
|
memory-mapped file.
|
|
|
|
(\class{Struct} objects were implemented by Bob Ippolito at the
|
|
NeedForSpeed sprint. Support for buffer objects was added by Martin
|
|
Blais, also at the NeedForSpeed sprint.)
|
|
|
|
\item The Python developers switched from CVS to Subversion during the 2.5
|
|
development process. Information about the exact build version is
|
|
available as the \code{sys.subversion} variable, a 3-tuple of
|
|
\code{(\var{interpreter-name}, \var{branch-name},
|
|
\var{revision-range})}. For example, at the time of writing my copy
|
|
of 2.5 was reporting \code{('CPython', 'trunk', '45313:45315')}.
|
|
|
|
This information is also available to C extensions via the
|
|
\cfunction{Py_GetBuildInfo()} function that returns a
|
|
string of build information like this:
|
|
\code{"trunk:45355:45356M, Apr 13 2006, 07:42:19"}.
|
|
(Contributed by Barry Warsaw.)
|
|
|
|
\item The \class{TarFile} class in the \module{tarfile} module now has
|
|
an \method{extractall()} method that extracts all members from the
|
|
archive into the current working directory. It's also possible to set
|
|
a different directory as the extraction target, and to unpack only a
|
|
subset of the archive's members.
|
|
|
|
A tarfile's compression can be autodetected by
|
|
using the mode \code{'r|*'}.
|
|
% patch 918101
|
|
(Contributed by Lars Gust\"abel.)
|
|
|
|
\item The \module{threading} module now lets you set the stack size
|
|
used when new threads are created. The
|
|
\function{stack_size(\optional{\var{size}})} function returns the
|
|
currently configured stack size, and supplying the optional \var{size}
|
|
parameter sets a new value. Not all platforms support changing the
|
|
stack size, but Windows, POSIX threading, and OS/2 all do.
|
|
(Contributed by Andrew MacIntyre.)
|
|
% Patch 1454481
|
|
|
|
\item The \module{unicodedata} module has been updated to use version 4.1.0
|
|
of the Unicode character database. Version 3.2.0 is required
|
|
by some specifications, so it's still available as
|
|
\member{unicodedata.ucd_3_2_0}.
|
|
|
|
\item New module: the \module{uuid} module generates
|
|
universally unique identifiers (UUIDs) according to \rfc{4122}. The
|
|
RFC defines several different UUID versions that are generated from a
|
|
starting string, from system properties, or purely randomly. This
|
|
module contains a \class{UUID} class and
|
|
functions named \function{uuid1()},
|
|
\function{uuid3()}, \function{uuid4()}, and
|
|
\function{uuid5()} to generate different versions of UUID. (Version 2 UUIDs
|
|
are not specified in \rfc{4122} and are not supported by this module.)
|
|
|
|
\begin{verbatim}
|
|
>>> import uuid
|
|
>>> # make a UUID based on the host ID and current time
|
|
>>> uuid.uuid1()
|
|
UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')
|
|
|
|
>>> # make a UUID using an MD5 hash of a namespace UUID and a name
|
|
>>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
|
|
UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')
|
|
|
|
>>> # make a random UUID
|
|
>>> uuid.uuid4()
|
|
UUID('16fd2706-8baf-433b-82eb-8c7fada847da')
|
|
|
|
>>> # make a UUID using a SHA-1 hash of a namespace UUID and a name
|
|
>>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
|
|
UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')
|
|
\end{verbatim}
|
|
|
|
(Contributed by Ka-Ping Yee.)
|
|
|
|
\item The \module{weakref} module's \class{WeakKeyDictionary} and
|
|
\class{WeakValueDictionary} types gained new methods for iterating
|
|
over the weak references contained in the dictionary.
|
|
\method{iterkeyrefs()} and \method{keyrefs()} methods were
|
|
added to \class{WeakKeyDictionary}, and
|
|
\method{itervaluerefs()} and \method{valuerefs()} were added to
|
|
\class{WeakValueDictionary}. (Contributed by Fred L.~Drake, Jr.)
|
|
|
|
\item The \module{webbrowser} module received a number of
|
|
enhancements.
|
|
It's now usable as a script with \code{python -m webbrowser}, taking a
|
|
URL as the argument; there are a number of switches
|
|
to control the behaviour (\programopt{-n} for a new browser window,
|
|
\programopt{-t} for a new tab). New module-level functions,
|
|
\function{open_new()} and \function{open_new_tab()}, were added
|
|
to support this. The module's \function{open()} function supports an
|
|
additional feature, an \var{autoraise} parameter that signals whether
|
|
to raise the open window when possible. A number of additional
|
|
browsers were added to the supported list such as Firefox, Opera,
|
|
Konqueror, and elinks. (Contributed by Oleg Broytmann and Georg
|
|
Brandl.)
|
|
% Patch #754022
|
|
|
|
\item The standard library's XML-related package
|
|
has been renamed to \module{xmlcore}. The \module{xml} module will
|
|
now import either the \module{xmlcore} or PyXML version of subpackages
|
|
such as \module{xml.dom}. The renaming means it will always be
|
|
possible to import the standard library's XML support whether or not
|
|
the PyXML package is installed.
|
|
|
|
\item The \module{xmlrpclib} module now supports returning
|
|
\class{datetime} objects for the XML-RPC date type. Supply
|
|
\code{use_datetime=True} to the \function{loads()} function
|
|
or the \class{Unmarshaller} class to enable this feature.
|
|
(Contributed by Skip Montanaro.)
|
|
% Patch 1120353
|
|
|
|
\item The \module{zipfile} module now supports the ZIP64 version of the
|
|
format, meaning that a .zip archive can now be larger than 4~GiB and
|
|
can contain individual files larger than 4~GiB. (Contributed by
|
|
Ronald Oussoren.)
|
|
% Patch 1446489
|
|
|
|
\item The \module{zlib} module's \class{Compress} and \class{Decompress}
|
|
objects now support a \method{copy()} method that makes a copy of the
|
|
object's internal state and returns a new
|
|
\class{Compress} or \class{Decompress} object.
|
|
(Contributed by Chris AtLee.)
|
|
% Patch 1435422
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
%======================================================================
|
|
\subsection{The ctypes package\label{module-ctypes}}
|
|
|
|
The \module{ctypes} package, written by Thomas Heller, has been added
|
|
to the standard library. \module{ctypes} lets you call arbitrary functions
|
|
in shared libraries or DLLs. Long-time users may remember the \module{dl} module, which
|
|
provides functions for loading shared libraries and calling functions in them. The \module{ctypes} package is much fancier.
|
|
|
|
To load a shared library or DLL, you must create an instance of the
|
|
\class{CDLL} class and provide the name or path of the shared library
|
|
or DLL. Once that's done, you can call arbitrary functions
|
|
by accessing them as attributes of the \class{CDLL} object.
|
|
|
|
\begin{verbatim}
|
|
import ctypes
|
|
|
|
libc = ctypes.CDLL('libc.so.6')
|
|
result = libc.printf("Line of output\n")
|
|
\end{verbatim}
|
|
|
|
Type constructors for the various C types are provided: \function{c_int},
|
|
\function{c_float}, \function{c_double}, \function{c_char_p} (equivalent to \ctype{char *}), and so forth. Unlike Python's types, the C versions are all mutable; you can assign to their \member{value} attribute
|
|
to change the wrapped value. Python integers and strings will be automatically
|
|
converted to the corresponding C types, but for other types you
|
|
must call the correct type constructor. (And I mean \emph{must};
|
|
getting it wrong will often result in the interpreter crashing
|
|
with a segmentation fault.)
|
|
|
|
You shouldn't use \function{c_char_p} with a Python string when the C function will be modifying the memory area, because Python strings are
|
|
supposed to be immutable; breaking this rule will cause puzzling bugs. When you need a modifiable memory area,
|
|
use \function{create_string_buffer()}:
|
|
|
|
\begin{verbatim}
|
|
s = "this is a string"
|
|
buf = ctypes.create_string_buffer(s)
|
|
libc.strfry(buf)
|
|
\end{verbatim}
|
|
|
|
C functions are assumed to return integers, but you can set
|
|
the \member{restype} attribute of the function object to
|
|
change this:
|
|
|
|
\begin{verbatim}
|
|
>>> libc.atof('2.71828')
|
|
-1783957616
|
|
>>> libc.atof.restype = ctypes.c_double
|
|
>>> libc.atof('2.71828')
|
|
2.71828
|
|
\end{verbatim}
|
|
|
|
\module{ctypes} also provides a wrapper for Python's C API
|
|
as the \code{ctypes.pythonapi} object. This object does \emph{not}
|
|
release the global interpreter lock before calling a function, because the lock must be held when calling into the interpreter's code.
|
|
There's a \class{py_object()} type constructor that will create a
|
|
\ctype{PyObject *} pointer. A simple usage:
|
|
|
|
\begin{verbatim}
|
|
import ctypes
|
|
|
|
d = {}
|
|
ctypes.pythonapi.PyObject_SetItem(ctypes.py_object(d),
|
|
ctypes.py_object("abc"), ctypes.py_object(1))
|
|
# d is now {'abc', 1}.
|
|
\end{verbatim}
|
|
|
|
Don't forget to use \class{py_object()}; if it's omitted you end
|
|
up with a segmentation fault.
|
|
|
|
\module{ctypes} has been around for a while, but people still write
|
|
and distribution hand-coded extension modules because you can't rely on \module{ctypes} being present.
|
|
Perhaps developers will begin to write
|
|
Python wrappers atop a library accessed through \module{ctypes} instead
|
|
of extension modules, now that \module{ctypes} is included with core Python.
|
|
|
|
\begin{seealso}
|
|
|
|
\seeurl{http://starship.python.net/crew/theller/ctypes/}
|
|
{The ctypes web page, with a tutorial, reference, and FAQ.}
|
|
|
|
\seeurl{../lib/module-ctypes.html}{The documentation
|
|
for the \module{ctypes} module.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\subsection{The ElementTree package\label{module-etree}}
|
|
|
|
A subset of Fredrik Lundh's ElementTree library for processing XML has
|
|
been added to the standard library as \module{xml.etree}. The
|
|
available modules are
|
|
\module{ElementTree}, \module{ElementPath}, and
|
|
\module{ElementInclude} from ElementTree 1.2.6.
|
|
The \module{cElementTree} accelerator module is also included.
|
|
|
|
The rest of this section will provide a brief overview of using
|
|
ElementTree. Full documentation for ElementTree is available at
|
|
\url{http://effbot.org/zone/element-index.htm}.
|
|
|
|
ElementTree represents an XML document as a tree of element nodes.
|
|
The text content of the document is stored as the \member{.text}
|
|
and \member{.tail} attributes of
|
|
(This is one of the major differences between ElementTree and
|
|
the Document Object Model; in the DOM there are many different
|
|
types of node, including \class{TextNode}.)
|
|
|
|
The most commonly used parsing function is \function{parse()}, that
|
|
takes either a string (assumed to contain a filename) or a file-like
|
|
object and returns an \class{ElementTree} instance:
|
|
|
|
\begin{verbatim}
|
|
from xml.etree import ElementTree as ET
|
|
|
|
tree = ET.parse('ex-1.xml')
|
|
|
|
feed = urllib.urlopen(
|
|
'http://planet.python.org/rss10.xml')
|
|
tree = ET.parse(feed)
|
|
\end{verbatim}
|
|
|
|
Once you have an \class{ElementTree} instance, you
|
|
can call its \method{getroot()} method to get the root \class{Element} node.
|
|
|
|
There's also an \function{XML()} function that takes a string literal
|
|
and returns an \class{Element} node (not an \class{ElementTree}).
|
|
This function provides a tidy way to incorporate XML fragments,
|
|
approaching the convenience of an XML literal:
|
|
|
|
\begin{verbatim}
|
|
svg = ET.XML("""<svg width="10px" version="1.0">
|
|
</svg>""")
|
|
svg.set('height', '320px')
|
|
svg.append(elem1)
|
|
\end{verbatim}
|
|
|
|
Each XML element supports some dictionary-like and some list-like
|
|
access methods. Dictionary-like operations are used to access attribute
|
|
values, and list-like operations are used to access child nodes.
|
|
|
|
\begin{tableii}{c|l}{code}{Operation}{Result}
|
|
\lineii{elem[n]}{Returns n'th child element.}
|
|
\lineii{elem[m:n]}{Returns list of m'th through n'th child elements.}
|
|
\lineii{len(elem)}{Returns number of child elements.}
|
|
\lineii{list(elem)}{Returns list of child elements.}
|
|
\lineii{elem.append(elem2)}{Adds \var{elem2} as a child.}
|
|
\lineii{elem.insert(index, elem2)}{Inserts \var{elem2} at the specified location.}
|
|
\lineii{del elem[n]}{Deletes n'th child element.}
|
|
\lineii{elem.keys()}{Returns list of attribute names.}
|
|
\lineii{elem.get(name)}{Returns value of attribute \var{name}.}
|
|
\lineii{elem.set(name, value)}{Sets new value for attribute \var{name}.}
|
|
\lineii{elem.attrib}{Retrieves the dictionary containing attributes.}
|
|
\lineii{del elem.attrib[name]}{Deletes attribute \var{name}.}
|
|
\end{tableii}
|
|
|
|
Comments and processing instructions are also represented as
|
|
\class{Element} nodes. To check if a node is a comment or processing
|
|
instructions:
|
|
|
|
\begin{verbatim}
|
|
if elem.tag is ET.Comment:
|
|
...
|
|
elif elem.tag is ET.ProcessingInstruction:
|
|
...
|
|
\end{verbatim}
|
|
|
|
To generate XML output, you should call the
|
|
\method{ElementTree.write()} method. Like \function{parse()},
|
|
it can take either a string or a file-like object:
|
|
|
|
\begin{verbatim}
|
|
# Encoding is US-ASCII
|
|
tree.write('output.xml')
|
|
|
|
# Encoding is UTF-8
|
|
f = open('output.xml', 'w')
|
|
tree.write(f, encoding='utf-8')
|
|
\end{verbatim}
|
|
|
|
(Caution: the default encoding used for output is ASCII. For general
|
|
XML work, where an element's name may contain arbitrary Unicode
|
|
characters, ASCII isn't a very useful encoding because it will raise
|
|
an exception if an element's name contains any characters with values
|
|
greater than 127. Therefore, it's best to specify a different
|
|
encoding such as UTF-8 that can handle any Unicode character.)
|
|
|
|
This section is only a partial description of the ElementTree interfaces.
|
|
Please read the package's official documentation for more details.
|
|
|
|
\begin{seealso}
|
|
|
|
\seeurl{http://effbot.org/zone/element-index.htm}
|
|
{Official documentation for ElementTree.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\subsection{The hashlib package\label{module-hashlib}}
|
|
|
|
A new \module{hashlib} module, written by Gregory P. Smith,
|
|
has been added to replace the
|
|
\module{md5} and \module{sha} modules. \module{hashlib} adds support
|
|
for additional secure hashes (SHA-224, SHA-256, SHA-384, and SHA-512).
|
|
When available, the module uses OpenSSL for fast platform optimized
|
|
implementations of algorithms.
|
|
|
|
The old \module{md5} and \module{sha} modules still exist as wrappers
|
|
around hashlib to preserve backwards compatibility. The new module's
|
|
interface is very close to that of the old modules, but not identical.
|
|
The most significant difference is that the constructor functions
|
|
for creating new hashing objects are named differently.
|
|
|
|
\begin{verbatim}
|
|
# Old versions
|
|
h = md5.md5()
|
|
h = md5.new()
|
|
|
|
# New version
|
|
h = hashlib.md5()
|
|
|
|
# Old versions
|
|
h = sha.sha()
|
|
h = sha.new()
|
|
|
|
# New version
|
|
h = hashlib.sha1()
|
|
|
|
# Hash that weren't previously available
|
|
h = hashlib.sha224()
|
|
h = hashlib.sha256()
|
|
h = hashlib.sha384()
|
|
h = hashlib.sha512()
|
|
|
|
# Alternative form
|
|
h = hashlib.new('md5') # Provide algorithm as a string
|
|
\end{verbatim}
|
|
|
|
Once a hash object has been created, its methods are the same as before:
|
|
\method{update(\var{string})} hashes the specified string into the
|
|
current digest state, \method{digest()} and \method{hexdigest()}
|
|
return the digest value as a binary string or a string of hex digits,
|
|
and \method{copy()} returns a new hashing object with the same digest state.
|
|
|
|
\begin{seealso}
|
|
|
|
\seeurl{../lib/module-hashlib.html}{The documentation
|
|
for the \module{hashlib} module.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\subsection{The sqlite3 package\label{module-sqlite}}
|
|
|
|
The pysqlite module (\url{http://www.pysqlite.org}), a wrapper for the
|
|
SQLite embedded database, has been added to the standard library under
|
|
the package name \module{sqlite3}.
|
|
|
|
SQLite is a C library that provides a SQL-language database that
|
|
stores data in disk files without requiring a separate server process.
|
|
pysqlite was written by Gerhard H\"aring and provides a SQL interface
|
|
compliant with the DB-API 2.0 specification described by
|
|
\pep{249}. This means that it should be possible to write the first
|
|
version of your applications using SQLite for data storage. If
|
|
switching to a larger database such as PostgreSQL or Oracle is
|
|
later necessary, the switch should be relatively easy.
|
|
|
|
If you're compiling the Python source yourself, note that the source
|
|
tree doesn't include the SQLite code, only the wrapper module.
|
|
You'll need to have the SQLite libraries and headers installed before
|
|
compiling Python, and the build process will compile the module when
|
|
the necessary headers are available.
|
|
|
|
To use the module, you must first create a \class{Connection} object
|
|
that represents the database. Here the data will be stored in the
|
|
\file{/tmp/example} file:
|
|
|
|
\begin{verbatim}
|
|
conn = sqlite3.connect('/tmp/example')
|
|
\end{verbatim}
|
|
|
|
You can also supply the special name \samp{:memory:} to create
|
|
a database in RAM.
|
|
|
|
Once you have a \class{Connection}, you can create a \class{Cursor}
|
|
object and call its \method{execute()} method to perform SQL commands:
|
|
|
|
\begin{verbatim}
|
|
c = conn.cursor()
|
|
|
|
# Create table
|
|
c.execute('''create table stocks
|
|
(date timestamp, trans varchar, symbol varchar,
|
|
qty decimal, price decimal)''')
|
|
|
|
# Insert a row of data
|
|
c.execute("""insert into stocks
|
|
values ('2006-01-05','BUY','RHAT',100,35.14)""")
|
|
\end{verbatim}
|
|
|
|
Usually your SQL operations will need to use values from Python
|
|
variables. You shouldn't assemble your query using Python's string
|
|
operations because doing so is insecure; it makes your program
|
|
vulnerable to an SQL injection attack.
|
|
|
|
Instead, use the DB-API's parameter substitution. Put \samp{?} as a
|
|
placeholder wherever you want to use a value, and then provide a tuple
|
|
of values as the second argument to the cursor's \method{execute()}
|
|
method. (Other database modules may use a different placeholder,
|
|
such as \samp{\%s} or \samp{:1}.) For example:
|
|
|
|
\begin{verbatim}
|
|
# Never do this -- insecure!
|
|
symbol = 'IBM'
|
|
c.execute("... where symbol = '%s'" % symbol)
|
|
|
|
# Do this instead
|
|
t = (symbol,)
|
|
c.execute('select * from stocks where symbol=?', t)
|
|
|
|
# Larger example
|
|
for t in (('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
|
|
('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
|
|
('2006-04-06', 'SELL', 'IBM', 500, 53.00),
|
|
):
|
|
c.execute('insert into stocks values (?,?,?,?,?)', t)
|
|
\end{verbatim}
|
|
|
|
To retrieve data after executing a SELECT statement, you can either
|
|
treat the cursor as an iterator, call the cursor's \method{fetchone()}
|
|
method to retrieve a single matching row,
|
|
or call \method{fetchall()} to get a list of the matching rows.
|
|
|
|
This example uses the iterator form:
|
|
|
|
\begin{verbatim}
|
|
>>> c = conn.cursor()
|
|
>>> c.execute('select * from stocks order by price')
|
|
>>> for row in c:
|
|
... print row
|
|
...
|
|
(u'2006-01-05', u'BUY', u'RHAT', 100, 35.140000000000001)
|
|
(u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
|
|
(u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
|
|
(u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
|
|
>>>
|
|
\end{verbatim}
|
|
|
|
For more information about the SQL dialect supported by SQLite, see
|
|
\url{http://www.sqlite.org}.
|
|
|
|
\begin{seealso}
|
|
|
|
\seeurl{http://www.pysqlite.org}
|
|
{The pysqlite web page.}
|
|
|
|
\seeurl{http://www.sqlite.org}
|
|
{The SQLite web page; the documentation describes the syntax and the
|
|
available data types for the supported SQL dialect.}
|
|
|
|
\seeurl{../lib/module-sqlite3.html}{The documentation
|
|
for the \module{sqlite3} module.}
|
|
|
|
\seepep{249}{Database API Specification 2.0}{PEP written by
|
|
Marc-Andr\'e Lemburg.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
%======================================================================
|
|
\subsection{The wsgiref package\label{module-wsgiref}}
|
|
|
|
% XXX should this be in a PEP 333 section instead?
|
|
|
|
The Web Server Gateway Interface (WSGI) v1.0 defines a standard
|
|
interface between web servers and Python web applications and is
|
|
described in \pep{333}. The \module{wsgiref} package is a reference
|
|
implementation of the WSGI specification.
|
|
|
|
The package includes a basic HTTP server that will run a WSGI
|
|
application; this server is useful for debugging but isn't intended for
|
|
production use. Setting up a server takes only a few lines of code:
|
|
|
|
\begin{verbatim}
|
|
from wsgiref import simple_server
|
|
|
|
wsgi_app = ...
|
|
|
|
host = ''
|
|
port = 8000
|
|
httpd = simple_server.make_server(host, port, wsgi_app)
|
|
httpd.serve_forever()
|
|
\end{verbatim}
|
|
|
|
% XXX discuss structure of WSGI applications?
|
|
% XXX provide an example using Django or some other framework?
|
|
|
|
\begin{seealso}
|
|
|
|
\seeurl{http://www.wsgi.org}{A central web site for WSGI-related resources.}
|
|
|
|
\seepep{333}{Python Web Server Gateway Interface v1.0}{PEP written by
|
|
Phillip J. Eby.}
|
|
|
|
\end{seealso}
|
|
|
|
|
|
% ======================================================================
|
|
\section{Build and C API Changes\label{build-api}}
|
|
|
|
Changes to Python's build process and to the C API include:
|
|
|
|
\begin{itemize}
|
|
|
|
\item The largest change to the C API came from \pep{353},
|
|
which modifies the interpreter to use a \ctype{Py_ssize_t} type
|
|
definition instead of \ctype{int}. See the earlier
|
|
section~\ref{pep-353} for a discussion of this change.
|
|
|
|
\item The design of the bytecode compiler has changed a great deal, to
|
|
no longer generate bytecode by traversing the parse tree. Instead
|
|
the parse tree is converted to an abstract syntax tree (or AST), and it is
|
|
the abstract syntax tree that's traversed to produce the bytecode.
|
|
|
|
It's possible for Python code to obtain AST objects by using the
|
|
\function{compile()} built-in and specifying \code{_ast.PyCF_ONLY_AST}
|
|
as the value of the
|
|
\var{flags} parameter:
|
|
|
|
\begin{verbatim}
|
|
from _ast import PyCF_ONLY_AST
|
|
ast = compile("""a=0
|
|
for i in range(10):
|
|
a += i
|
|
""", "<string>", 'exec', PyCF_ONLY_AST)
|
|
|
|
assignment = ast.body[0]
|
|
for_loop = ast.body[1]
|
|
\end{verbatim}
|
|
|
|
No official documentation has been written for the AST code yet, but
|
|
\pep{339} discusses the design. To start learning about the code, read the
|
|
definition of the various AST nodes in \file{Parser/Python.asdl}. A
|
|
Python script reads this file and generates a set of C structure
|
|
definitions in \file{Include/Python-ast.h}. The
|
|
\cfunction{PyParser_ASTFromString()} and
|
|
\cfunction{PyParser_ASTFromFile()}, defined in
|
|
\file{Include/pythonrun.h}, take Python source as input and return the
|
|
root of an AST representing the contents. This AST can then be turned
|
|
into a code object by \cfunction{PyAST_Compile()}. For more
|
|
information, read the source code, and then ask questions on
|
|
python-dev.
|
|
|
|
% List of names taken from Jeremy's python-dev post at
|
|
% http://mail.python.org/pipermail/python-dev/2005-October/057500.html
|
|
The AST code was developed under Jeremy Hylton's management, and
|
|
implemented by (in alphabetical order) Brett Cannon, Nick Coghlan,
|
|
Grant Edwards, John Ehresman, Kurt Kaiser, Neal Norwitz, Tim Peters,
|
|
Armin Rigo, and Neil Schemenauer, plus the participants in a number of
|
|
AST sprints at conferences such as PyCon.
|
|
|
|
\item The built-in set types now have an official C API. Call
|
|
\cfunction{PySet_New()} and \cfunction{PyFrozenSet_New()} to create a
|
|
new set, \cfunction{PySet_Add()} and \cfunction{PySet_Discard()} to
|
|
add and remove elements, and \cfunction{PySet_Contains} and
|
|
\cfunction{PySet_Size} to examine the set's state.
|
|
(Contributed by Raymond Hettinger.)
|
|
|
|
\item C code can now obtain information about the exact revision
|
|
of the Python interpreter by calling the
|
|
\cfunction{Py_GetBuildInfo()} function that returns a
|
|
string of build information like this:
|
|
\code{"trunk:45355:45356M, Apr 13 2006, 07:42:19"}.
|
|
(Contributed by Barry Warsaw.)
|
|
|
|
\item Two new macros can be used to indicate C functions that are
|
|
local to the current file so that a faster calling convention can be
|
|
used. \cfunction{Py_LOCAL(\var{type})} declares the function as
|
|
returning a value of the specified \var{type} and uses a fast-calling
|
|
qualifier. \cfunction{Py_LOCAL_INLINE(\var{type})} does the same thing
|
|
and also requests the function be inlined. If
|
|
\cfunction{PY_LOCAL_AGGRESSIVE} is defined before \file{python.h} is
|
|
included, a set of more aggressive optimizations are enabled for the
|
|
module; you should benchmark the results to find out if these
|
|
optimizations actually make the code faster. (Contributed by Fredrik
|
|
Lundh at the NeedForSpeed sprint.)
|
|
|
|
\item \cfunction{PyErr_NewException(\var{name}, \var{base},
|
|
\var{dict})} can now accept a tuple of base classes as its \var{base}
|
|
argument. (Contributed by Georg Brandl.)
|
|
|
|
\item The CPython interpreter is still written in C, but
|
|
the code can now be compiled with a {\Cpp} compiler without errors.
|
|
(Implemented by Anthony Baxter, Martin von~L\"owis, Skip Montanaro.)
|
|
|
|
\item The \cfunction{PyRange_New()} function was removed. It was
|
|
never documented, never used in the core code, and had dangerously lax
|
|
error checking. In the unlikely case that your extensions were using
|
|
it, you can replace it by something like the following:
|
|
\begin{verbatim}
|
|
range = PyObject_CallFunction((PyObject*) &PyRange_Type, "lll",
|
|
start, stop, step);
|
|
\end{verbatim}
|
|
|
|
\end{itemize}
|
|
|
|
|
|
%======================================================================
|
|
\subsection{Port-Specific Changes\label{ports}}
|
|
|
|
\begin{itemize}
|
|
|
|
\item MacOS X (10.3 and higher): dynamic loading of modules
|
|
now uses the \cfunction{dlopen()} function instead of MacOS-specific
|
|
functions.
|
|
|
|
\item MacOS X: a \longprogramopt{enable-universalsdk} switch was added
|
|
to the \program{configure} script that compiles the interpreter as a
|
|
universal binary able to run on both PowerPC and Intel processors.
|
|
(Contributed by Ronald Oussoren.)
|
|
|
|
\item Windows: \file{.dll} is no longer supported as a filename extension for
|
|
extension modules. \file{.pyd} is now the only filename extension that will
|
|
be searched for.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
%======================================================================
|
|
\section{Other Changes and Fixes \label{section-other}}
|
|
|
|
As usual, there were a bunch of other improvements and bugfixes
|
|
scattered throughout the source tree. A search through the SVN change
|
|
logs finds there were XXX patches applied and YYY bugs fixed between
|
|
Python 2.4 and 2.5. Both figures are likely to be underestimates.
|
|
|
|
Some of the more notable changes are:
|
|
|
|
\begin{itemize}
|
|
|
|
\item Evan Jones's patch to obmalloc, first described in a talk
|
|
at PyCon DC 2005, was applied. Python 2.4 allocated small objects in
|
|
256K-sized arenas, but never freed arenas. With this patch, Python
|
|
will free arenas when they're empty. The net effect is that on some
|
|
platforms, when you allocate many objects, Python's memory usage may
|
|
actually drop when you delete them, and the memory may be returned to
|
|
the operating system. (Implemented by Evan Jones, and reworked by Tim
|
|
Peters.)
|
|
|
|
Note that this change means extension modules need to be more careful
|
|
with how they allocate memory. Python's API has many different
|
|
functions for allocating memory that are grouped into families. For
|
|
example, \cfunction{PyMem_Malloc()}, \cfunction{PyMem_Realloc()}, and
|
|
\cfunction{PyMem_Free()} are one family that allocates raw memory,
|
|
while \cfunction{PyObject_Malloc()}, \cfunction{PyObject_Realloc()},
|
|
and \cfunction{PyObject_Free()} are another family that's supposed to
|
|
be used for creating Python objects.
|
|
|
|
Previously these different families all reduced to the platform's
|
|
\cfunction{malloc()} and \cfunction{free()} functions. This meant
|
|
it didn't matter if you got things wrong and allocated memory with the
|
|
\cfunction{PyMem} function but freed it with the \cfunction{PyObject}
|
|
function. With the obmalloc change, these families now do different
|
|
things, and mismatches will probably result in a segfault. You should
|
|
carefully test your C extension modules with Python 2.5.
|
|
|
|
\item Coverity, a company that markets a source code analysis tool
|
|
called Prevent, provided the results of their examination of the Python
|
|
source code. The analysis found about 60 bugs that
|
|
were quickly fixed. Many of the bugs were refcounting problems, often
|
|
occurring in error-handling code. See
|
|
\url{http://scan.coverity.com} for the statistics.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
%======================================================================
|
|
\section{Porting to Python 2.5\label{porting}}
|
|
|
|
This section lists previously described changes that may require
|
|
changes to your code:
|
|
|
|
\begin{itemize}
|
|
|
|
\item ASCII is now the default encoding for modules. It's now
|
|
a syntax error if a module contains string literals with 8-bit
|
|
characters but doesn't have an encoding declaration. In Python 2.4
|
|
this triggered a warning, not a syntax error.
|
|
|
|
\item Previously, the \member{gi_frame} attribute of a generator
|
|
was always a frame object. Because of the \pep{342} changes
|
|
described in section~\ref{pep-342}, it's now possible
|
|
for \member{gi_frame} to be \code{None}.
|
|
|
|
|
|
\item Library: The \module{pickle} and \module{cPickle} modules no
|
|
longer accept a return value of \code{None} from the
|
|
\method{__reduce__()} method; the method must return a tuple of
|
|
arguments instead. The modules also no longer accept the deprecated
|
|
\var{bin} keyword parameter.
|
|
|
|
\item Library: The \module{SimpleXMLRPCServer} and \module{DocXMLRPCServer}
|
|
classes now have a \member{rpc_paths} attribute that constrains
|
|
XML-RPC operations to a limited set of URL paths; the default is
|
|
to allow only \code{'/'} and \code{'/RPC2'}. Setting
|
|
\member{rpc_paths} to \code{None} or an empty tuple disables
|
|
this path checking.
|
|
|
|
\item Library: the \module{xml} package has been renamed to \module{xmlcore}.
|
|
The PyXML package will therefore be \module{xml}, and the Python
|
|
distribution's code will always be accessible as \module{xmlcore}.
|
|
|
|
\item C API: Many functions now use \ctype{Py_ssize_t}
|
|
instead of \ctype{int} to allow processing more data on 64-bit
|
|
machines. Extension code may need to make the same change to avoid
|
|
warnings and to support 64-bit machines. See the earlier
|
|
section~\ref{pep-353} for a discussion of this change.
|
|
|
|
\item C API:
|
|
The obmalloc changes mean that
|
|
you must be careful to not mix usage
|
|
of the \cfunction{PyMem_*()} and \cfunction{PyObject_*()}
|
|
families of functions. Memory allocated with
|
|
one family's \cfunction{*_Malloc()} must be
|
|
freed with the corresponding family's \cfunction{*_Free()} function.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
%======================================================================
|
|
\section{Acknowledgements \label{acks}}
|
|
|
|
The author would like to thank the following people for offering
|
|
suggestions, corrections and assistance with various drafts of this
|
|
article: Nick Coghlan, Phillip J. Eby, Ralf W. Grosse-Kunstleve, Kent
|
|
Johnson, Martin von~L\"owis, Fredrik Lundh, Gustavo Niemeyer, James
|
|
Pryor, Mike Rovner, Scott Weikart, Barry Warsaw, Thomas Wouters.
|
|
|
|
\end{document}
|