mirror of https://github.com/python/cpython
277 lines
7.3 KiB
C
277 lines
7.3 KiB
C
/*
|
|
* Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include "mpdecimal.h"
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "bits.h"
|
|
#include "constants.h"
|
|
#include "transpose.h"
|
|
#include "typearith.h"
|
|
|
|
|
|
#define BUFSIZE 4096
|
|
#define SIDE 128
|
|
|
|
|
|
/* Bignum: The transpose functions are used for very large transforms
|
|
in sixstep.c and fourstep.c. */
|
|
|
|
|
|
/* Definition of the matrix transpose */
|
|
void
|
|
std_trans(mpd_uint_t dest[], mpd_uint_t src[], mpd_size_t rows, mpd_size_t cols)
|
|
{
|
|
mpd_size_t idest, isrc;
|
|
mpd_size_t r, c;
|
|
|
|
for (r = 0; r < rows; r++) {
|
|
isrc = r * cols;
|
|
idest = r;
|
|
for (c = 0; c < cols; c++) {
|
|
dest[idest] = src[isrc];
|
|
isrc += 1;
|
|
idest += rows;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Swap half-rows of 2^n * (2*2^n) matrix.
|
|
* FORWARD_CYCLE: even/odd permutation of the halfrows.
|
|
* BACKWARD_CYCLE: reverse the even/odd permutation.
|
|
*/
|
|
static int
|
|
swap_halfrows_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols, int dir)
|
|
{
|
|
mpd_uint_t buf1[BUFSIZE];
|
|
mpd_uint_t buf2[BUFSIZE];
|
|
mpd_uint_t *readbuf, *writebuf, *hp;
|
|
mpd_size_t *done, dbits;
|
|
mpd_size_t b = BUFSIZE, stride;
|
|
mpd_size_t hn, hmax; /* halfrow number */
|
|
mpd_size_t m, r=0;
|
|
mpd_size_t offset;
|
|
mpd_size_t next;
|
|
|
|
|
|
assert(cols == mul_size_t(2, rows));
|
|
|
|
if (dir == FORWARD_CYCLE) {
|
|
r = rows;
|
|
}
|
|
else if (dir == BACKWARD_CYCLE) {
|
|
r = 2;
|
|
}
|
|
else {
|
|
abort(); /* GCOV_NOT_REACHED */
|
|
}
|
|
|
|
m = cols - 1;
|
|
hmax = rows; /* cycles start at odd halfrows */
|
|
dbits = 8 * sizeof *done;
|
|
if ((done = mpd_calloc(hmax/(sizeof *done) + 1, sizeof *done)) == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
for (hn = 1; hn <= hmax; hn += 2) {
|
|
|
|
if (done[hn/dbits] & mpd_bits[hn%dbits]) {
|
|
continue;
|
|
}
|
|
|
|
readbuf = buf1; writebuf = buf2;
|
|
|
|
for (offset = 0; offset < cols/2; offset += b) {
|
|
|
|
stride = (offset + b < cols/2) ? b : cols/2-offset;
|
|
|
|
hp = matrix + hn*cols/2;
|
|
memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
|
|
pointerswap(&readbuf, &writebuf);
|
|
|
|
next = mulmod_size_t(hn, r, m);
|
|
hp = matrix + next*cols/2;
|
|
|
|
while (next != hn) {
|
|
|
|
memcpy(readbuf, hp+offset, stride*(sizeof *readbuf));
|
|
memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
|
|
pointerswap(&readbuf, &writebuf);
|
|
|
|
done[next/dbits] |= mpd_bits[next%dbits];
|
|
|
|
next = mulmod_size_t(next, r, m);
|
|
hp = matrix + next*cols/2;
|
|
|
|
}
|
|
|
|
memcpy(hp+offset, writebuf, stride*(sizeof *writebuf));
|
|
|
|
done[hn/dbits] |= mpd_bits[hn%dbits];
|
|
}
|
|
}
|
|
|
|
mpd_free(done);
|
|
return 1;
|
|
}
|
|
|
|
/* In-place transpose of a square matrix */
|
|
static inline void
|
|
squaretrans(mpd_uint_t *buf, mpd_size_t cols)
|
|
{
|
|
mpd_uint_t tmp;
|
|
mpd_size_t idest, isrc;
|
|
mpd_size_t r, c;
|
|
|
|
for (r = 0; r < cols; r++) {
|
|
c = r+1;
|
|
isrc = r*cols + c;
|
|
idest = c*cols + r;
|
|
for (c = r+1; c < cols; c++) {
|
|
tmp = buf[isrc];
|
|
buf[isrc] = buf[idest];
|
|
buf[idest] = tmp;
|
|
isrc += 1;
|
|
idest += cols;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transpose 2^n * 2^n matrix. For cache efficiency, the matrix is split into
|
|
* square blocks with side length 'SIDE'. First, the blocks are transposed,
|
|
* then a square transposition is done on each individual block.
|
|
*/
|
|
static void
|
|
squaretrans_pow2(mpd_uint_t *matrix, mpd_size_t size)
|
|
{
|
|
mpd_uint_t buf1[SIDE*SIDE];
|
|
mpd_uint_t buf2[SIDE*SIDE];
|
|
mpd_uint_t *to, *from;
|
|
mpd_size_t b = size;
|
|
mpd_size_t r, c;
|
|
mpd_size_t i;
|
|
|
|
while (b > SIDE) b >>= 1;
|
|
|
|
for (r = 0; r < size; r += b) {
|
|
|
|
for (c = r; c < size; c += b) {
|
|
|
|
from = matrix + r*size + c;
|
|
to = buf1;
|
|
for (i = 0; i < b; i++) {
|
|
memcpy(to, from, b*(sizeof *to));
|
|
from += size;
|
|
to += b;
|
|
}
|
|
squaretrans(buf1, b);
|
|
|
|
if (r == c) {
|
|
to = matrix + r*size + c;
|
|
from = buf1;
|
|
for (i = 0; i < b; i++) {
|
|
memcpy(to, from, b*(sizeof *to));
|
|
from += b;
|
|
to += size;
|
|
}
|
|
continue;
|
|
}
|
|
else {
|
|
from = matrix + c*size + r;
|
|
to = buf2;
|
|
for (i = 0; i < b; i++) {
|
|
memcpy(to, from, b*(sizeof *to));
|
|
from += size;
|
|
to += b;
|
|
}
|
|
squaretrans(buf2, b);
|
|
|
|
to = matrix + c*size + r;
|
|
from = buf1;
|
|
for (i = 0; i < b; i++) {
|
|
memcpy(to, from, b*(sizeof *to));
|
|
from += b;
|
|
to += size;
|
|
}
|
|
|
|
to = matrix + r*size + c;
|
|
from = buf2;
|
|
for (i = 0; i < b; i++) {
|
|
memcpy(to, from, b*(sizeof *to));
|
|
from += b;
|
|
to += size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* In-place transposition of a 2^n x 2^n or a 2^n x (2*2^n)
|
|
* or a (2*2^n) x 2^n matrix.
|
|
*/
|
|
int
|
|
transpose_pow2(mpd_uint_t *matrix, mpd_size_t rows, mpd_size_t cols)
|
|
{
|
|
mpd_size_t size = mul_size_t(rows, cols);
|
|
|
|
assert(ispower2(rows));
|
|
assert(ispower2(cols));
|
|
|
|
if (cols == rows) {
|
|
squaretrans_pow2(matrix, rows);
|
|
}
|
|
else if (cols == mul_size_t(2, rows)) {
|
|
if (!swap_halfrows_pow2(matrix, rows, cols, FORWARD_CYCLE)) {
|
|
return 0;
|
|
}
|
|
squaretrans_pow2(matrix, rows);
|
|
squaretrans_pow2(matrix+(size/2), rows);
|
|
}
|
|
else if (rows == mul_size_t(2, cols)) {
|
|
squaretrans_pow2(matrix, cols);
|
|
squaretrans_pow2(matrix+(size/2), cols);
|
|
if (!swap_halfrows_pow2(matrix, cols, rows, BACKWARD_CYCLE)) {
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
abort(); /* GCOV_NOT_REACHED */
|
|
}
|
|
|
|
return 1;
|
|
}
|