cpython/Objects/stringlib/formatter.h

974 lines
28 KiB
C

/* implements the string, long, and float formatters. that is,
string.__format__, etc. */
/* Before including this, you must include either:
stringlib/unicodedefs.h
stringlib/stringdefs.h
Also, you should define the names:
FORMAT_STRING
FORMAT_LONG
FORMAT_FLOAT
to be whatever you want the public names of these functions to
be. These are the only non-static functions defined here.
*/
#define ALLOW_PARENS_FOR_SIGN 0
/*
get_integer consumes 0 or more decimal digit characters from an
input string, updates *result with the corresponding positive
integer, and returns the number of digits consumed.
returns -1 on error.
*/
static int
get_integer(STRINGLIB_CHAR **ptr, STRINGLIB_CHAR *end,
Py_ssize_t *result)
{
Py_ssize_t accumulator, digitval, oldaccumulator;
int numdigits;
accumulator = numdigits = 0;
for (;;(*ptr)++, numdigits++) {
if (*ptr >= end)
break;
digitval = STRINGLIB_TODECIMAL(**ptr);
if (digitval < 0)
break;
/*
This trick was copied from old Unicode format code. It's cute,
but would really suck on an old machine with a slow divide
implementation. Fortunately, in the normal case we do not
expect too many digits.
*/
oldaccumulator = accumulator;
accumulator *= 10;
if ((accumulator+10)/10 != oldaccumulator+1) {
PyErr_Format(PyExc_ValueError,
"Too many decimal digits in format string");
return -1;
}
accumulator += digitval;
}
*result = accumulator;
return numdigits;
}
/************************************************************************/
/*********** standard format specifier parsing **************************/
/************************************************************************/
/* returns true if this character is a specifier alignment token */
Py_LOCAL_INLINE(int)
is_alignment_token(STRINGLIB_CHAR c)
{
switch (c) {
case '<': case '>': case '=': case '^':
return 1;
default:
return 0;
}
}
/* returns true if this character is a sign element */
Py_LOCAL_INLINE(int)
is_sign_element(STRINGLIB_CHAR c)
{
switch (c) {
case ' ': case '+': case '-':
#if ALLOW_PARENS_FOR_SIGN
case '(':
#endif
return 1;
default:
return 0;
}
}
typedef struct {
STRINGLIB_CHAR fill_char;
STRINGLIB_CHAR align;
STRINGLIB_CHAR sign;
Py_ssize_t width;
Py_ssize_t precision;
STRINGLIB_CHAR type;
} InternalFormatSpec;
/*
ptr points to the start of the format_spec, end points just past its end.
fills in format with the parsed information.
returns 1 on success, 0 on failure.
if failure, sets the exception
*/
static int
parse_internal_render_format_spec(STRINGLIB_CHAR *format_spec,
Py_ssize_t format_spec_len,
InternalFormatSpec *format,
char default_type)
{
STRINGLIB_CHAR *ptr = format_spec;
STRINGLIB_CHAR *end = format_spec + format_spec_len;
/* end-ptr is used throughout this code to specify the length of
the input string */
Py_ssize_t specified_width;
format->fill_char = '\0';
format->align = '\0';
format->sign = '\0';
format->width = -1;
format->precision = -1;
format->type = default_type;
/* If the second char is an alignment token,
then parse the fill char */
if (end-ptr >= 2 && is_alignment_token(ptr[1])) {
format->align = ptr[1];
format->fill_char = ptr[0];
ptr += 2;
}
else if (end-ptr >= 1 && is_alignment_token(ptr[0])) {
format->align = ptr[0];
++ptr;
}
/* Parse the various sign options */
if (end-ptr >= 1 && is_sign_element(ptr[0])) {
format->sign = ptr[0];
++ptr;
#if ALLOW_PARENS_FOR_SIGN
if (end-ptr >= 1 && ptr[0] == ')') {
++ptr;
}
#endif
}
/* The special case for 0-padding (backwards compat) */
if (format->fill_char == '\0' && end-ptr >= 1 && ptr[0] == '0') {
format->fill_char = '0';
if (format->align == '\0') {
format->align = '=';
}
++ptr;
}
/* XXX add error checking */
specified_width = get_integer(&ptr, end, &format->width);
/* if specified_width is 0, we didn't consume any characters for
the width. in that case, reset the width to -1, because
get_integer() will have set it to zero */
if (specified_width == 0) {
format->width = -1;
}
/* Parse field precision */
if (end-ptr && ptr[0] == '.') {
++ptr;
/* XXX add error checking */
specified_width = get_integer(&ptr, end, &format->precision);
/* not having a precision after a dot is an error */
if (specified_width == 0) {
PyErr_Format(PyExc_ValueError,
"Format specifier missing precision");
return 0;
}
}
/* Finally, parse the type field */
if (end-ptr > 1) {
/* invalid conversion spec */
PyErr_Format(PyExc_ValueError, "Invalid conversion specification");
return 0;
}
if (end-ptr == 1) {
format->type = ptr[0];
++ptr;
}
return 1;
}
#if defined FORMAT_FLOAT || defined FORMAT_LONG
/************************************************************************/
/*********** common routines for numeric formatting *********************/
/************************************************************************/
/* describes the layout for an integer, see the comment in
_calc_integer_widths() for details */
typedef struct {
Py_ssize_t n_lpadding;
Py_ssize_t n_spadding;
Py_ssize_t n_rpadding;
char lsign;
Py_ssize_t n_lsign;
char rsign;
Py_ssize_t n_rsign;
Py_ssize_t n_total; /* just a convenience, it's derivable from the
other fields */
} NumberFieldWidths;
/* not all fields of format are used. for example, precision is
unused. should this take discrete params in order to be more clear
about what it does? or is passing a single format parameter easier
and more efficient enough to justify a little obfuscation? */
static void
calc_number_widths(NumberFieldWidths *r, STRINGLIB_CHAR actual_sign,
Py_ssize_t n_digits, const InternalFormatSpec *format)
{
r->n_lpadding = 0;
r->n_spadding = 0;
r->n_rpadding = 0;
r->lsign = '\0';
r->n_lsign = 0;
r->rsign = '\0';
r->n_rsign = 0;
/* the output will look like:
| |
| <lpadding> <lsign> <spadding> <digits> <rsign> <rpadding> |
| |
lsign and rsign are computed from format->sign and the actual
sign of the number
digits is already known
the total width is either given, or computed from the
actual digits
only one of lpadding, spadding, and rpadding can be non-zero,
and it's calculated from the width and other fields
*/
/* compute the various parts we're going to write */
if (format->sign == '+') {
/* always put a + or - */
r->n_lsign = 1;
r->lsign = (actual_sign == '-' ? '-' : '+');
}
#if ALLOW_PARENS_FOR_SIGN
else if (format->sign == '(') {
if (actual_sign == '-') {
r->n_lsign = 1;
r->lsign = '(';
r->n_rsign = 1;
r->rsign = ')';
}
}
#endif
else if (format->sign == ' ') {
r->n_lsign = 1;
r->lsign = (actual_sign == '-' ? '-' : ' ');
}
else {
/* non specified, or the default (-) */
if (actual_sign == '-') {
r->n_lsign = 1;
r->lsign = '-';
}
}
/* now the number of padding characters */
if (format->width == -1) {
/* no padding at all, nothing to do */
}
else {
/* see if any padding is needed */
if (r->n_lsign + n_digits + r->n_rsign >= format->width) {
/* no padding needed, we're already bigger than the
requested width */
}
else {
/* determine which of left, space, or right padding is
needed */
Py_ssize_t padding = format->width -
(r->n_lsign + n_digits + r->n_rsign);
if (format->align == '<')
r->n_rpadding = padding;
else if (format->align == '>')
r->n_lpadding = padding;
else if (format->align == '^') {
r->n_lpadding = padding / 2;
r->n_rpadding = padding - r->n_lpadding;
}
else if (format->align == '=')
r->n_spadding = padding;
else
r->n_lpadding = padding;
}
}
r->n_total = r->n_lpadding + r->n_lsign + r->n_spadding +
n_digits + r->n_rsign + r->n_rpadding;
}
/* fill in the non-digit parts of a numbers's string representation,
as determined in _calc_integer_widths(). returns the pointer to
where the digits go. */
static STRINGLIB_CHAR *
fill_number(STRINGLIB_CHAR *p_buf, const NumberFieldWidths *spec,
Py_ssize_t n_digits, STRINGLIB_CHAR fill_char)
{
STRINGLIB_CHAR* p_digits;
if (spec->n_lpadding) {
STRINGLIB_FILL(p_buf, fill_char, spec->n_lpadding);
p_buf += spec->n_lpadding;
}
if (spec->n_lsign == 1) {
*p_buf++ = spec->lsign;
}
if (spec->n_spadding) {
STRINGLIB_FILL(p_buf, fill_char, spec->n_spadding);
p_buf += spec->n_spadding;
}
p_digits = p_buf;
p_buf += n_digits;
if (spec->n_rsign == 1) {
*p_buf++ = spec->rsign;
}
if (spec->n_rpadding) {
STRINGLIB_FILL(p_buf, fill_char, spec->n_rpadding);
p_buf += spec->n_rpadding;
}
return p_digits;
}
#endif /* FORMAT_FLOAT || FORMAT_LONG */
/************************************************************************/
/*********** string formatting ******************************************/
/************************************************************************/
static PyObject *
format_string_internal(PyObject *value, const InternalFormatSpec *format)
{
Py_ssize_t width; /* total field width */
Py_ssize_t lpad;
STRINGLIB_CHAR *dst;
STRINGLIB_CHAR *src = STRINGLIB_STR(value);
Py_ssize_t len = STRINGLIB_LEN(value);
PyObject *result = NULL;
/* sign is not allowed on strings */
if (format->sign != '\0') {
PyErr_SetString(PyExc_ValueError,
"Sign not allowed in string format specifier");
goto done;
}
/* '=' alignment not allowed on strings */
if (format->align == '=') {
PyErr_SetString(PyExc_ValueError,
"'=' alignment not allowed "
"in string format specifier");
goto done;
}
/* if precision is specified, output no more that format.precision
characters */
if (format->precision >= 0 && len >= format->precision) {
len = format->precision;
}
if (format->width >= 0) {
width = format->width;
/* but use at least len characters */
if (len > width) {
width = len;
}
}
else {
/* not specified, use all of the chars and no more */
width = len;
}
/* allocate the resulting string */
result = STRINGLIB_NEW(NULL, width);
if (result == NULL)
goto done;
/* now write into that space */
dst = STRINGLIB_STR(result);
/* figure out how much leading space we need, based on the
aligning */
if (format->align == '>')
lpad = width - len;
else if (format->align == '^')
lpad = (width - len) / 2;
else
lpad = 0;
/* if right aligning, increment the destination allow space on the
left */
memcpy(dst + lpad, src, len * sizeof(STRINGLIB_CHAR));
/* do any padding */
if (width > len) {
STRINGLIB_CHAR fill_char = format->fill_char;
if (fill_char == '\0') {
/* use the default, if not specified */
fill_char = ' ';
}
/* pad on left */
if (lpad)
STRINGLIB_FILL(dst, fill_char, lpad);
/* pad on right */
if (width - len - lpad)
STRINGLIB_FILL(dst + len + lpad, fill_char, width - len - lpad);
}
done:
return result;
}
/************************************************************************/
/*********** long formatting ********************************************/
/************************************************************************/
#if defined FORMAT_LONG || defined FORMAT_INT
typedef PyObject*
(*IntOrLongToString)(PyObject *value, int base);
static PyObject *
format_int_or_long_internal(PyObject *value, const InternalFormatSpec *format,
IntOrLongToString tostring)
{
PyObject *result = NULL;
PyObject *tmp = NULL;
STRINGLIB_CHAR *pnumeric_chars;
STRINGLIB_CHAR numeric_char;
STRINGLIB_CHAR sign = '\0';
STRINGLIB_CHAR *p;
Py_ssize_t n_digits; /* count of digits need from the computed
string */
Py_ssize_t n_leading_chars;
Py_ssize_t n_grouping_chars = 0; /* Count of additional chars to
allocate, used for 'n'
formatting. */
NumberFieldWidths spec;
long x;
/* no precision allowed on integers */
if (format->precision != -1) {
PyErr_SetString(PyExc_ValueError,
"Precision not allowed in integer format specifier");
goto done;
}
/* special case for character formatting */
if (format->type == 'c') {
/* error to specify a sign */
if (format->sign != '\0') {
PyErr_SetString(PyExc_ValueError,
"Sign not allowed with integer"
" format specifier 'c'");
goto done;
}
/* taken from unicodeobject.c formatchar() */
/* Integer input truncated to a character */
/* XXX: won't work for int */
x = PyLong_AsLong(value);
if (x == -1 && PyErr_Occurred())
goto done;
#ifdef Py_UNICODE_WIDE
if (x < 0 || x > 0x10ffff) {
PyErr_SetString(PyExc_OverflowError,
"%c arg not in range(0x110000) "
"(wide Python build)");
goto done;
}
#else
if (x < 0 || x > 0xffff) {
PyErr_SetString(PyExc_OverflowError,
"%c arg not in range(0x10000) "
"(narrow Python build)");
goto done;
}
#endif
numeric_char = (STRINGLIB_CHAR)x;
pnumeric_chars = &numeric_char;
n_digits = 1;
}
else {
int base;
int leading_chars_to_skip; /* Number of characters added by
PyNumber_ToBase that we want to
skip over. */
/* Compute the base and how many characters will be added by
PyNumber_ToBase */
switch (format->type) {
case 'b':
base = 2;
leading_chars_to_skip = 2; /* 0b */
break;
case 'o':
base = 8;
leading_chars_to_skip = 2; /* 0o */
break;
case 'x':
case 'X':
base = 16;
leading_chars_to_skip = 2; /* 0x */
break;
default: /* shouldn't be needed, but stops a compiler warning */
case 'd':
case 'n':
base = 10;
leading_chars_to_skip = 0;
break;
}
/* Do the hard part, converting to a string in a given base */
tmp = tostring(value, base);
if (tmp == NULL)
goto done;
pnumeric_chars = STRINGLIB_STR(tmp);
n_digits = STRINGLIB_LEN(tmp);
/* Remember not to modify what pnumeric_chars points to. it
might be interned. Only modify it after we copy it into a
newly allocated output buffer. */
/* Is a sign character present in the output? If so, remember it
and skip it */
sign = pnumeric_chars[0];
if (sign == '-') {
++leading_chars_to_skip;
}
/* Skip over the leading chars (0x, 0b, etc.) */
n_digits -= leading_chars_to_skip;
pnumeric_chars += leading_chars_to_skip;
}
/* Calculate the widths of the various leading and trailing parts */
calc_number_widths(&spec, sign, n_digits, format);
if (format->type == 'n')
/* Compute how many additional chars we need to allocate
to hold the thousands grouping. */
STRINGLIB_GROUPING(pnumeric_chars, n_digits,
pnumeric_chars+n_digits,
0, &n_grouping_chars, 0);
/* Allocate a new string to hold the result */
result = STRINGLIB_NEW(NULL, spec.n_total + n_grouping_chars);
if (!result)
goto done;
p = STRINGLIB_STR(result);
/* Fill in the digit parts */
n_leading_chars = spec.n_lpadding + spec.n_lsign + spec.n_spadding;
memmove(p + n_leading_chars,
pnumeric_chars,
n_digits * sizeof(STRINGLIB_CHAR));
/* If type is 'X', convert to uppercase */
if (format->type == 'X') {
Py_ssize_t t;
for (t = 0; t < n_digits; ++t)
p[t + n_leading_chars] = STRINGLIB_TOUPPER(p[t + n_leading_chars]);
}
/* Insert the grouping, if any, after the uppercasing of 'X', so we can
ensure that grouping chars won't be affeted. */
if (n_grouping_chars && format->type == 'n') {
/* We know this can't fail, since we've already
reserved enough space. */
STRINGLIB_CHAR *pstart = p + n_leading_chars;
int r = STRINGLIB_GROUPING(pstart, n_digits,
pstart + n_digits,
spec.n_total+n_grouping_chars-n_leading_chars,
NULL, 0);
assert(r);
}
/* Fill in the non-digit parts */
fill_number(p, &spec, n_digits,
format->fill_char == '\0' ? ' ' : format->fill_char);
done:
Py_XDECREF(tmp);
return result;
}
#endif /* defined FORMAT_LONG || defined FORMAT_INT */
/************************************************************************/
/*********** float formatting *******************************************/
/************************************************************************/
#ifdef FORMAT_FLOAT
#if STRINGLIB_IS_UNICODE
/* taken from unicodeobject.c */
static Py_ssize_t
strtounicode(Py_UNICODE *buffer, const char *charbuffer)
{
register Py_ssize_t i;
Py_ssize_t len = strlen(charbuffer);
for (i = len - 1; i >= 0; --i)
buffer[i] = (Py_UNICODE) charbuffer[i];
return len;
}
#endif
/* see FORMATBUFLEN in unicodeobject.c */
#define FLOAT_FORMATBUFLEN 120
/* much of this is taken from unicodeobject.c */
static PyObject *
format_float_internal(PyObject *value,
const InternalFormatSpec *format)
{
/* fmt = '%.' + `prec` + `type` + '%%'
worst case length = 2 + 10 (len of INT_MAX) + 1 + 2 = 15 (use 20)*/
char fmt[20];
/* taken from unicodeobject.c */
/* Worst case length calc to ensure no buffer overrun:
'g' formats:
fmt = %#.<prec>g
buf = '-' + [0-9]*prec + '.' + 'e+' + (longest exp
for any double rep.)
len = 1 + prec + 1 + 2 + 5 = 9 + prec
'f' formats:
buf = '-' + [0-9]*x + '.' + [0-9]*prec (with x < 50)
len = 1 + 50 + 1 + prec = 52 + prec
If prec=0 the effective precision is 1 (the leading digit is
always given), therefore increase the length by one.
*/
char charbuf[FLOAT_FORMATBUFLEN];
Py_ssize_t n_digits;
double x;
Py_ssize_t precision = format->precision;
PyObject *result = NULL;
STRINGLIB_CHAR sign;
char* trailing = "";
STRINGLIB_CHAR *p;
NumberFieldWidths spec;
STRINGLIB_CHAR type = format->type;
#if STRINGLIB_IS_UNICODE
Py_UNICODE unicodebuf[FLOAT_FORMATBUFLEN];
#endif
/* first, do the conversion as 8-bit chars, using the platform's
snprintf. then, if needed, convert to unicode. */
/* 'F' is the same as 'f', per the PEP */
if (type == 'F')
type = 'f';
x = PyFloat_AsDouble(value);
if (x == -1.0 && PyErr_Occurred())
goto done;
if (type == '%') {
type = 'f';
x *= 100;
trailing = "%";
}
if (precision < 0)
precision = 6;
if (type == 'f' && (fabs(x) / 1e25) >= 1e25)
type = 'g';
/* cast "type", because if we're in unicode we need to pass a
8-bit char. this is safe, because we've restricted what "type"
can be */
PyOS_snprintf(fmt, sizeof(fmt), "%%.%" PY_FORMAT_SIZE_T "d%c", precision,
(char)type);
/* do the actual formatting */
PyOS_ascii_formatd(charbuf, sizeof(charbuf), fmt, x);
/* adding trailing to fmt with PyOS_snprintf doesn't work, not
sure why. we'll just concatentate it here, no harm done. we
know we can't have a buffer overflow from the fmt size
analysis */
strcat(charbuf, trailing);
/* rather than duplicate the code for snprintf for both unicode
and 8 bit strings, we just use the 8 bit version and then
convert to unicode in a separate code path. that's probably
the lesser of 2 evils. */
#if STRINGLIB_IS_UNICODE
n_digits = strtounicode(unicodebuf, charbuf);
p = unicodebuf;
#else
/* compute the length. I believe this is done because the return
value from snprintf above is unreliable */
n_digits = strlen(charbuf);
p = charbuf;
#endif
/* is a sign character present in the output? if so, remember it
and skip it */
sign = p[0];
if (sign == '-') {
++p;
--n_digits;
}
calc_number_widths(&spec, sign, n_digits, format);
/* allocate a string with enough space */
result = STRINGLIB_NEW(NULL, spec.n_total);
if (result == NULL)
goto done;
/* fill in the non-digit parts */
fill_number(STRINGLIB_STR(result), &spec, n_digits,
format->fill_char == '\0' ? ' ' : format->fill_char);
/* fill in the digit parts */
memmove(STRINGLIB_STR(result) +
(spec.n_lpadding + spec.n_lsign + spec.n_spadding),
p,
n_digits * sizeof(STRINGLIB_CHAR));
done:
return result;
}
#endif /* FORMAT_FLOAT */
/************************************************************************/
/*********** built in formatters ****************************************/
/************************************************************************/
PyObject *
FORMAT_STRING(PyObject *obj,
STRINGLIB_CHAR *format_spec,
Py_ssize_t format_spec_len)
{
InternalFormatSpec format;
PyObject *result = NULL;
/* check for the special case of zero length format spec, make
it equivalent to str(obj) */
if (format_spec_len == 0) {
result = STRINGLIB_TOSTR(obj);
goto done;
}
/* parse the format_spec */
if (!parse_internal_render_format_spec(format_spec, format_spec_len,
&format, 's'))
goto done;
/* type conversion? */
switch (format.type) {
case 's':
/* no type conversion needed, already a string. do the formatting */
result = format_string_internal(obj, &format);
break;
default:
/* unknown */
#if STRINGLIB_IS_UNICODE
/* If STRINGLIB_CHAR is Py_UNICODE, %c might be out-of-range,
hence the two cases. If it is char, gcc complains that the
condition below is always true, hence the ifdef. */
if (format.type > 32 && format.type <128)
#endif
PyErr_Format(PyExc_ValueError, "Unknown conversion type %c",
(char)format.type);
#if STRINGLIB_IS_UNICODE
else
PyErr_Format(PyExc_ValueError, "Unknown conversion type '\\x%x'",
(unsigned int)format.type);
#endif
goto done;
}
done:
return result;
}
#if defined FORMAT_LONG || defined FORMAT_INT
static PyObject*
format_int_or_long(PyObject* obj,
STRINGLIB_CHAR *format_spec,
Py_ssize_t format_spec_len,
IntOrLongToString tostring)
{
PyObject *result = NULL;
PyObject *tmp = NULL;
InternalFormatSpec format;
/* check for the special case of zero length format spec, make
it equivalent to str(obj) */
if (format_spec_len == 0) {
result = STRINGLIB_TOSTR(obj);
goto done;
}
/* parse the format_spec */
if (!parse_internal_render_format_spec(format_spec,
format_spec_len,
&format, 'd'))
goto done;
/* type conversion? */
switch (format.type) {
case 'b':
case 'c':
case 'd':
case 'o':
case 'x':
case 'X':
case 'n':
/* no type conversion needed, already an int (or long). do
the formatting */
result = format_int_or_long_internal(obj, &format, tostring);
break;
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
case '%':
/* convert to float */
tmp = PyNumber_Float(obj);
if (tmp == NULL)
goto done;
result = format_float_internal(obj, &format);
break;
default:
/* unknown */
PyErr_Format(PyExc_ValueError, "Unknown conversion type %c",
format.type);
goto done;
}
done:
Py_XDECREF(tmp);
return result;
}
#endif /* FORMAT_LONG || defined FORMAT_INT */
#ifdef FORMAT_LONG
/* Need to define long_format as a function that will convert a long
to a string. In 3.0, _PyLong_Format has the correct signature. In
2.x, we need to fudge a few parameters */
#if PY_VERSION_HEX >= 0x03000000
#define long_format _PyLong_Format
#else
static PyObject*
long_format(PyObject* value, int base)
{
/* Convert to base, don't add trailing 'L', and use the new octal
format. We already know this is a long object */
assert(PyLong_Check(value));
/* convert to base, don't add 'L', and use the new octal format */
return _PyLong_Format(value, base, 0, 1);
}
#endif
PyObject *
FORMAT_LONG(PyObject *obj,
STRINGLIB_CHAR *format_spec,
Py_ssize_t format_spec_len)
{
return format_int_or_long(obj, format_spec, format_spec_len,
long_format);
}
#endif /* FORMAT_LONG */
#ifdef FORMAT_INT
/* this is only used for 2.x, not 3.0 */
static PyObject*
int_format(PyObject* value, int base)
{
/* Convert to base, and use the new octal format. We already
know this is an int object */
assert(PyInt_Check(value));
return _PyInt_Format((PyIntObject*)value, base, 1);
}
PyObject *
FORMAT_INT(PyObject *obj,
STRINGLIB_CHAR *format_spec,
Py_ssize_t format_spec_len)
{
return format_int_or_long(obj, format_spec, format_spec_len,
int_format);
}
#endif /* FORMAT_INT */
#ifdef FORMAT_FLOAT
PyObject *
FORMAT_FLOAT(PyObject *obj,
STRINGLIB_CHAR *format_spec,
Py_ssize_t format_spec_len)
{
PyObject *result = NULL;
InternalFormatSpec format;
/* check for the special case of zero length format spec, make
it equivalent to str(obj) */
if (format_spec_len == 0) {
result = STRINGLIB_TOSTR(obj);
goto done;
}
/* parse the format_spec */
if (!parse_internal_render_format_spec(format_spec,
format_spec_len,
&format, '\0'))
goto done;
/* type conversion? */
switch (format.type) {
case '\0':
/* 'Z' means like 'g', but with at least one decimal. See
PyOS_ascii_formatd */
format.type = 'Z';
/* Deliberate fall through to the next case statement */
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
case 'n':
case '%':
/* no conversion, already a float. do the formatting */
result = format_float_internal(obj, &format);
break;
default:
/* unknown */
PyErr_Format(PyExc_ValueError, "Unknown conversion type %c",
format.type);
goto done;
}
done:
return result;
}
#endif /* FORMAT_FLOAT */