cpython/Modules/_hacl/Hacl_Streaming_SHA2.c

1337 lines
39 KiB
C

/* MIT License
*
* Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation
* Copyright (c) 2022-2023 HACL* Contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Hacl_Streaming_SHA2.h"
#include "internal/Hacl_SHA2_Generic.h"
static inline void sha256_init(uint32_t *hash)
{
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
uint32_t *os = hash;
uint32_t x = Hacl_Impl_SHA2_Generic_h256[i];
os[i] = x;);
}
static inline void sha256_update0(uint8_t *b, uint32_t *hash)
{
uint32_t hash_old[8U] = { 0U };
uint32_t ws[16U] = { 0U };
memcpy(hash_old, hash, (uint32_t)8U * sizeof (uint32_t));
uint8_t *b10 = b;
uint32_t u = load32_be(b10);
ws[0U] = u;
uint32_t u0 = load32_be(b10 + (uint32_t)4U);
ws[1U] = u0;
uint32_t u1 = load32_be(b10 + (uint32_t)8U);
ws[2U] = u1;
uint32_t u2 = load32_be(b10 + (uint32_t)12U);
ws[3U] = u2;
uint32_t u3 = load32_be(b10 + (uint32_t)16U);
ws[4U] = u3;
uint32_t u4 = load32_be(b10 + (uint32_t)20U);
ws[5U] = u4;
uint32_t u5 = load32_be(b10 + (uint32_t)24U);
ws[6U] = u5;
uint32_t u6 = load32_be(b10 + (uint32_t)28U);
ws[7U] = u6;
uint32_t u7 = load32_be(b10 + (uint32_t)32U);
ws[8U] = u7;
uint32_t u8 = load32_be(b10 + (uint32_t)36U);
ws[9U] = u8;
uint32_t u9 = load32_be(b10 + (uint32_t)40U);
ws[10U] = u9;
uint32_t u10 = load32_be(b10 + (uint32_t)44U);
ws[11U] = u10;
uint32_t u11 = load32_be(b10 + (uint32_t)48U);
ws[12U] = u11;
uint32_t u12 = load32_be(b10 + (uint32_t)52U);
ws[13U] = u12;
uint32_t u13 = load32_be(b10 + (uint32_t)56U);
ws[14U] = u13;
uint32_t u14 = load32_be(b10 + (uint32_t)60U);
ws[15U] = u14;
KRML_MAYBE_FOR4(i0,
(uint32_t)0U,
(uint32_t)4U,
(uint32_t)1U,
KRML_MAYBE_FOR16(i,
(uint32_t)0U,
(uint32_t)16U,
(uint32_t)1U,
uint32_t k_t = Hacl_Impl_SHA2_Generic_k224_256[(uint32_t)16U * i0 + i];
uint32_t ws_t = ws[i];
uint32_t a0 = hash[0U];
uint32_t b0 = hash[1U];
uint32_t c0 = hash[2U];
uint32_t d0 = hash[3U];
uint32_t e0 = hash[4U];
uint32_t f0 = hash[5U];
uint32_t g0 = hash[6U];
uint32_t h02 = hash[7U];
uint32_t k_e_t = k_t;
uint32_t
t1 =
h02
+
((e0 << (uint32_t)26U | e0 >> (uint32_t)6U)
^
((e0 << (uint32_t)21U | e0 >> (uint32_t)11U)
^ (e0 << (uint32_t)7U | e0 >> (uint32_t)25U)))
+ ((e0 & f0) ^ (~e0 & g0))
+ k_e_t
+ ws_t;
uint32_t
t2 =
((a0 << (uint32_t)30U | a0 >> (uint32_t)2U)
^
((a0 << (uint32_t)19U | a0 >> (uint32_t)13U)
^ (a0 << (uint32_t)10U | a0 >> (uint32_t)22U)))
+ ((a0 & b0) ^ ((a0 & c0) ^ (b0 & c0)));
uint32_t a1 = t1 + t2;
uint32_t b1 = a0;
uint32_t c1 = b0;
uint32_t d1 = c0;
uint32_t e1 = d0 + t1;
uint32_t f1 = e0;
uint32_t g1 = f0;
uint32_t h12 = g0;
hash[0U] = a1;
hash[1U] = b1;
hash[2U] = c1;
hash[3U] = d1;
hash[4U] = e1;
hash[5U] = f1;
hash[6U] = g1;
hash[7U] = h12;);
if (i0 < (uint32_t)3U)
{
KRML_MAYBE_FOR16(i,
(uint32_t)0U,
(uint32_t)16U,
(uint32_t)1U,
uint32_t t16 = ws[i];
uint32_t t15 = ws[(i + (uint32_t)1U) % (uint32_t)16U];
uint32_t t7 = ws[(i + (uint32_t)9U) % (uint32_t)16U];
uint32_t t2 = ws[(i + (uint32_t)14U) % (uint32_t)16U];
uint32_t
s1 =
(t2 << (uint32_t)15U | t2 >> (uint32_t)17U)
^ ((t2 << (uint32_t)13U | t2 >> (uint32_t)19U) ^ t2 >> (uint32_t)10U);
uint32_t
s0 =
(t15 << (uint32_t)25U | t15 >> (uint32_t)7U)
^ ((t15 << (uint32_t)14U | t15 >> (uint32_t)18U) ^ t15 >> (uint32_t)3U);
ws[i] = s1 + t7 + s0 + t16;);
});
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
uint32_t *os = hash;
uint32_t x = hash[i] + hash_old[i];
os[i] = x;);
}
static inline void sha256_update_nblocks(uint32_t len, uint8_t *b, uint32_t *st)
{
uint32_t blocks = len / (uint32_t)64U;
for (uint32_t i = (uint32_t)0U; i < blocks; i++)
{
uint8_t *b0 = b;
uint8_t *mb = b0 + i * (uint32_t)64U;
sha256_update0(mb, st);
}
}
static inline void
sha256_update_last(uint64_t totlen, uint32_t len, uint8_t *b, uint32_t *hash)
{
uint32_t blocks;
if (len + (uint32_t)8U + (uint32_t)1U <= (uint32_t)64U)
{
blocks = (uint32_t)1U;
}
else
{
blocks = (uint32_t)2U;
}
uint32_t fin = blocks * (uint32_t)64U;
uint8_t last[128U] = { 0U };
uint8_t totlen_buf[8U] = { 0U };
uint64_t total_len_bits = totlen << (uint32_t)3U;
store64_be(totlen_buf, total_len_bits);
uint8_t *b0 = b;
memcpy(last, b0, len * sizeof (uint8_t));
last[len] = (uint8_t)0x80U;
memcpy(last + fin - (uint32_t)8U, totlen_buf, (uint32_t)8U * sizeof (uint8_t));
uint8_t *last00 = last;
uint8_t *last10 = last + (uint32_t)64U;
uint8_t *l0 = last00;
uint8_t *l1 = last10;
uint8_t *lb0 = l0;
uint8_t *lb1 = l1;
uint8_t *last0 = lb0;
uint8_t *last1 = lb1;
sha256_update0(last0, hash);
if (blocks > (uint32_t)1U)
{
sha256_update0(last1, hash);
return;
}
}
static inline void sha256_finish(uint32_t *st, uint8_t *h)
{
uint8_t hbuf[32U] = { 0U };
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
store32_be(hbuf + i * (uint32_t)4U, st[i]););
memcpy(h, hbuf, (uint32_t)32U * sizeof (uint8_t));
}
static inline void sha224_init(uint32_t *hash)
{
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
uint32_t *os = hash;
uint32_t x = Hacl_Impl_SHA2_Generic_h224[i];
os[i] = x;);
}
static inline void sha224_update_nblocks(uint32_t len, uint8_t *b, uint32_t *st)
{
sha256_update_nblocks(len, b, st);
}
static void sha224_update_last(uint64_t totlen, uint32_t len, uint8_t *b, uint32_t *st)
{
sha256_update_last(totlen, len, b, st);
}
static inline void sha224_finish(uint32_t *st, uint8_t *h)
{
uint8_t hbuf[32U] = { 0U };
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
store32_be(hbuf + i * (uint32_t)4U, st[i]););
memcpy(h, hbuf, (uint32_t)28U * sizeof (uint8_t));
}
void Hacl_SHA2_Scalar32_sha512_init(uint64_t *hash)
{
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
uint64_t *os = hash;
uint64_t x = Hacl_Impl_SHA2_Generic_h512[i];
os[i] = x;);
}
static inline void sha512_update(uint8_t *b, uint64_t *hash)
{
uint64_t hash_old[8U] = { 0U };
uint64_t ws[16U] = { 0U };
memcpy(hash_old, hash, (uint32_t)8U * sizeof (uint64_t));
uint8_t *b10 = b;
uint64_t u = load64_be(b10);
ws[0U] = u;
uint64_t u0 = load64_be(b10 + (uint32_t)8U);
ws[1U] = u0;
uint64_t u1 = load64_be(b10 + (uint32_t)16U);
ws[2U] = u1;
uint64_t u2 = load64_be(b10 + (uint32_t)24U);
ws[3U] = u2;
uint64_t u3 = load64_be(b10 + (uint32_t)32U);
ws[4U] = u3;
uint64_t u4 = load64_be(b10 + (uint32_t)40U);
ws[5U] = u4;
uint64_t u5 = load64_be(b10 + (uint32_t)48U);
ws[6U] = u5;
uint64_t u6 = load64_be(b10 + (uint32_t)56U);
ws[7U] = u6;
uint64_t u7 = load64_be(b10 + (uint32_t)64U);
ws[8U] = u7;
uint64_t u8 = load64_be(b10 + (uint32_t)72U);
ws[9U] = u8;
uint64_t u9 = load64_be(b10 + (uint32_t)80U);
ws[10U] = u9;
uint64_t u10 = load64_be(b10 + (uint32_t)88U);
ws[11U] = u10;
uint64_t u11 = load64_be(b10 + (uint32_t)96U);
ws[12U] = u11;
uint64_t u12 = load64_be(b10 + (uint32_t)104U);
ws[13U] = u12;
uint64_t u13 = load64_be(b10 + (uint32_t)112U);
ws[14U] = u13;
uint64_t u14 = load64_be(b10 + (uint32_t)120U);
ws[15U] = u14;
KRML_MAYBE_FOR5(i0,
(uint32_t)0U,
(uint32_t)5U,
(uint32_t)1U,
KRML_MAYBE_FOR16(i,
(uint32_t)0U,
(uint32_t)16U,
(uint32_t)1U,
uint64_t k_t = Hacl_Impl_SHA2_Generic_k384_512[(uint32_t)16U * i0 + i];
uint64_t ws_t = ws[i];
uint64_t a0 = hash[0U];
uint64_t b0 = hash[1U];
uint64_t c0 = hash[2U];
uint64_t d0 = hash[3U];
uint64_t e0 = hash[4U];
uint64_t f0 = hash[5U];
uint64_t g0 = hash[6U];
uint64_t h02 = hash[7U];
uint64_t k_e_t = k_t;
uint64_t
t1 =
h02
+
((e0 << (uint32_t)50U | e0 >> (uint32_t)14U)
^
((e0 << (uint32_t)46U | e0 >> (uint32_t)18U)
^ (e0 << (uint32_t)23U | e0 >> (uint32_t)41U)))
+ ((e0 & f0) ^ (~e0 & g0))
+ k_e_t
+ ws_t;
uint64_t
t2 =
((a0 << (uint32_t)36U | a0 >> (uint32_t)28U)
^
((a0 << (uint32_t)30U | a0 >> (uint32_t)34U)
^ (a0 << (uint32_t)25U | a0 >> (uint32_t)39U)))
+ ((a0 & b0) ^ ((a0 & c0) ^ (b0 & c0)));
uint64_t a1 = t1 + t2;
uint64_t b1 = a0;
uint64_t c1 = b0;
uint64_t d1 = c0;
uint64_t e1 = d0 + t1;
uint64_t f1 = e0;
uint64_t g1 = f0;
uint64_t h12 = g0;
hash[0U] = a1;
hash[1U] = b1;
hash[2U] = c1;
hash[3U] = d1;
hash[4U] = e1;
hash[5U] = f1;
hash[6U] = g1;
hash[7U] = h12;);
if (i0 < (uint32_t)4U)
{
KRML_MAYBE_FOR16(i,
(uint32_t)0U,
(uint32_t)16U,
(uint32_t)1U,
uint64_t t16 = ws[i];
uint64_t t15 = ws[(i + (uint32_t)1U) % (uint32_t)16U];
uint64_t t7 = ws[(i + (uint32_t)9U) % (uint32_t)16U];
uint64_t t2 = ws[(i + (uint32_t)14U) % (uint32_t)16U];
uint64_t
s1 =
(t2 << (uint32_t)45U | t2 >> (uint32_t)19U)
^ ((t2 << (uint32_t)3U | t2 >> (uint32_t)61U) ^ t2 >> (uint32_t)6U);
uint64_t
s0 =
(t15 << (uint32_t)63U | t15 >> (uint32_t)1U)
^ ((t15 << (uint32_t)56U | t15 >> (uint32_t)8U) ^ t15 >> (uint32_t)7U);
ws[i] = s1 + t7 + s0 + t16;);
});
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
uint64_t *os = hash;
uint64_t x = hash[i] + hash_old[i];
os[i] = x;);
}
static inline void sha512_update_nblocks(uint32_t len, uint8_t *b, uint64_t *st)
{
uint32_t blocks = len / (uint32_t)128U;
for (uint32_t i = (uint32_t)0U; i < blocks; i++)
{
uint8_t *b0 = b;
uint8_t *mb = b0 + i * (uint32_t)128U;
sha512_update(mb, st);
}
}
static inline void
sha512_update_last(FStar_UInt128_uint128 totlen, uint32_t len, uint8_t *b, uint64_t *hash)
{
uint32_t blocks;
if (len + (uint32_t)16U + (uint32_t)1U <= (uint32_t)128U)
{
blocks = (uint32_t)1U;
}
else
{
blocks = (uint32_t)2U;
}
uint32_t fin = blocks * (uint32_t)128U;
uint8_t last[256U] = { 0U };
uint8_t totlen_buf[16U] = { 0U };
FStar_UInt128_uint128 total_len_bits = FStar_UInt128_shift_left(totlen, (uint32_t)3U);
store128_be(totlen_buf, total_len_bits);
uint8_t *b0 = b;
memcpy(last, b0, len * sizeof (uint8_t));
last[len] = (uint8_t)0x80U;
memcpy(last + fin - (uint32_t)16U, totlen_buf, (uint32_t)16U * sizeof (uint8_t));
uint8_t *last00 = last;
uint8_t *last10 = last + (uint32_t)128U;
uint8_t *l0 = last00;
uint8_t *l1 = last10;
uint8_t *lb0 = l0;
uint8_t *lb1 = l1;
uint8_t *last0 = lb0;
uint8_t *last1 = lb1;
sha512_update(last0, hash);
if (blocks > (uint32_t)1U)
{
sha512_update(last1, hash);
return;
}
}
static inline void sha512_finish(uint64_t *st, uint8_t *h)
{
uint8_t hbuf[64U] = { 0U };
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
store64_be(hbuf + i * (uint32_t)8U, st[i]););
memcpy(h, hbuf, (uint32_t)64U * sizeof (uint8_t));
}
static inline void sha384_init(uint64_t *hash)
{
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
uint64_t *os = hash;
uint64_t x = Hacl_Impl_SHA2_Generic_h384[i];
os[i] = x;);
}
static inline void sha384_update_nblocks(uint32_t len, uint8_t *b, uint64_t *st)
{
sha512_update_nblocks(len, b, st);
}
static void
sha384_update_last(FStar_UInt128_uint128 totlen, uint32_t len, uint8_t *b, uint64_t *st)
{
sha512_update_last(totlen, len, b, st);
}
static inline void sha384_finish(uint64_t *st, uint8_t *h)
{
uint8_t hbuf[64U] = { 0U };
KRML_MAYBE_FOR8(i,
(uint32_t)0U,
(uint32_t)8U,
(uint32_t)1U,
store64_be(hbuf + i * (uint32_t)8U, st[i]););
memcpy(h, hbuf, (uint32_t)48U * sizeof (uint8_t));
}
/**
Allocate initial state for the SHA2_256 hash. The state is to be freed by
calling `free_256`.
*/
Hacl_Streaming_SHA2_state_sha2_224 *Hacl_Streaming_SHA2_create_in_256(void)
{
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t));
uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t));
Hacl_Streaming_SHA2_state_sha2_224
s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
Hacl_Streaming_SHA2_state_sha2_224
*p =
(Hacl_Streaming_SHA2_state_sha2_224 *)KRML_HOST_MALLOC(sizeof (
Hacl_Streaming_SHA2_state_sha2_224
));
p[0U] = s;
sha256_init(block_state);
return p;
}
/**
Copies the state passed as argument into a newly allocated state (deep copy).
The state is to be freed by calling `free_256`. Cloning the state this way is
useful, for instance, if your control-flow diverges and you need to feed
more (different) data into the hash in each branch.
*/
Hacl_Streaming_SHA2_state_sha2_224
*Hacl_Streaming_SHA2_copy_256(Hacl_Streaming_SHA2_state_sha2_224 *s0)
{
Hacl_Streaming_SHA2_state_sha2_224 scrut = *s0;
uint32_t *block_state0 = scrut.block_state;
uint8_t *buf0 = scrut.buf;
uint64_t total_len0 = scrut.total_len;
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t));
memcpy(buf, buf0, (uint32_t)64U * sizeof (uint8_t));
uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t));
memcpy(block_state, block_state0, (uint32_t)8U * sizeof (uint32_t));
Hacl_Streaming_SHA2_state_sha2_224
s = { .block_state = block_state, .buf = buf, .total_len = total_len0 };
Hacl_Streaming_SHA2_state_sha2_224
*p =
(Hacl_Streaming_SHA2_state_sha2_224 *)KRML_HOST_MALLOC(sizeof (
Hacl_Streaming_SHA2_state_sha2_224
));
p[0U] = s;
return p;
}
/**
Reset an existing state to the initial hash state with empty data.
*/
void Hacl_Streaming_SHA2_init_256(Hacl_Streaming_SHA2_state_sha2_224 *s)
{
Hacl_Streaming_SHA2_state_sha2_224 scrut = *s;
uint8_t *buf = scrut.buf;
uint32_t *block_state = scrut.block_state;
sha256_init(block_state);
Hacl_Streaming_SHA2_state_sha2_224
tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
s[0U] = tmp;
}
static inline uint32_t
update_224_256(Hacl_Streaming_SHA2_state_sha2_224 *p, uint8_t *data, uint32_t len)
{
Hacl_Streaming_SHA2_state_sha2_224 s = *p;
uint64_t total_len = s.total_len;
if ((uint64_t)len > (uint64_t)2305843009213693951U - total_len)
{
return (uint32_t)1U;
}
uint32_t sz;
if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U)
{
sz = (uint32_t)64U;
}
else
{
sz = (uint32_t)(total_len % (uint64_t)(uint32_t)64U);
}
if (len <= (uint32_t)64U - sz)
{
Hacl_Streaming_SHA2_state_sha2_224 s1 = *p;
uint32_t *block_state1 = s1.block_state;
uint8_t *buf = s1.buf;
uint64_t total_len1 = s1.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U)
{
sz1 = (uint32_t)64U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U);
}
uint8_t *buf2 = buf + sz1;
memcpy(buf2, data, len * sizeof (uint8_t));
uint64_t total_len2 = total_len1 + (uint64_t)len;
*p
=
(
(Hacl_Streaming_SHA2_state_sha2_224){
.block_state = block_state1,
.buf = buf,
.total_len = total_len2
}
);
}
else if (sz == (uint32_t)0U)
{
Hacl_Streaming_SHA2_state_sha2_224 s1 = *p;
uint32_t *block_state1 = s1.block_state;
uint8_t *buf = s1.buf;
uint64_t total_len1 = s1.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U)
{
sz1 = (uint32_t)64U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U);
}
if (!(sz1 == (uint32_t)0U))
{
sha256_update_nblocks((uint32_t)64U, buf, block_state1);
}
uint32_t ite;
if ((uint64_t)len % (uint64_t)(uint32_t)64U == (uint64_t)0U && (uint64_t)len > (uint64_t)0U)
{
ite = (uint32_t)64U;
}
else
{
ite = (uint32_t)((uint64_t)len % (uint64_t)(uint32_t)64U);
}
uint32_t n_blocks = (len - ite) / (uint32_t)64U;
uint32_t data1_len = n_blocks * (uint32_t)64U;
uint32_t data2_len = len - data1_len;
uint8_t *data1 = data;
uint8_t *data2 = data + data1_len;
sha256_update_nblocks(data1_len, data1, block_state1);
uint8_t *dst = buf;
memcpy(dst, data2, data2_len * sizeof (uint8_t));
*p
=
(
(Hacl_Streaming_SHA2_state_sha2_224){
.block_state = block_state1,
.buf = buf,
.total_len = total_len1 + (uint64_t)len
}
);
}
else
{
uint32_t diff = (uint32_t)64U - sz;
uint8_t *data1 = data;
uint8_t *data2 = data + diff;
Hacl_Streaming_SHA2_state_sha2_224 s1 = *p;
uint32_t *block_state10 = s1.block_state;
uint8_t *buf0 = s1.buf;
uint64_t total_len10 = s1.total_len;
uint32_t sz10;
if (total_len10 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len10 > (uint64_t)0U)
{
sz10 = (uint32_t)64U;
}
else
{
sz10 = (uint32_t)(total_len10 % (uint64_t)(uint32_t)64U);
}
uint8_t *buf2 = buf0 + sz10;
memcpy(buf2, data1, diff * sizeof (uint8_t));
uint64_t total_len2 = total_len10 + (uint64_t)diff;
*p
=
(
(Hacl_Streaming_SHA2_state_sha2_224){
.block_state = block_state10,
.buf = buf0,
.total_len = total_len2
}
);
Hacl_Streaming_SHA2_state_sha2_224 s10 = *p;
uint32_t *block_state1 = s10.block_state;
uint8_t *buf = s10.buf;
uint64_t total_len1 = s10.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len1 > (uint64_t)0U)
{
sz1 = (uint32_t)64U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)64U);
}
if (!(sz1 == (uint32_t)0U))
{
sha256_update_nblocks((uint32_t)64U, buf, block_state1);
}
uint32_t ite;
if
(
(uint64_t)(len - diff)
% (uint64_t)(uint32_t)64U
== (uint64_t)0U
&& (uint64_t)(len - diff) > (uint64_t)0U
)
{
ite = (uint32_t)64U;
}
else
{
ite = (uint32_t)((uint64_t)(len - diff) % (uint64_t)(uint32_t)64U);
}
uint32_t n_blocks = (len - diff - ite) / (uint32_t)64U;
uint32_t data1_len = n_blocks * (uint32_t)64U;
uint32_t data2_len = len - diff - data1_len;
uint8_t *data11 = data2;
uint8_t *data21 = data2 + data1_len;
sha256_update_nblocks(data1_len, data11, block_state1);
uint8_t *dst = buf;
memcpy(dst, data21, data2_len * sizeof (uint8_t));
*p
=
(
(Hacl_Streaming_SHA2_state_sha2_224){
.block_state = block_state1,
.buf = buf,
.total_len = total_len1 + (uint64_t)(len - diff)
}
);
}
return (uint32_t)0U;
}
/**
Feed an arbitrary amount of data into the hash. This function returns 0 for
success, or 1 if the combined length of all of the data passed to `update_256`
(since the last call to `init_256`) exceeds 2^61-1 bytes.
This function is identical to the update function for SHA2_224.
*/
uint32_t
Hacl_Streaming_SHA2_update_256(
Hacl_Streaming_SHA2_state_sha2_224 *p,
uint8_t *input,
uint32_t input_len
)
{
return update_224_256(p, input, input_len);
}
/**
Write the resulting hash into `dst`, an array of 32 bytes. The state remains
valid after a call to `finish_256`, meaning the user may feed more data into
the hash via `update_256`. (The finish_256 function operates on an internal copy of
the state and therefore does not invalidate the client-held state `p`.)
*/
void Hacl_Streaming_SHA2_finish_256(Hacl_Streaming_SHA2_state_sha2_224 *p, uint8_t *dst)
{
Hacl_Streaming_SHA2_state_sha2_224 scrut = *p;
uint32_t *block_state = scrut.block_state;
uint8_t *buf_ = scrut.buf;
uint64_t total_len = scrut.total_len;
uint32_t r;
if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U)
{
r = (uint32_t)64U;
}
else
{
r = (uint32_t)(total_len % (uint64_t)(uint32_t)64U);
}
uint8_t *buf_1 = buf_;
uint32_t tmp_block_state[8U] = { 0U };
memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint32_t));
uint32_t ite;
if (r % (uint32_t)64U == (uint32_t)0U && r > (uint32_t)0U)
{
ite = (uint32_t)64U;
}
else
{
ite = r % (uint32_t)64U;
}
uint8_t *buf_last = buf_1 + r - ite;
uint8_t *buf_multi = buf_1;
sha256_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state);
uint64_t prev_len_last = total_len - (uint64_t)r;
sha256_update_last(prev_len_last + (uint64_t)r, r, buf_last, tmp_block_state);
sha256_finish(tmp_block_state, dst);
}
/**
Free a state allocated with `create_in_256`.
This function is identical to the free function for SHA2_224.
*/
void Hacl_Streaming_SHA2_free_256(Hacl_Streaming_SHA2_state_sha2_224 *s)
{
Hacl_Streaming_SHA2_state_sha2_224 scrut = *s;
uint8_t *buf = scrut.buf;
uint32_t *block_state = scrut.block_state;
KRML_HOST_FREE(block_state);
KRML_HOST_FREE(buf);
KRML_HOST_FREE(s);
}
/**
Hash `input`, of len `input_len`, into `dst`, an array of 32 bytes.
*/
void Hacl_Streaming_SHA2_sha256(uint8_t *input, uint32_t input_len, uint8_t *dst)
{
uint8_t *ib = input;
uint8_t *rb = dst;
uint32_t st[8U] = { 0U };
sha256_init(st);
uint32_t rem = input_len % (uint32_t)64U;
uint64_t len_ = (uint64_t)input_len;
sha256_update_nblocks(input_len, ib, st);
uint32_t rem1 = input_len % (uint32_t)64U;
uint8_t *b0 = ib;
uint8_t *lb = b0 + input_len - rem1;
sha256_update_last(len_, rem, lb, st);
sha256_finish(st, rb);
}
Hacl_Streaming_SHA2_state_sha2_224 *Hacl_Streaming_SHA2_create_in_224(void)
{
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)64U, sizeof (uint8_t));
uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint32_t));
Hacl_Streaming_SHA2_state_sha2_224
s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
Hacl_Streaming_SHA2_state_sha2_224
*p =
(Hacl_Streaming_SHA2_state_sha2_224 *)KRML_HOST_MALLOC(sizeof (
Hacl_Streaming_SHA2_state_sha2_224
));
p[0U] = s;
sha224_init(block_state);
return p;
}
void Hacl_Streaming_SHA2_init_224(Hacl_Streaming_SHA2_state_sha2_224 *s)
{
Hacl_Streaming_SHA2_state_sha2_224 scrut = *s;
uint8_t *buf = scrut.buf;
uint32_t *block_state = scrut.block_state;
sha224_init(block_state);
Hacl_Streaming_SHA2_state_sha2_224
tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
s[0U] = tmp;
}
uint32_t
Hacl_Streaming_SHA2_update_224(
Hacl_Streaming_SHA2_state_sha2_224 *p,
uint8_t *input,
uint32_t input_len
)
{
return update_224_256(p, input, input_len);
}
/**
Write the resulting hash into `dst`, an array of 28 bytes. The state remains
valid after a call to `finish_224`, meaning the user may feed more data into
the hash via `update_224`.
*/
void Hacl_Streaming_SHA2_finish_224(Hacl_Streaming_SHA2_state_sha2_224 *p, uint8_t *dst)
{
Hacl_Streaming_SHA2_state_sha2_224 scrut = *p;
uint32_t *block_state = scrut.block_state;
uint8_t *buf_ = scrut.buf;
uint64_t total_len = scrut.total_len;
uint32_t r;
if (total_len % (uint64_t)(uint32_t)64U == (uint64_t)0U && total_len > (uint64_t)0U)
{
r = (uint32_t)64U;
}
else
{
r = (uint32_t)(total_len % (uint64_t)(uint32_t)64U);
}
uint8_t *buf_1 = buf_;
uint32_t tmp_block_state[8U] = { 0U };
memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint32_t));
uint32_t ite;
if (r % (uint32_t)64U == (uint32_t)0U && r > (uint32_t)0U)
{
ite = (uint32_t)64U;
}
else
{
ite = r % (uint32_t)64U;
}
uint8_t *buf_last = buf_1 + r - ite;
uint8_t *buf_multi = buf_1;
sha224_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state);
uint64_t prev_len_last = total_len - (uint64_t)r;
sha224_update_last(prev_len_last + (uint64_t)r, r, buf_last, tmp_block_state);
sha224_finish(tmp_block_state, dst);
}
void Hacl_Streaming_SHA2_free_224(Hacl_Streaming_SHA2_state_sha2_224 *p)
{
Hacl_Streaming_SHA2_free_256(p);
}
/**
Hash `input`, of len `input_len`, into `dst`, an array of 28 bytes.
*/
void Hacl_Streaming_SHA2_sha224(uint8_t *input, uint32_t input_len, uint8_t *dst)
{
uint8_t *ib = input;
uint8_t *rb = dst;
uint32_t st[8U] = { 0U };
sha224_init(st);
uint32_t rem = input_len % (uint32_t)64U;
uint64_t len_ = (uint64_t)input_len;
sha224_update_nblocks(input_len, ib, st);
uint32_t rem1 = input_len % (uint32_t)64U;
uint8_t *b0 = ib;
uint8_t *lb = b0 + input_len - rem1;
sha224_update_last(len_, rem, lb, st);
sha224_finish(st, rb);
}
Hacl_Streaming_SHA2_state_sha2_384 *Hacl_Streaming_SHA2_create_in_512(void)
{
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t));
uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t));
Hacl_Streaming_SHA2_state_sha2_384
s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
Hacl_Streaming_SHA2_state_sha2_384
*p =
(Hacl_Streaming_SHA2_state_sha2_384 *)KRML_HOST_MALLOC(sizeof (
Hacl_Streaming_SHA2_state_sha2_384
));
p[0U] = s;
Hacl_SHA2_Scalar32_sha512_init(block_state);
return p;
}
/**
Copies the state passed as argument into a newly allocated state (deep copy).
The state is to be freed by calling `free_512`. Cloning the state this way is
useful, for instance, if your control-flow diverges and you need to feed
more (different) data into the hash in each branch.
*/
Hacl_Streaming_SHA2_state_sha2_384
*Hacl_Streaming_SHA2_copy_512(Hacl_Streaming_SHA2_state_sha2_384 *s0)
{
Hacl_Streaming_SHA2_state_sha2_384 scrut = *s0;
uint64_t *block_state0 = scrut.block_state;
uint8_t *buf0 = scrut.buf;
uint64_t total_len0 = scrut.total_len;
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t));
memcpy(buf, buf0, (uint32_t)128U * sizeof (uint8_t));
uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t));
memcpy(block_state, block_state0, (uint32_t)8U * sizeof (uint64_t));
Hacl_Streaming_SHA2_state_sha2_384
s = { .block_state = block_state, .buf = buf, .total_len = total_len0 };
Hacl_Streaming_SHA2_state_sha2_384
*p =
(Hacl_Streaming_SHA2_state_sha2_384 *)KRML_HOST_MALLOC(sizeof (
Hacl_Streaming_SHA2_state_sha2_384
));
p[0U] = s;
return p;
}
void Hacl_Streaming_SHA2_init_512(Hacl_Streaming_SHA2_state_sha2_384 *s)
{
Hacl_Streaming_SHA2_state_sha2_384 scrut = *s;
uint8_t *buf = scrut.buf;
uint64_t *block_state = scrut.block_state;
Hacl_SHA2_Scalar32_sha512_init(block_state);
Hacl_Streaming_SHA2_state_sha2_384
tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
s[0U] = tmp;
}
static inline uint32_t
update_384_512(Hacl_Streaming_SHA2_state_sha2_384 *p, uint8_t *data, uint32_t len)
{
Hacl_Streaming_SHA2_state_sha2_384 s = *p;
uint64_t total_len = s.total_len;
if ((uint64_t)len > (uint64_t)18446744073709551615U - total_len)
{
return (uint32_t)1U;
}
uint32_t sz;
if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U)
{
sz = (uint32_t)128U;
}
else
{
sz = (uint32_t)(total_len % (uint64_t)(uint32_t)128U);
}
if (len <= (uint32_t)128U - sz)
{
Hacl_Streaming_SHA2_state_sha2_384 s1 = *p;
uint64_t *block_state1 = s1.block_state;
uint8_t *buf = s1.buf;
uint64_t total_len1 = s1.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U)
{
sz1 = (uint32_t)128U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U);
}
uint8_t *buf2 = buf + sz1;
memcpy(buf2, data, len * sizeof (uint8_t));
uint64_t total_len2 = total_len1 + (uint64_t)len;
*p
=
(
(Hacl_Streaming_SHA2_state_sha2_384){
.block_state = block_state1,
.buf = buf,
.total_len = total_len2
}
);
}
else if (sz == (uint32_t)0U)
{
Hacl_Streaming_SHA2_state_sha2_384 s1 = *p;
uint64_t *block_state1 = s1.block_state;
uint8_t *buf = s1.buf;
uint64_t total_len1 = s1.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U)
{
sz1 = (uint32_t)128U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U);
}
if (!(sz1 == (uint32_t)0U))
{
sha512_update_nblocks((uint32_t)128U, buf, block_state1);
}
uint32_t ite;
if ((uint64_t)len % (uint64_t)(uint32_t)128U == (uint64_t)0U && (uint64_t)len > (uint64_t)0U)
{
ite = (uint32_t)128U;
}
else
{
ite = (uint32_t)((uint64_t)len % (uint64_t)(uint32_t)128U);
}
uint32_t n_blocks = (len - ite) / (uint32_t)128U;
uint32_t data1_len = n_blocks * (uint32_t)128U;
uint32_t data2_len = len - data1_len;
uint8_t *data1 = data;
uint8_t *data2 = data + data1_len;
sha512_update_nblocks(data1_len, data1, block_state1);
uint8_t *dst = buf;
memcpy(dst, data2, data2_len * sizeof (uint8_t));
*p
=
(
(Hacl_Streaming_SHA2_state_sha2_384){
.block_state = block_state1,
.buf = buf,
.total_len = total_len1 + (uint64_t)len
}
);
}
else
{
uint32_t diff = (uint32_t)128U - sz;
uint8_t *data1 = data;
uint8_t *data2 = data + diff;
Hacl_Streaming_SHA2_state_sha2_384 s1 = *p;
uint64_t *block_state10 = s1.block_state;
uint8_t *buf0 = s1.buf;
uint64_t total_len10 = s1.total_len;
uint32_t sz10;
if (total_len10 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len10 > (uint64_t)0U)
{
sz10 = (uint32_t)128U;
}
else
{
sz10 = (uint32_t)(total_len10 % (uint64_t)(uint32_t)128U);
}
uint8_t *buf2 = buf0 + sz10;
memcpy(buf2, data1, diff * sizeof (uint8_t));
uint64_t total_len2 = total_len10 + (uint64_t)diff;
*p
=
(
(Hacl_Streaming_SHA2_state_sha2_384){
.block_state = block_state10,
.buf = buf0,
.total_len = total_len2
}
);
Hacl_Streaming_SHA2_state_sha2_384 s10 = *p;
uint64_t *block_state1 = s10.block_state;
uint8_t *buf = s10.buf;
uint64_t total_len1 = s10.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len1 > (uint64_t)0U)
{
sz1 = (uint32_t)128U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)(uint32_t)128U);
}
if (!(sz1 == (uint32_t)0U))
{
sha512_update_nblocks((uint32_t)128U, buf, block_state1);
}
uint32_t ite;
if
(
(uint64_t)(len - diff)
% (uint64_t)(uint32_t)128U
== (uint64_t)0U
&& (uint64_t)(len - diff) > (uint64_t)0U
)
{
ite = (uint32_t)128U;
}
else
{
ite = (uint32_t)((uint64_t)(len - diff) % (uint64_t)(uint32_t)128U);
}
uint32_t n_blocks = (len - diff - ite) / (uint32_t)128U;
uint32_t data1_len = n_blocks * (uint32_t)128U;
uint32_t data2_len = len - diff - data1_len;
uint8_t *data11 = data2;
uint8_t *data21 = data2 + data1_len;
sha512_update_nblocks(data1_len, data11, block_state1);
uint8_t *dst = buf;
memcpy(dst, data21, data2_len * sizeof (uint8_t));
*p
=
(
(Hacl_Streaming_SHA2_state_sha2_384){
.block_state = block_state1,
.buf = buf,
.total_len = total_len1 + (uint64_t)(len - diff)
}
);
}
return (uint32_t)0U;
}
/**
Feed an arbitrary amount of data into the hash. This function returns 0 for
success, or 1 if the combined length of all of the data passed to `update_512`
(since the last call to `init_512`) exceeds 2^125-1 bytes.
This function is identical to the update function for SHA2_384.
*/
uint32_t
Hacl_Streaming_SHA2_update_512(
Hacl_Streaming_SHA2_state_sha2_384 *p,
uint8_t *input,
uint32_t input_len
)
{
return update_384_512(p, input, input_len);
}
/**
Write the resulting hash into `dst`, an array of 64 bytes. The state remains
valid after a call to `finish_512`, meaning the user may feed more data into
the hash via `update_512`. (The finish_512 function operates on an internal copy of
the state and therefore does not invalidate the client-held state `p`.)
*/
void Hacl_Streaming_SHA2_finish_512(Hacl_Streaming_SHA2_state_sha2_384 *p, uint8_t *dst)
{
Hacl_Streaming_SHA2_state_sha2_384 scrut = *p;
uint64_t *block_state = scrut.block_state;
uint8_t *buf_ = scrut.buf;
uint64_t total_len = scrut.total_len;
uint32_t r;
if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U)
{
r = (uint32_t)128U;
}
else
{
r = (uint32_t)(total_len % (uint64_t)(uint32_t)128U);
}
uint8_t *buf_1 = buf_;
uint64_t tmp_block_state[8U] = { 0U };
memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint64_t));
uint32_t ite;
if (r % (uint32_t)128U == (uint32_t)0U && r > (uint32_t)0U)
{
ite = (uint32_t)128U;
}
else
{
ite = r % (uint32_t)128U;
}
uint8_t *buf_last = buf_1 + r - ite;
uint8_t *buf_multi = buf_1;
sha512_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state);
uint64_t prev_len_last = total_len - (uint64_t)r;
sha512_update_last(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128(prev_len_last),
FStar_UInt128_uint64_to_uint128((uint64_t)r)),
r,
buf_last,
tmp_block_state);
sha512_finish(tmp_block_state, dst);
}
/**
Free a state allocated with `create_in_512`.
This function is identical to the free function for SHA2_384.
*/
void Hacl_Streaming_SHA2_free_512(Hacl_Streaming_SHA2_state_sha2_384 *s)
{
Hacl_Streaming_SHA2_state_sha2_384 scrut = *s;
uint8_t *buf = scrut.buf;
uint64_t *block_state = scrut.block_state;
KRML_HOST_FREE(block_state);
KRML_HOST_FREE(buf);
KRML_HOST_FREE(s);
}
/**
Hash `input`, of len `input_len`, into `dst`, an array of 64 bytes.
*/
void Hacl_Streaming_SHA2_sha512(uint8_t *input, uint32_t input_len, uint8_t *dst)
{
uint8_t *ib = input;
uint8_t *rb = dst;
uint64_t st[8U] = { 0U };
Hacl_SHA2_Scalar32_sha512_init(st);
uint32_t rem = input_len % (uint32_t)128U;
FStar_UInt128_uint128 len_ = FStar_UInt128_uint64_to_uint128((uint64_t)input_len);
sha512_update_nblocks(input_len, ib, st);
uint32_t rem1 = input_len % (uint32_t)128U;
uint8_t *b0 = ib;
uint8_t *lb = b0 + input_len - rem1;
sha512_update_last(len_, rem, lb, st);
sha512_finish(st, rb);
}
Hacl_Streaming_SHA2_state_sha2_384 *Hacl_Streaming_SHA2_create_in_384(void)
{
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC((uint32_t)128U, sizeof (uint8_t));
uint64_t *block_state = (uint64_t *)KRML_HOST_CALLOC((uint32_t)8U, sizeof (uint64_t));
Hacl_Streaming_SHA2_state_sha2_384
s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
Hacl_Streaming_SHA2_state_sha2_384
*p =
(Hacl_Streaming_SHA2_state_sha2_384 *)KRML_HOST_MALLOC(sizeof (
Hacl_Streaming_SHA2_state_sha2_384
));
p[0U] = s;
sha384_init(block_state);
return p;
}
void Hacl_Streaming_SHA2_init_384(Hacl_Streaming_SHA2_state_sha2_384 *s)
{
Hacl_Streaming_SHA2_state_sha2_384 scrut = *s;
uint8_t *buf = scrut.buf;
uint64_t *block_state = scrut.block_state;
sha384_init(block_state);
Hacl_Streaming_SHA2_state_sha2_384
tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)(uint32_t)0U };
s[0U] = tmp;
}
uint32_t
Hacl_Streaming_SHA2_update_384(
Hacl_Streaming_SHA2_state_sha2_384 *p,
uint8_t *input,
uint32_t input_len
)
{
return update_384_512(p, input, input_len);
}
/**
Write the resulting hash into `dst`, an array of 48 bytes. The state remains
valid after a call to `finish_384`, meaning the user may feed more data into
the hash via `update_384`.
*/
void Hacl_Streaming_SHA2_finish_384(Hacl_Streaming_SHA2_state_sha2_384 *p, uint8_t *dst)
{
Hacl_Streaming_SHA2_state_sha2_384 scrut = *p;
uint64_t *block_state = scrut.block_state;
uint8_t *buf_ = scrut.buf;
uint64_t total_len = scrut.total_len;
uint32_t r;
if (total_len % (uint64_t)(uint32_t)128U == (uint64_t)0U && total_len > (uint64_t)0U)
{
r = (uint32_t)128U;
}
else
{
r = (uint32_t)(total_len % (uint64_t)(uint32_t)128U);
}
uint8_t *buf_1 = buf_;
uint64_t tmp_block_state[8U] = { 0U };
memcpy(tmp_block_state, block_state, (uint32_t)8U * sizeof (uint64_t));
uint32_t ite;
if (r % (uint32_t)128U == (uint32_t)0U && r > (uint32_t)0U)
{
ite = (uint32_t)128U;
}
else
{
ite = r % (uint32_t)128U;
}
uint8_t *buf_last = buf_1 + r - ite;
uint8_t *buf_multi = buf_1;
sha384_update_nblocks((uint32_t)0U, buf_multi, tmp_block_state);
uint64_t prev_len_last = total_len - (uint64_t)r;
sha384_update_last(FStar_UInt128_add(FStar_UInt128_uint64_to_uint128(prev_len_last),
FStar_UInt128_uint64_to_uint128((uint64_t)r)),
r,
buf_last,
tmp_block_state);
sha384_finish(tmp_block_state, dst);
}
void Hacl_Streaming_SHA2_free_384(Hacl_Streaming_SHA2_state_sha2_384 *p)
{
Hacl_Streaming_SHA2_free_512(p);
}
/**
Hash `input`, of len `input_len`, into `dst`, an array of 48 bytes.
*/
void Hacl_Streaming_SHA2_sha384(uint8_t *input, uint32_t input_len, uint8_t *dst)
{
uint8_t *ib = input;
uint8_t *rb = dst;
uint64_t st[8U] = { 0U };
sha384_init(st);
uint32_t rem = input_len % (uint32_t)128U;
FStar_UInt128_uint128 len_ = FStar_UInt128_uint64_to_uint128((uint64_t)input_len);
sha384_update_nblocks(input_len, ib, st);
uint32_t rem1 = input_len % (uint32_t)128U;
uint8_t *b0 = ib;
uint8_t *lb = b0 + input_len - rem1;
sha384_update_last(len_, rem, lb, st);
sha384_finish(st, rb);
}