mirror of https://github.com/python/cpython
75 lines
3.0 KiB
TeX
75 lines
3.0 KiB
TeX
\section{Built-in module \sectcode{mpz}}
|
|
\bimodindex{mpz}
|
|
|
|
This module implements the interface to part of the GNU MP library.
|
|
This library contains arbitrary precision integer and rational number
|
|
arithmetic routines. Only the interfaces to the \emph{integer}
|
|
(\samp{mpz_{\rm \ldots}}) routines are provided. If not stated
|
|
otherwise, the description in the GNU MP documentation can be applied.
|
|
|
|
In general, \dfn{mpz}-numbers can be used just like other standard
|
|
Python numbers, e.g. you can use the built-in operators like \code{+},
|
|
\code{*}, etc., as well as the standard built-in functions like
|
|
\code{abs}, \code{int}, \ldots, \code{divmod}, \code{pow}.
|
|
\strong{Please note:} the {\it bitwise-xor} operation has been implemented as
|
|
a bunch of {\it and}s, {\it invert}s and {\it or}s, because the library
|
|
lacks an \code{mpz_xor} function, and I didn't need one.
|
|
|
|
You create an mpz-number, by calling the function called \code{mpz} (see
|
|
below for an excact description). An mpz-number is printed like this:
|
|
\code{mpz(\var{value})}.
|
|
|
|
\renewcommand{\indexsubitem}{(in module mpz)}
|
|
\begin{funcdesc}{mpz}{value}
|
|
Create a new mpz-number. \var{value} can be an integer, a long,
|
|
another mpz-number, or even a string. If it is a string, it is
|
|
interpreted as an array of radix-256 digits, least significant digit
|
|
first, resulting in a positive number. See also the \code{binary}
|
|
method, described below.
|
|
\end{funcdesc}
|
|
|
|
A number of {\em extra} functions are defined in this module. Non
|
|
mpz-arguments are converted to mpz-values first, and the functions
|
|
return mpz-numbers.
|
|
|
|
\begin{funcdesc}{powm}{base\, exponent\, modulus}
|
|
Return \code{pow(\var{base}, \var{exponent}) \%{} \var{modulus}}. If
|
|
\code{\var{exponent} == 0}, return \code{mpz(1)}. In contrast to the
|
|
\C-library function, this version can handle negative exponents.
|
|
\end{funcdesc}
|
|
|
|
\begin{funcdesc}{gcd}{op1\, op2}
|
|
Return the greatest common divisor of \var{op1} and \var{op2}.
|
|
\end{funcdesc}
|
|
|
|
\begin{funcdesc}{gcdext}{a\, b}
|
|
Return a tuple \code{(\var{g}, \var{s}, \var{t})}, such that
|
|
\code{\var{a}*\var{s} + \var{b}*\var{t} == \var{g} == gcd(\var{a}, \var{b})}.
|
|
\end{funcdesc}
|
|
|
|
\begin{funcdesc}{sqrt}{op}
|
|
Return the square root of \var{op}. The result is rounded towards zero.
|
|
\end{funcdesc}
|
|
|
|
\begin{funcdesc}{sqrtrem}{op}
|
|
Return a tuple \code{(\var{root}, \var{remainder})}, such that
|
|
\code{\var{root}*\var{root} + \var{remainder} == \var{op}}.
|
|
\end{funcdesc}
|
|
|
|
\begin{funcdesc}{divm}{numerator\, denominator\, modulus}
|
|
Returns a number \var{q}. such that
|
|
\code{\var{q} * \var{denominator} \%{} \var{modulus} == \var{numerator}}.
|
|
One could also implement this function in python, using \code{gcdext}.
|
|
\end{funcdesc}
|
|
|
|
An mpz-number has one method:
|
|
|
|
\renewcommand{\indexsubitem}{(mpz method)}
|
|
\begin{funcdesc}{binary}{}
|
|
Convert this mpz-number to a binary string, where the number has been
|
|
stored as an array of radix-256 digits, least significant digit first.
|
|
|
|
The mpz-number must have a value greater than- or equal to zero,
|
|
otherwise a \code{ValueError}-exception will be raised.
|
|
\end{funcdesc}
|