mirror of https://github.com/python/cpython
7463 lines
218 KiB
C
7463 lines
218 KiB
C
/* Dictionary object implementation using a hash table */
|
|
|
|
/* The distribution includes a separate file, Objects/dictnotes.txt,
|
|
describing explorations into dictionary design and optimization.
|
|
It covers typical dictionary use patterns, the parameters for
|
|
tuning dictionaries, and several ideas for possible optimizations.
|
|
*/
|
|
|
|
/* PyDictKeysObject
|
|
|
|
This implements the dictionary's hashtable.
|
|
|
|
As of Python 3.6, this is compact and ordered. Basic idea is described here:
|
|
* https://mail.python.org/pipermail/python-dev/2012-December/123028.html
|
|
* https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
|
|
|
|
layout:
|
|
|
|
+---------------------+
|
|
| dk_refcnt |
|
|
| dk_log2_size |
|
|
| dk_log2_index_bytes |
|
|
| dk_kind |
|
|
| dk_version |
|
|
| dk_usable |
|
|
| dk_nentries |
|
|
+---------------------+
|
|
| dk_indices[] |
|
|
| |
|
|
+---------------------+
|
|
| dk_entries[] |
|
|
| |
|
|
+---------------------+
|
|
|
|
dk_indices is actual hashtable. It holds index in entries, or DKIX_EMPTY(-1)
|
|
or DKIX_DUMMY(-2).
|
|
Size of indices is dk_size. Type of each index in indices varies with dk_size:
|
|
|
|
* int8 for dk_size <= 128
|
|
* int16 for 256 <= dk_size <= 2**15
|
|
* int32 for 2**16 <= dk_size <= 2**31
|
|
* int64 for 2**32 <= dk_size
|
|
|
|
dk_entries is array of PyDictKeyEntry when dk_kind == DICT_KEYS_GENERAL or
|
|
PyDictUnicodeEntry otherwise. Its length is USABLE_FRACTION(dk_size).
|
|
|
|
NOTE: Since negative value is used for DKIX_EMPTY and DKIX_DUMMY, type of
|
|
dk_indices entry is signed integer and int16 is used for table which
|
|
dk_size == 256.
|
|
*/
|
|
|
|
|
|
/*
|
|
The DictObject can be in one of two forms.
|
|
|
|
Either:
|
|
A combined table:
|
|
ma_values == NULL, dk_refcnt == 1.
|
|
Values are stored in the me_value field of the PyDictKeyEntry.
|
|
Or:
|
|
A split table:
|
|
ma_values != NULL, dk_refcnt >= 1
|
|
Values are stored in the ma_values array.
|
|
Only string (unicode) keys are allowed.
|
|
|
|
There are four kinds of slots in the table (slot is index, and
|
|
DK_ENTRIES(keys)[index] if index >= 0):
|
|
|
|
1. Unused. index == DKIX_EMPTY
|
|
Does not hold an active (key, value) pair now and never did. Unused can
|
|
transition to Active upon key insertion. This is each slot's initial state.
|
|
|
|
2. Active. index >= 0, me_key != NULL and me_value != NULL
|
|
Holds an active (key, value) pair. Active can transition to Dummy or
|
|
Pending upon key deletion (for combined and split tables respectively).
|
|
This is the only case in which me_value != NULL.
|
|
|
|
3. Dummy. index == DKIX_DUMMY (combined only)
|
|
Previously held an active (key, value) pair, but that was deleted and an
|
|
active pair has not yet overwritten the slot. Dummy can transition to
|
|
Active upon key insertion. Dummy slots cannot be made Unused again
|
|
else the probe sequence in case of collision would have no way to know
|
|
they were once active.
|
|
In free-threaded builds dummy slots are not re-used to allow lock-free
|
|
lookups to proceed safely.
|
|
|
|
4. Pending. index >= 0, key != NULL, and value == NULL (split only)
|
|
Not yet inserted in split-table.
|
|
*/
|
|
|
|
/*
|
|
Preserving insertion order
|
|
|
|
It's simple for combined table. Since dk_entries is mostly append only, we can
|
|
get insertion order by just iterating dk_entries.
|
|
|
|
One exception is .popitem(). It removes last item in dk_entries and decrement
|
|
dk_nentries to achieve amortized O(1). Since there are DKIX_DUMMY remains in
|
|
dk_indices, we can't increment dk_usable even though dk_nentries is
|
|
decremented.
|
|
|
|
To preserve the order in a split table, a bit vector is used to record the
|
|
insertion order. When a key is inserted the bit vector is shifted up by 4 bits
|
|
and the index of the key is stored in the low 4 bits.
|
|
As a consequence of this, split keys have a maximum size of 16.
|
|
*/
|
|
|
|
/* PyDict_MINSIZE is the starting size for any new dict.
|
|
* 8 allows dicts with no more than 5 active entries; experiments suggested
|
|
* this suffices for the majority of dicts (consisting mostly of usually-small
|
|
* dicts created to pass keyword arguments).
|
|
* Making this 8, rather than 4 reduces the number of resizes for most
|
|
* dictionaries, without any significant extra memory use.
|
|
*/
|
|
#define PyDict_LOG_MINSIZE 3
|
|
#define PyDict_MINSIZE 8
|
|
|
|
#include "Python.h"
|
|
#include "pycore_bitutils.h" // _Py_bit_length
|
|
#include "pycore_call.h" // _PyObject_CallNoArgs()
|
|
#include "pycore_ceval.h" // _PyEval_GetBuiltin()
|
|
#include "pycore_code.h" // stats
|
|
#include "pycore_critical_section.h" // Py_BEGIN_CRITICAL_SECTION, Py_END_CRITICAL_SECTION
|
|
#include "pycore_dict.h" // export _PyDict_SizeOf()
|
|
#include "pycore_freelist.h" // _PyFreeListState_GET()
|
|
#include "pycore_gc.h" // _PyObject_GC_IS_TRACKED()
|
|
#include "pycore_object.h" // _PyObject_GC_TRACK(), _PyDebugAllocatorStats()
|
|
#include "pycore_pyatomic_ft_wrappers.h" // FT_ATOMIC_LOAD_SSIZE_RELAXED
|
|
#include "pycore_pyerrors.h" // _PyErr_GetRaisedException()
|
|
#include "pycore_pystate.h" // _PyThreadState_GET()
|
|
#include "pycore_setobject.h" // _PySet_NextEntry()
|
|
#include "stringlib/eq.h" // unicode_eq()
|
|
|
|
#include <stdbool.h>
|
|
|
|
/*[clinic input]
|
|
class dict "PyDictObject *" "&PyDict_Type"
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f157a5a0ce9589d6]*/
|
|
|
|
|
|
/*
|
|
To ensure the lookup algorithm terminates, there must be at least one Unused
|
|
slot (NULL key) in the table.
|
|
To avoid slowing down lookups on a near-full table, we resize the table when
|
|
it's USABLE_FRACTION (currently two-thirds) full.
|
|
*/
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
|
|
static inline void
|
|
ASSERT_DICT_LOCKED(PyObject *op)
|
|
{
|
|
_Py_CRITICAL_SECTION_ASSERT_OBJECT_LOCKED(op);
|
|
}
|
|
#define ASSERT_DICT_LOCKED(op) ASSERT_DICT_LOCKED(_Py_CAST(PyObject*, op))
|
|
#define ASSERT_WORLD_STOPPED_OR_DICT_LOCKED(op) \
|
|
if (!_PyInterpreterState_GET()->stoptheworld.world_stopped) { \
|
|
ASSERT_DICT_LOCKED(op); \
|
|
}
|
|
#define ASSERT_WORLD_STOPPED_OR_OBJ_LOCKED(op) \
|
|
if (!_PyInterpreterState_GET()->stoptheworld.world_stopped) { \
|
|
_Py_CRITICAL_SECTION_ASSERT_OBJECT_LOCKED(op); \
|
|
}
|
|
|
|
#define IS_DICT_SHARED(mp) _PyObject_GC_IS_SHARED(mp)
|
|
#define SET_DICT_SHARED(mp) _PyObject_GC_SET_SHARED(mp)
|
|
#define LOAD_INDEX(keys, size, idx) _Py_atomic_load_int##size##_relaxed(&((const int##size##_t*)keys->dk_indices)[idx]);
|
|
#define STORE_INDEX(keys, size, idx, value) _Py_atomic_store_int##size##_relaxed(&((int##size##_t*)keys->dk_indices)[idx], (int##size##_t)value);
|
|
#define ASSERT_OWNED_OR_SHARED(mp) \
|
|
assert(_Py_IsOwnedByCurrentThread((PyObject *)mp) || IS_DICT_SHARED(mp));
|
|
|
|
#define LOCK_KEYS_IF_SPLIT(keys, kind) \
|
|
if (kind == DICT_KEYS_SPLIT) { \
|
|
LOCK_KEYS(keys); \
|
|
}
|
|
|
|
#define UNLOCK_KEYS_IF_SPLIT(keys, kind) \
|
|
if (kind == DICT_KEYS_SPLIT) { \
|
|
UNLOCK_KEYS(keys); \
|
|
}
|
|
|
|
static inline Py_ssize_t
|
|
load_keys_nentries(PyDictObject *mp)
|
|
{
|
|
PyDictKeysObject *keys = _Py_atomic_load_ptr(&mp->ma_keys);
|
|
return _Py_atomic_load_ssize(&keys->dk_nentries);
|
|
}
|
|
|
|
static inline void
|
|
set_keys(PyDictObject *mp, PyDictKeysObject *keys)
|
|
{
|
|
ASSERT_OWNED_OR_SHARED(mp);
|
|
_Py_atomic_store_ptr_release(&mp->ma_keys, keys);
|
|
}
|
|
|
|
static inline void
|
|
set_values(PyDictObject *mp, PyDictValues *values)
|
|
{
|
|
ASSERT_OWNED_OR_SHARED(mp);
|
|
_Py_atomic_store_ptr_release(&mp->ma_values, values);
|
|
}
|
|
|
|
#define LOCK_KEYS(keys) PyMutex_LockFlags(&keys->dk_mutex, _Py_LOCK_DONT_DETACH)
|
|
#define UNLOCK_KEYS(keys) PyMutex_Unlock(&keys->dk_mutex)
|
|
|
|
#define ASSERT_KEYS_LOCKED(keys) assert(PyMutex_IsLocked(&keys->dk_mutex))
|
|
#define LOAD_SHARED_KEY(key) _Py_atomic_load_ptr_acquire(&key)
|
|
#define STORE_SHARED_KEY(key, value) _Py_atomic_store_ptr_release(&key, value)
|
|
// Inc refs the keys object, giving the previous value
|
|
#define INCREF_KEYS(dk) _Py_atomic_add_ssize(&dk->dk_refcnt, 1)
|
|
// Dec refs the keys object, giving the previous value
|
|
#define DECREF_KEYS(dk) _Py_atomic_add_ssize(&dk->dk_refcnt, -1)
|
|
#define LOAD_KEYS_NENTRIES(keys) _Py_atomic_load_ssize_relaxed(&keys->dk_nentries)
|
|
|
|
#define INCREF_KEYS_FT(dk) dictkeys_incref(dk)
|
|
#define DECREF_KEYS_FT(dk, shared) dictkeys_decref(_PyInterpreterState_GET(), dk, shared)
|
|
|
|
static inline void split_keys_entry_added(PyDictKeysObject *keys)
|
|
{
|
|
ASSERT_KEYS_LOCKED(keys);
|
|
|
|
// We increase before we decrease so we never get too small of a value
|
|
// when we're racing with reads
|
|
_Py_atomic_store_ssize_relaxed(&keys->dk_nentries, keys->dk_nentries + 1);
|
|
_Py_atomic_store_ssize_release(&keys->dk_usable, keys->dk_usable - 1);
|
|
}
|
|
|
|
#else /* Py_GIL_DISABLED */
|
|
|
|
#define ASSERT_DICT_LOCKED(op)
|
|
#define ASSERT_WORLD_STOPPED_OR_DICT_LOCKED(op)
|
|
#define ASSERT_WORLD_STOPPED_OR_OBJ_LOCKED(op)
|
|
#define LOCK_KEYS(keys)
|
|
#define UNLOCK_KEYS(keys)
|
|
#define ASSERT_KEYS_LOCKED(keys)
|
|
#define LOAD_SHARED_KEY(key) key
|
|
#define STORE_SHARED_KEY(key, value) key = value
|
|
#define INCREF_KEYS(dk) dk->dk_refcnt++
|
|
#define DECREF_KEYS(dk) dk->dk_refcnt--
|
|
#define LOAD_KEYS_NENTRIES(keys) keys->dk_nentries
|
|
#define INCREF_KEYS_FT(dk)
|
|
#define DECREF_KEYS_FT(dk, shared)
|
|
#define LOCK_KEYS_IF_SPLIT(keys, kind)
|
|
#define UNLOCK_KEYS_IF_SPLIT(keys, kind)
|
|
#define IS_DICT_SHARED(mp) (false)
|
|
#define SET_DICT_SHARED(mp)
|
|
#define LOAD_INDEX(keys, size, idx) ((const int##size##_t*)(keys->dk_indices))[idx]
|
|
#define STORE_INDEX(keys, size, idx, value) ((int##size##_t*)(keys->dk_indices))[idx] = (int##size##_t)value
|
|
|
|
static inline void split_keys_entry_added(PyDictKeysObject *keys)
|
|
{
|
|
keys->dk_usable--;
|
|
keys->dk_nentries++;
|
|
}
|
|
|
|
static inline void
|
|
set_keys(PyDictObject *mp, PyDictKeysObject *keys)
|
|
{
|
|
mp->ma_keys = keys;
|
|
}
|
|
|
|
static inline void
|
|
set_values(PyDictObject *mp, PyDictValues *values)
|
|
{
|
|
mp->ma_values = values;
|
|
}
|
|
|
|
static inline Py_ssize_t
|
|
load_keys_nentries(PyDictObject *mp)
|
|
{
|
|
return mp->ma_keys->dk_nentries;
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
#define STORE_KEY(ep, key) FT_ATOMIC_STORE_PTR_RELEASE(ep->me_key, key)
|
|
#define STORE_VALUE(ep, value) FT_ATOMIC_STORE_PTR_RELEASE(ep->me_value, value)
|
|
#define STORE_SPLIT_VALUE(mp, idx, value) FT_ATOMIC_STORE_PTR_RELEASE(mp->ma_values->values[idx], value)
|
|
#define STORE_HASH(ep, hash) FT_ATOMIC_STORE_SSIZE_RELAXED(ep->me_hash, hash)
|
|
#define STORE_KEYS_USABLE(keys, usable) FT_ATOMIC_STORE_SSIZE_RELAXED(keys->dk_usable, usable)
|
|
#define STORE_KEYS_NENTRIES(keys, nentries) FT_ATOMIC_STORE_SSIZE_RELAXED(keys->dk_nentries, nentries)
|
|
#define STORE_USED(mp, used) FT_ATOMIC_STORE_SSIZE_RELAXED(mp->ma_used, used)
|
|
|
|
#define PERTURB_SHIFT 5
|
|
|
|
/*
|
|
Major subtleties ahead: Most hash schemes depend on having a "good" hash
|
|
function, in the sense of simulating randomness. Python doesn't: its most
|
|
important hash functions (for ints) are very regular in common
|
|
cases:
|
|
|
|
>>>[hash(i) for i in range(4)]
|
|
[0, 1, 2, 3]
|
|
|
|
This isn't necessarily bad! To the contrary, in a table of size 2**i, taking
|
|
the low-order i bits as the initial table index is extremely fast, and there
|
|
are no collisions at all for dicts indexed by a contiguous range of ints. So
|
|
this gives better-than-random behavior in common cases, and that's very
|
|
desirable.
|
|
|
|
OTOH, when collisions occur, the tendency to fill contiguous slices of the
|
|
hash table makes a good collision resolution strategy crucial. Taking only
|
|
the last i bits of the hash code is also vulnerable: for example, consider
|
|
the list [i << 16 for i in range(20000)] as a set of keys. Since ints are
|
|
their own hash codes, and this fits in a dict of size 2**15, the last 15 bits
|
|
of every hash code are all 0: they *all* map to the same table index.
|
|
|
|
But catering to unusual cases should not slow the usual ones, so we just take
|
|
the last i bits anyway. It's up to collision resolution to do the rest. If
|
|
we *usually* find the key we're looking for on the first try (and, it turns
|
|
out, we usually do -- the table load factor is kept under 2/3, so the odds
|
|
are solidly in our favor), then it makes best sense to keep the initial index
|
|
computation dirt cheap.
|
|
|
|
The first half of collision resolution is to visit table indices via this
|
|
recurrence:
|
|
|
|
j = ((5*j) + 1) mod 2**i
|
|
|
|
For any initial j in range(2**i), repeating that 2**i times generates each
|
|
int in range(2**i) exactly once (see any text on random-number generation for
|
|
proof). By itself, this doesn't help much: like linear probing (setting
|
|
j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
|
|
order. This would be bad, except that's not the only thing we do, and it's
|
|
actually *good* in the common cases where hash keys are consecutive. In an
|
|
example that's really too small to make this entirely clear, for a table of
|
|
size 2**3 the order of indices is:
|
|
|
|
0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]
|
|
|
|
If two things come in at index 5, the first place we look after is index 2,
|
|
not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
|
|
Linear probing is deadly in this case because there the fixed probe order
|
|
is the *same* as the order consecutive keys are likely to arrive. But it's
|
|
extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
|
|
and certain that consecutive hash codes do not.
|
|
|
|
The other half of the strategy is to get the other bits of the hash code
|
|
into play. This is done by initializing a (unsigned) vrbl "perturb" to the
|
|
full hash code, and changing the recurrence to:
|
|
|
|
perturb >>= PERTURB_SHIFT;
|
|
j = (5*j) + 1 + perturb;
|
|
use j % 2**i as the next table index;
|
|
|
|
Now the probe sequence depends (eventually) on every bit in the hash code,
|
|
and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
|
|
because it quickly magnifies small differences in the bits that didn't affect
|
|
the initial index. Note that because perturb is unsigned, if the recurrence
|
|
is executed often enough perturb eventually becomes and remains 0. At that
|
|
point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
|
|
that's certain to find an empty slot eventually (since it generates every int
|
|
in range(2**i), and we make sure there's always at least one empty slot).
|
|
|
|
Selecting a good value for PERTURB_SHIFT is a balancing act. You want it
|
|
small so that the high bits of the hash code continue to affect the probe
|
|
sequence across iterations; but you want it large so that in really bad cases
|
|
the high-order hash bits have an effect on early iterations. 5 was "the
|
|
best" in minimizing total collisions across experiments Tim Peters ran (on
|
|
both normal and pathological cases), but 4 and 6 weren't significantly worse.
|
|
|
|
Historical: Reimer Behrends contributed the idea of using a polynomial-based
|
|
approach, using repeated multiplication by x in GF(2**n) where an irreducible
|
|
polynomial for each table size was chosen such that x was a primitive root.
|
|
Christian Tismer later extended that to use division by x instead, as an
|
|
efficient way to get the high bits of the hash code into play. This scheme
|
|
also gave excellent collision statistics, but was more expensive: two
|
|
if-tests were required inside the loop; computing "the next" index took about
|
|
the same number of operations but without as much potential parallelism
|
|
(e.g., computing 5*j can go on at the same time as computing 1+perturb in the
|
|
above, and then shifting perturb can be done while the table index is being
|
|
masked); and the PyDictObject struct required a member to hold the table's
|
|
polynomial. In Tim's experiments the current scheme ran faster, produced
|
|
equally good collision statistics, needed less code & used less memory.
|
|
|
|
*/
|
|
|
|
static int dictresize(PyInterpreterState *interp, PyDictObject *mp,
|
|
uint8_t log_newsize, int unicode);
|
|
|
|
static PyObject* dict_iter(PyObject *dict);
|
|
|
|
static int
|
|
setitem_lock_held(PyDictObject *mp, PyObject *key, PyObject *value);
|
|
static int
|
|
dict_setdefault_ref_lock_held(PyObject *d, PyObject *key, PyObject *default_value,
|
|
PyObject **result, int incref_result);
|
|
|
|
#ifndef NDEBUG
|
|
static int _PyObject_InlineValuesConsistencyCheck(PyObject *obj);
|
|
#endif
|
|
|
|
#include "clinic/dictobject.c.h"
|
|
|
|
|
|
static inline Py_hash_t
|
|
unicode_get_hash(PyObject *o)
|
|
{
|
|
assert(PyUnicode_CheckExact(o));
|
|
return FT_ATOMIC_LOAD_SSIZE_RELAXED(_PyASCIIObject_CAST(o)->hash);
|
|
}
|
|
|
|
/* Print summary info about the state of the optimized allocator */
|
|
void
|
|
_PyDict_DebugMallocStats(FILE *out)
|
|
{
|
|
_PyDebugAllocatorStats(out, "free PyDictObject",
|
|
_Py_FREELIST_SIZE(dicts),
|
|
sizeof(PyDictObject));
|
|
_PyDebugAllocatorStats(out, "free PyDictKeysObject",
|
|
_Py_FREELIST_SIZE(dictkeys),
|
|
sizeof(PyDictKeysObject));
|
|
}
|
|
|
|
#define DK_MASK(dk) (DK_SIZE(dk)-1)
|
|
|
|
#define _Py_DICT_IMMORTAL_INITIAL_REFCNT PY_SSIZE_T_MIN
|
|
|
|
static void free_keys_object(PyDictKeysObject *keys, bool use_qsbr);
|
|
|
|
/* PyDictKeysObject has refcounts like PyObject does, so we have the
|
|
following two functions to mirror what Py_INCREF() and Py_DECREF() do.
|
|
(Keep in mind that PyDictKeysObject isn't actually a PyObject.)
|
|
Likewise a PyDictKeysObject can be immortal (e.g. Py_EMPTY_KEYS),
|
|
so we apply a naive version of what Py_INCREF() and Py_DECREF() do
|
|
for immortal objects. */
|
|
|
|
static inline void
|
|
dictkeys_incref(PyDictKeysObject *dk)
|
|
{
|
|
if (FT_ATOMIC_LOAD_SSIZE_RELAXED(dk->dk_refcnt) < 0) {
|
|
assert(FT_ATOMIC_LOAD_SSIZE_RELAXED(dk->dk_refcnt) == _Py_DICT_IMMORTAL_INITIAL_REFCNT);
|
|
return;
|
|
}
|
|
#ifdef Py_REF_DEBUG
|
|
_Py_IncRefTotal(_PyThreadState_GET());
|
|
#endif
|
|
INCREF_KEYS(dk);
|
|
}
|
|
|
|
static inline void
|
|
dictkeys_decref(PyInterpreterState *interp, PyDictKeysObject *dk, bool use_qsbr)
|
|
{
|
|
if (FT_ATOMIC_LOAD_SSIZE_RELAXED(dk->dk_refcnt) < 0) {
|
|
assert(FT_ATOMIC_LOAD_SSIZE_RELAXED(dk->dk_refcnt) == _Py_DICT_IMMORTAL_INITIAL_REFCNT);
|
|
return;
|
|
}
|
|
assert(FT_ATOMIC_LOAD_SSIZE(dk->dk_refcnt) > 0);
|
|
#ifdef Py_REF_DEBUG
|
|
_Py_DecRefTotal(_PyThreadState_GET());
|
|
#endif
|
|
if (DECREF_KEYS(dk) == 1) {
|
|
if (DK_IS_UNICODE(dk)) {
|
|
PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(dk);
|
|
Py_ssize_t i, n;
|
|
for (i = 0, n = dk->dk_nentries; i < n; i++) {
|
|
Py_XDECREF(entries[i].me_key);
|
|
Py_XDECREF(entries[i].me_value);
|
|
}
|
|
}
|
|
else {
|
|
PyDictKeyEntry *entries = DK_ENTRIES(dk);
|
|
Py_ssize_t i, n;
|
|
for (i = 0, n = dk->dk_nentries; i < n; i++) {
|
|
Py_XDECREF(entries[i].me_key);
|
|
Py_XDECREF(entries[i].me_value);
|
|
}
|
|
}
|
|
free_keys_object(dk, use_qsbr);
|
|
}
|
|
}
|
|
|
|
/* lookup indices. returns DKIX_EMPTY, DKIX_DUMMY, or ix >=0 */
|
|
static inline Py_ssize_t
|
|
dictkeys_get_index(const PyDictKeysObject *keys, Py_ssize_t i)
|
|
{
|
|
int log2size = DK_LOG_SIZE(keys);
|
|
Py_ssize_t ix;
|
|
|
|
if (log2size < 8) {
|
|
ix = LOAD_INDEX(keys, 8, i);
|
|
}
|
|
else if (log2size < 16) {
|
|
ix = LOAD_INDEX(keys, 16, i);
|
|
}
|
|
#if SIZEOF_VOID_P > 4
|
|
else if (log2size >= 32) {
|
|
ix = LOAD_INDEX(keys, 64, i);
|
|
}
|
|
#endif
|
|
else {
|
|
ix = LOAD_INDEX(keys, 32, i);
|
|
}
|
|
assert(ix >= DKIX_DUMMY);
|
|
return ix;
|
|
}
|
|
|
|
/* write to indices. */
|
|
static inline void
|
|
dictkeys_set_index(PyDictKeysObject *keys, Py_ssize_t i, Py_ssize_t ix)
|
|
{
|
|
int log2size = DK_LOG_SIZE(keys);
|
|
|
|
assert(ix >= DKIX_DUMMY);
|
|
assert(keys->dk_version == 0);
|
|
|
|
if (log2size < 8) {
|
|
assert(ix <= 0x7f);
|
|
STORE_INDEX(keys, 8, i, ix);
|
|
}
|
|
else if (log2size < 16) {
|
|
assert(ix <= 0x7fff);
|
|
STORE_INDEX(keys, 16, i, ix);
|
|
}
|
|
#if SIZEOF_VOID_P > 4
|
|
else if (log2size >= 32) {
|
|
STORE_INDEX(keys, 64, i, ix);
|
|
}
|
|
#endif
|
|
else {
|
|
assert(ix <= 0x7fffffff);
|
|
STORE_INDEX(keys, 32, i, ix);
|
|
}
|
|
}
|
|
|
|
|
|
/* USABLE_FRACTION is the maximum dictionary load.
|
|
* Increasing this ratio makes dictionaries more dense resulting in more
|
|
* collisions. Decreasing it improves sparseness at the expense of spreading
|
|
* indices over more cache lines and at the cost of total memory consumed.
|
|
*
|
|
* USABLE_FRACTION must obey the following:
|
|
* (0 < USABLE_FRACTION(n) < n) for all n >= 2
|
|
*
|
|
* USABLE_FRACTION should be quick to calculate.
|
|
* Fractions around 1/2 to 2/3 seem to work well in practice.
|
|
*/
|
|
#define USABLE_FRACTION(n) (((n) << 1)/3)
|
|
|
|
/* Find the smallest dk_size >= minsize. */
|
|
static inline uint8_t
|
|
calculate_log2_keysize(Py_ssize_t minsize)
|
|
{
|
|
#if SIZEOF_LONG == SIZEOF_SIZE_T
|
|
minsize = (minsize | PyDict_MINSIZE) - 1;
|
|
return _Py_bit_length(minsize | (PyDict_MINSIZE-1));
|
|
#elif defined(_MSC_VER)
|
|
// On 64bit Windows, sizeof(long) == 4.
|
|
minsize = (minsize | PyDict_MINSIZE) - 1;
|
|
unsigned long msb;
|
|
_BitScanReverse64(&msb, (uint64_t)minsize);
|
|
return (uint8_t)(msb + 1);
|
|
#else
|
|
uint8_t log2_size;
|
|
for (log2_size = PyDict_LOG_MINSIZE;
|
|
(((Py_ssize_t)1) << log2_size) < minsize;
|
|
log2_size++)
|
|
;
|
|
return log2_size;
|
|
#endif
|
|
}
|
|
|
|
/* estimate_keysize is reverse function of USABLE_FRACTION.
|
|
*
|
|
* This can be used to reserve enough size to insert n entries without
|
|
* resizing.
|
|
*/
|
|
static inline uint8_t
|
|
estimate_log2_keysize(Py_ssize_t n)
|
|
{
|
|
return calculate_log2_keysize((n*3 + 1) / 2);
|
|
}
|
|
|
|
|
|
/* GROWTH_RATE. Growth rate upon hitting maximum load.
|
|
* Currently set to used*3.
|
|
* This means that dicts double in size when growing without deletions,
|
|
* but have more head room when the number of deletions is on a par with the
|
|
* number of insertions. See also bpo-17563 and bpo-33205.
|
|
*
|
|
* GROWTH_RATE was set to used*4 up to version 3.2.
|
|
* GROWTH_RATE was set to used*2 in version 3.3.0
|
|
* GROWTH_RATE was set to used*2 + capacity/2 in 3.4.0-3.6.0.
|
|
*/
|
|
#define GROWTH_RATE(d) ((d)->ma_used*3)
|
|
|
|
/* This immutable, empty PyDictKeysObject is used for PyDict_Clear()
|
|
* (which cannot fail and thus can do no allocation).
|
|
*/
|
|
static PyDictKeysObject empty_keys_struct = {
|
|
_Py_DICT_IMMORTAL_INITIAL_REFCNT, /* dk_refcnt */
|
|
0, /* dk_log2_size */
|
|
0, /* dk_log2_index_bytes */
|
|
DICT_KEYS_UNICODE, /* dk_kind */
|
|
#ifdef Py_GIL_DISABLED
|
|
{0}, /* dk_mutex */
|
|
#endif
|
|
1, /* dk_version */
|
|
0, /* dk_usable (immutable) */
|
|
0, /* dk_nentries */
|
|
{DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY,
|
|
DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY}, /* dk_indices */
|
|
};
|
|
|
|
#define Py_EMPTY_KEYS &empty_keys_struct
|
|
|
|
/* Uncomment to check the dict content in _PyDict_CheckConsistency() */
|
|
// #define DEBUG_PYDICT
|
|
|
|
#ifdef DEBUG_PYDICT
|
|
# define ASSERT_CONSISTENT(op) assert(_PyDict_CheckConsistency((PyObject *)(op), 1))
|
|
#else
|
|
# define ASSERT_CONSISTENT(op) assert(_PyDict_CheckConsistency((PyObject *)(op), 0))
|
|
#endif
|
|
|
|
static inline int
|
|
get_index_from_order(PyDictObject *mp, Py_ssize_t i)
|
|
{
|
|
assert(mp->ma_used <= SHARED_KEYS_MAX_SIZE);
|
|
assert(i < mp->ma_values->size);
|
|
uint8_t *array = get_insertion_order_array(mp->ma_values);
|
|
return array[i];
|
|
}
|
|
|
|
#ifdef DEBUG_PYDICT
|
|
static void
|
|
dump_entries(PyDictKeysObject *dk)
|
|
{
|
|
for (Py_ssize_t i = 0; i < dk->dk_nentries; i++) {
|
|
if (DK_IS_UNICODE(dk)) {
|
|
PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(dk)[i];
|
|
printf("key=%p value=%p\n", ep->me_key, ep->me_value);
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep = &DK_ENTRIES(dk)[i];
|
|
printf("key=%p hash=%lx value=%p\n", ep->me_key, ep->me_hash, ep->me_value);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int
|
|
_PyDict_CheckConsistency(PyObject *op, int check_content)
|
|
{
|
|
ASSERT_WORLD_STOPPED_OR_DICT_LOCKED(op);
|
|
|
|
#define CHECK(expr) \
|
|
do { if (!(expr)) { _PyObject_ASSERT_FAILED_MSG(op, Py_STRINGIFY(expr)); } } while (0)
|
|
|
|
assert(op != NULL);
|
|
CHECK(PyDict_Check(op));
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
|
|
PyDictKeysObject *keys = mp->ma_keys;
|
|
int splitted = _PyDict_HasSplitTable(mp);
|
|
Py_ssize_t usable = USABLE_FRACTION(DK_SIZE(keys));
|
|
|
|
// In the free-threaded build, shared keys may be concurrently modified,
|
|
// so use atomic loads.
|
|
Py_ssize_t dk_usable = FT_ATOMIC_LOAD_SSIZE_ACQUIRE(keys->dk_usable);
|
|
Py_ssize_t dk_nentries = FT_ATOMIC_LOAD_SSIZE_ACQUIRE(keys->dk_nentries);
|
|
|
|
CHECK(0 <= mp->ma_used && mp->ma_used <= usable);
|
|
CHECK(0 <= dk_usable && dk_usable <= usable);
|
|
CHECK(0 <= dk_nentries && dk_nentries <= usable);
|
|
CHECK(dk_usable + dk_nentries <= usable);
|
|
|
|
if (!splitted) {
|
|
/* combined table */
|
|
CHECK(keys->dk_kind != DICT_KEYS_SPLIT);
|
|
CHECK(keys->dk_refcnt == 1 || keys == Py_EMPTY_KEYS);
|
|
}
|
|
else {
|
|
CHECK(keys->dk_kind == DICT_KEYS_SPLIT);
|
|
CHECK(mp->ma_used <= SHARED_KEYS_MAX_SIZE);
|
|
if (mp->ma_values->embedded) {
|
|
CHECK(mp->ma_values->embedded == 1);
|
|
CHECK(mp->ma_values->valid == 1);
|
|
}
|
|
}
|
|
|
|
if (check_content) {
|
|
LOCK_KEYS_IF_SPLIT(keys, keys->dk_kind);
|
|
for (Py_ssize_t i=0; i < DK_SIZE(keys); i++) {
|
|
Py_ssize_t ix = dictkeys_get_index(keys, i);
|
|
CHECK(DKIX_DUMMY <= ix && ix <= usable);
|
|
}
|
|
|
|
if (keys->dk_kind == DICT_KEYS_GENERAL) {
|
|
PyDictKeyEntry *entries = DK_ENTRIES(keys);
|
|
for (Py_ssize_t i=0; i < usable; i++) {
|
|
PyDictKeyEntry *entry = &entries[i];
|
|
PyObject *key = entry->me_key;
|
|
|
|
if (key != NULL) {
|
|
/* test_dict fails if PyObject_Hash() is called again */
|
|
CHECK(entry->me_hash != -1);
|
|
CHECK(entry->me_value != NULL);
|
|
|
|
if (PyUnicode_CheckExact(key)) {
|
|
Py_hash_t hash = unicode_get_hash(key);
|
|
CHECK(entry->me_hash == hash);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(keys);
|
|
for (Py_ssize_t i=0; i < usable; i++) {
|
|
PyDictUnicodeEntry *entry = &entries[i];
|
|
PyObject *key = entry->me_key;
|
|
|
|
if (key != NULL) {
|
|
CHECK(PyUnicode_CheckExact(key));
|
|
Py_hash_t hash = unicode_get_hash(key);
|
|
CHECK(hash != -1);
|
|
if (!splitted) {
|
|
CHECK(entry->me_value != NULL);
|
|
}
|
|
}
|
|
|
|
if (splitted) {
|
|
CHECK(entry->me_value == NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (splitted) {
|
|
CHECK(mp->ma_used <= SHARED_KEYS_MAX_SIZE);
|
|
/* splitted table */
|
|
int duplicate_check = 0;
|
|
for (Py_ssize_t i=0; i < mp->ma_used; i++) {
|
|
int index = get_index_from_order(mp, i);
|
|
CHECK((duplicate_check & (1<<index)) == 0);
|
|
duplicate_check |= (1<<index);
|
|
CHECK(mp->ma_values->values[index] != NULL);
|
|
}
|
|
}
|
|
UNLOCK_KEYS_IF_SPLIT(keys, keys->dk_kind);
|
|
}
|
|
return 1;
|
|
|
|
#undef CHECK
|
|
}
|
|
|
|
|
|
static PyDictKeysObject*
|
|
new_keys_object(PyInterpreterState *interp, uint8_t log2_size, bool unicode)
|
|
{
|
|
Py_ssize_t usable;
|
|
int log2_bytes;
|
|
size_t entry_size = unicode ? sizeof(PyDictUnicodeEntry) : sizeof(PyDictKeyEntry);
|
|
|
|
assert(log2_size >= PyDict_LOG_MINSIZE);
|
|
|
|
usable = USABLE_FRACTION((size_t)1<<log2_size);
|
|
if (log2_size < 8) {
|
|
log2_bytes = log2_size;
|
|
}
|
|
else if (log2_size < 16) {
|
|
log2_bytes = log2_size + 1;
|
|
}
|
|
#if SIZEOF_VOID_P > 4
|
|
else if (log2_size >= 32) {
|
|
log2_bytes = log2_size + 3;
|
|
}
|
|
#endif
|
|
else {
|
|
log2_bytes = log2_size + 2;
|
|
}
|
|
|
|
PyDictKeysObject *dk = NULL;
|
|
if (log2_size == PyDict_LOG_MINSIZE && unicode) {
|
|
dk = _Py_FREELIST_POP_MEM(dictkeys);
|
|
}
|
|
if (dk == NULL) {
|
|
dk = PyMem_Malloc(sizeof(PyDictKeysObject)
|
|
+ ((size_t)1 << log2_bytes)
|
|
+ entry_size * usable);
|
|
if (dk == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
}
|
|
#ifdef Py_REF_DEBUG
|
|
_Py_IncRefTotal(_PyThreadState_GET());
|
|
#endif
|
|
dk->dk_refcnt = 1;
|
|
dk->dk_log2_size = log2_size;
|
|
dk->dk_log2_index_bytes = log2_bytes;
|
|
dk->dk_kind = unicode ? DICT_KEYS_UNICODE : DICT_KEYS_GENERAL;
|
|
#ifdef Py_GIL_DISABLED
|
|
dk->dk_mutex = (PyMutex){0};
|
|
#endif
|
|
dk->dk_nentries = 0;
|
|
dk->dk_usable = usable;
|
|
dk->dk_version = 0;
|
|
memset(&dk->dk_indices[0], 0xff, ((size_t)1 << log2_bytes));
|
|
memset(&dk->dk_indices[(size_t)1 << log2_bytes], 0, entry_size * usable);
|
|
return dk;
|
|
}
|
|
|
|
static void
|
|
free_keys_object(PyDictKeysObject *keys, bool use_qsbr)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
if (use_qsbr) {
|
|
_PyMem_FreeDelayed(keys);
|
|
return;
|
|
}
|
|
#endif
|
|
if (DK_LOG_SIZE(keys) == PyDict_LOG_MINSIZE && keys->dk_kind == DICT_KEYS_UNICODE) {
|
|
_Py_FREELIST_FREE(dictkeys, keys, PyMem_Free);
|
|
}
|
|
else {
|
|
PyMem_Free(keys);
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
values_size_from_count(size_t count)
|
|
{
|
|
assert(count >= 1);
|
|
size_t suffix_size = _Py_SIZE_ROUND_UP(count, sizeof(PyObject *));
|
|
assert(suffix_size < 128);
|
|
assert(suffix_size % sizeof(PyObject *) == 0);
|
|
return (count + 1) * sizeof(PyObject *) + suffix_size;
|
|
}
|
|
|
|
#define CACHED_KEYS(tp) (((PyHeapTypeObject*)tp)->ht_cached_keys)
|
|
|
|
static inline PyDictValues*
|
|
new_values(size_t size)
|
|
{
|
|
size_t n = values_size_from_count(size);
|
|
PyDictValues *res = (PyDictValues *)PyMem_Malloc(n);
|
|
if (res == NULL) {
|
|
return NULL;
|
|
}
|
|
res->embedded = 0;
|
|
res->size = 0;
|
|
assert(size < 256);
|
|
res->capacity = (uint8_t)size;
|
|
return res;
|
|
}
|
|
|
|
static inline void
|
|
free_values(PyDictValues *values, bool use_qsbr)
|
|
{
|
|
assert(values->embedded == 0);
|
|
#ifdef Py_GIL_DISABLED
|
|
if (use_qsbr) {
|
|
_PyMem_FreeDelayed(values);
|
|
return;
|
|
}
|
|
#endif
|
|
PyMem_Free(values);
|
|
}
|
|
|
|
/* Consumes a reference to the keys object */
|
|
static PyObject *
|
|
new_dict(PyInterpreterState *interp,
|
|
PyDictKeysObject *keys, PyDictValues *values,
|
|
Py_ssize_t used, int free_values_on_failure)
|
|
{
|
|
assert(keys != NULL);
|
|
PyDictObject *mp = _Py_FREELIST_POP(PyDictObject, dicts);
|
|
if (mp == NULL) {
|
|
mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
|
|
if (mp == NULL) {
|
|
dictkeys_decref(interp, keys, false);
|
|
if (free_values_on_failure) {
|
|
free_values(values, false);
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
assert(Py_IS_TYPE(mp, &PyDict_Type));
|
|
mp->ma_keys = keys;
|
|
mp->ma_values = values;
|
|
mp->ma_used = used;
|
|
mp->_ma_watcher_tag = 0;
|
|
ASSERT_CONSISTENT(mp);
|
|
_PyObject_GC_TRACK(mp);
|
|
return (PyObject *)mp;
|
|
}
|
|
|
|
static PyObject *
|
|
new_dict_with_shared_keys(PyInterpreterState *interp, PyDictKeysObject *keys)
|
|
{
|
|
size_t size = shared_keys_usable_size(keys);
|
|
PyDictValues *values = new_values(size);
|
|
if (values == NULL) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
dictkeys_incref(keys);
|
|
for (size_t i = 0; i < size; i++) {
|
|
values->values[i] = NULL;
|
|
}
|
|
return new_dict(interp, keys, values, 0, 1);
|
|
}
|
|
|
|
|
|
static PyDictKeysObject *
|
|
clone_combined_dict_keys(PyDictObject *orig)
|
|
{
|
|
assert(PyDict_Check(orig));
|
|
assert(Py_TYPE(orig)->tp_iter == dict_iter);
|
|
assert(orig->ma_values == NULL);
|
|
assert(orig->ma_keys != Py_EMPTY_KEYS);
|
|
assert(orig->ma_keys->dk_refcnt == 1);
|
|
|
|
ASSERT_DICT_LOCKED(orig);
|
|
|
|
size_t keys_size = _PyDict_KeysSize(orig->ma_keys);
|
|
PyDictKeysObject *keys = PyMem_Malloc(keys_size);
|
|
if (keys == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(keys, orig->ma_keys, keys_size);
|
|
|
|
/* After copying key/value pairs, we need to incref all
|
|
keys and values and they are about to be co-owned by a
|
|
new dict object. */
|
|
PyObject **pkey, **pvalue;
|
|
size_t offs;
|
|
if (DK_IS_UNICODE(orig->ma_keys)) {
|
|
PyDictUnicodeEntry *ep0 = DK_UNICODE_ENTRIES(keys);
|
|
pkey = &ep0->me_key;
|
|
pvalue = &ep0->me_value;
|
|
offs = sizeof(PyDictUnicodeEntry) / sizeof(PyObject*);
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep0 = DK_ENTRIES(keys);
|
|
pkey = &ep0->me_key;
|
|
pvalue = &ep0->me_value;
|
|
offs = sizeof(PyDictKeyEntry) / sizeof(PyObject*);
|
|
}
|
|
|
|
Py_ssize_t n = keys->dk_nentries;
|
|
for (Py_ssize_t i = 0; i < n; i++) {
|
|
PyObject *value = *pvalue;
|
|
if (value != NULL) {
|
|
Py_INCREF(value);
|
|
Py_INCREF(*pkey);
|
|
}
|
|
pvalue += offs;
|
|
pkey += offs;
|
|
}
|
|
|
|
/* Since we copied the keys table we now have an extra reference
|
|
in the system. Manually call increment _Py_RefTotal to signal that
|
|
we have it now; calling dictkeys_incref would be an error as
|
|
keys->dk_refcnt is already set to 1 (after memcpy). */
|
|
#ifdef Py_REF_DEBUG
|
|
_Py_IncRefTotal(_PyThreadState_GET());
|
|
#endif
|
|
return keys;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_New(void)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
/* We don't incref Py_EMPTY_KEYS here because it is immortal. */
|
|
return new_dict(interp, Py_EMPTY_KEYS, NULL, 0, 0);
|
|
}
|
|
|
|
/* Search index of hash table from offset of entry table */
|
|
static Py_ssize_t
|
|
lookdict_index(PyDictKeysObject *k, Py_hash_t hash, Py_ssize_t index)
|
|
{
|
|
size_t mask = DK_MASK(k);
|
|
size_t perturb = (size_t)hash;
|
|
size_t i = (size_t)hash & mask;
|
|
|
|
for (;;) {
|
|
Py_ssize_t ix = dictkeys_get_index(k, i);
|
|
if (ix == index) {
|
|
return i;
|
|
}
|
|
if (ix == DKIX_EMPTY) {
|
|
return DKIX_EMPTY;
|
|
}
|
|
perturb >>= PERTURB_SHIFT;
|
|
i = mask & (i*5 + perturb + 1);
|
|
}
|
|
Py_UNREACHABLE();
|
|
}
|
|
|
|
static inline Py_ALWAYS_INLINE Py_ssize_t
|
|
do_lookup(PyDictObject *mp, PyDictKeysObject *dk, PyObject *key, Py_hash_t hash,
|
|
int (*check_lookup)(PyDictObject *, PyDictKeysObject *, void *, Py_ssize_t ix, PyObject *key, Py_hash_t))
|
|
{
|
|
void *ep0 = _DK_ENTRIES(dk);
|
|
size_t mask = DK_MASK(dk);
|
|
size_t perturb = hash;
|
|
size_t i = (size_t)hash & mask;
|
|
Py_ssize_t ix;
|
|
for (;;) {
|
|
ix = dictkeys_get_index(dk, i);
|
|
if (ix >= 0) {
|
|
int cmp = check_lookup(mp, dk, ep0, ix, key, hash);
|
|
if (cmp < 0) {
|
|
return cmp;
|
|
} else if (cmp) {
|
|
return ix;
|
|
}
|
|
}
|
|
else if (ix == DKIX_EMPTY) {
|
|
return DKIX_EMPTY;
|
|
}
|
|
perturb >>= PERTURB_SHIFT;
|
|
i = mask & (i*5 + perturb + 1);
|
|
|
|
// Manual loop unrolling
|
|
ix = dictkeys_get_index(dk, i);
|
|
if (ix >= 0) {
|
|
int cmp = check_lookup(mp, dk, ep0, ix, key, hash);
|
|
if (cmp < 0) {
|
|
return cmp;
|
|
} else if (cmp) {
|
|
return ix;
|
|
}
|
|
}
|
|
else if (ix == DKIX_EMPTY) {
|
|
return DKIX_EMPTY;
|
|
}
|
|
perturb >>= PERTURB_SHIFT;
|
|
i = mask & (i*5 + perturb + 1);
|
|
}
|
|
Py_UNREACHABLE();
|
|
}
|
|
|
|
static inline int
|
|
compare_unicode_generic(PyDictObject *mp, PyDictKeysObject *dk,
|
|
void *ep0, Py_ssize_t ix, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictUnicodeEntry *ep = &((PyDictUnicodeEntry *)ep0)[ix];
|
|
assert(ep->me_key != NULL);
|
|
assert(PyUnicode_CheckExact(ep->me_key));
|
|
assert(!PyUnicode_CheckExact(key));
|
|
|
|
if (unicode_get_hash(ep->me_key) == hash) {
|
|
PyObject *startkey = ep->me_key;
|
|
Py_INCREF(startkey);
|
|
int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
Py_DECREF(startkey);
|
|
if (cmp < 0) {
|
|
return DKIX_ERROR;
|
|
}
|
|
if (dk == mp->ma_keys && ep->me_key == startkey) {
|
|
return cmp;
|
|
}
|
|
else {
|
|
/* The dict was mutated, restart */
|
|
return DKIX_KEY_CHANGED;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Search non-Unicode key from Unicode table
|
|
static Py_ssize_t
|
|
unicodekeys_lookup_generic(PyDictObject *mp, PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
|
|
{
|
|
return do_lookup(mp, dk, key, hash, compare_unicode_generic);
|
|
}
|
|
|
|
static inline int
|
|
compare_unicode_unicode(PyDictObject *mp, PyDictKeysObject *dk,
|
|
void *ep0, Py_ssize_t ix, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictUnicodeEntry *ep = &((PyDictUnicodeEntry *)ep0)[ix];
|
|
PyObject *ep_key = FT_ATOMIC_LOAD_PTR_RELAXED(ep->me_key);
|
|
assert(ep_key != NULL);
|
|
assert(PyUnicode_CheckExact(ep_key));
|
|
if (ep_key == key ||
|
|
(unicode_get_hash(ep_key) == hash && unicode_eq(ep_key, key))) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Py_ssize_t _Py_HOT_FUNCTION
|
|
unicodekeys_lookup_unicode(PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
|
|
{
|
|
return do_lookup(NULL, dk, key, hash, compare_unicode_unicode);
|
|
}
|
|
|
|
static inline int
|
|
compare_generic(PyDictObject *mp, PyDictKeysObject *dk,
|
|
void *ep0, Py_ssize_t ix, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictKeyEntry *ep = &((PyDictKeyEntry *)ep0)[ix];
|
|
assert(ep->me_key != NULL);
|
|
if (ep->me_key == key) {
|
|
return 1;
|
|
}
|
|
if (ep->me_hash == hash) {
|
|
PyObject *startkey = ep->me_key;
|
|
Py_INCREF(startkey);
|
|
int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
Py_DECREF(startkey);
|
|
if (cmp < 0) {
|
|
return DKIX_ERROR;
|
|
}
|
|
if (dk == mp->ma_keys && ep->me_key == startkey) {
|
|
return cmp;
|
|
}
|
|
else {
|
|
/* The dict was mutated, restart */
|
|
return DKIX_KEY_CHANGED;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dictkeys_generic_lookup(PyDictObject *mp, PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
|
|
{
|
|
return do_lookup(mp, dk, key, hash, compare_generic);
|
|
}
|
|
|
|
/* Lookup a string in a (all unicode) dict keys.
|
|
* Returns DKIX_ERROR if key is not a string,
|
|
* or if the dict keys is not all strings.
|
|
* If the keys is present then return the index of key.
|
|
* If the key is not present then return DKIX_EMPTY.
|
|
*/
|
|
Py_ssize_t
|
|
_PyDictKeys_StringLookup(PyDictKeysObject* dk, PyObject *key)
|
|
{
|
|
DictKeysKind kind = dk->dk_kind;
|
|
if (!PyUnicode_CheckExact(key) || kind == DICT_KEYS_GENERAL) {
|
|
return DKIX_ERROR;
|
|
}
|
|
Py_hash_t hash = unicode_get_hash(key);
|
|
if (hash == -1) {
|
|
hash = PyUnicode_Type.tp_hash(key);
|
|
if (hash == -1) {
|
|
PyErr_Clear();
|
|
return DKIX_ERROR;
|
|
}
|
|
}
|
|
return unicodekeys_lookup_unicode(dk, key, hash);
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
|
|
static Py_ssize_t
|
|
unicodekeys_lookup_unicode_threadsafe(PyDictKeysObject* dk, PyObject *key,
|
|
Py_hash_t hash);
|
|
|
|
#endif
|
|
|
|
/*
|
|
The basic lookup function used by all operations.
|
|
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
|
|
Open addressing is preferred over chaining since the link overhead for
|
|
chaining would be substantial (100% with typical malloc overhead).
|
|
|
|
The initial probe index is computed as hash mod the table size. Subsequent
|
|
probe indices are computed as explained earlier.
|
|
|
|
All arithmetic on hash should ignore overflow.
|
|
|
|
_Py_dict_lookup() is general-purpose, and may return DKIX_ERROR if (and only if) a
|
|
comparison raises an exception.
|
|
When the key isn't found a DKIX_EMPTY is returned.
|
|
*/
|
|
Py_ssize_t
|
|
_Py_dict_lookup(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject **value_addr)
|
|
{
|
|
PyDictKeysObject *dk;
|
|
DictKeysKind kind;
|
|
Py_ssize_t ix;
|
|
|
|
_Py_CRITICAL_SECTION_ASSERT_OBJECT_LOCKED(mp);
|
|
start:
|
|
dk = mp->ma_keys;
|
|
kind = dk->dk_kind;
|
|
|
|
if (kind != DICT_KEYS_GENERAL) {
|
|
if (PyUnicode_CheckExact(key)) {
|
|
#ifdef Py_GIL_DISABLED
|
|
if (kind == DICT_KEYS_SPLIT) {
|
|
// A split dictionaries keys can be mutated by other
|
|
// dictionaries but if we have a unicode key we can avoid
|
|
// locking the shared keys.
|
|
ix = unicodekeys_lookup_unicode_threadsafe(dk, key, hash);
|
|
if (ix == DKIX_KEY_CHANGED) {
|
|
LOCK_KEYS(dk);
|
|
ix = unicodekeys_lookup_unicode(dk, key, hash);
|
|
UNLOCK_KEYS(dk);
|
|
}
|
|
}
|
|
else {
|
|
ix = unicodekeys_lookup_unicode(dk, key, hash);
|
|
}
|
|
#else
|
|
ix = unicodekeys_lookup_unicode(dk, key, hash);
|
|
#endif
|
|
}
|
|
else {
|
|
INCREF_KEYS_FT(dk);
|
|
LOCK_KEYS_IF_SPLIT(dk, kind);
|
|
|
|
ix = unicodekeys_lookup_generic(mp, dk, key, hash);
|
|
|
|
UNLOCK_KEYS_IF_SPLIT(dk, kind);
|
|
DECREF_KEYS_FT(dk, IS_DICT_SHARED(mp));
|
|
if (ix == DKIX_KEY_CHANGED) {
|
|
goto start;
|
|
}
|
|
}
|
|
|
|
if (ix >= 0) {
|
|
if (kind == DICT_KEYS_SPLIT) {
|
|
*value_addr = mp->ma_values->values[ix];
|
|
}
|
|
else {
|
|
*value_addr = DK_UNICODE_ENTRIES(dk)[ix].me_value;
|
|
}
|
|
}
|
|
else {
|
|
*value_addr = NULL;
|
|
}
|
|
}
|
|
else {
|
|
ix = dictkeys_generic_lookup(mp, dk, key, hash);
|
|
if (ix == DKIX_KEY_CHANGED) {
|
|
goto start;
|
|
}
|
|
if (ix >= 0) {
|
|
*value_addr = DK_ENTRIES(dk)[ix].me_value;
|
|
}
|
|
else {
|
|
*value_addr = NULL;
|
|
}
|
|
}
|
|
|
|
return ix;
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
static inline void
|
|
ensure_shared_on_read(PyDictObject *mp)
|
|
{
|
|
if (!_Py_IsOwnedByCurrentThread((PyObject *)mp) && !IS_DICT_SHARED(mp)) {
|
|
// The first time we access a dict from a non-owning thread we mark it
|
|
// as shared. This ensures that a concurrent resize operation will
|
|
// delay freeing the old keys or values using QSBR, which is necessary
|
|
// to safely allow concurrent reads without locking...
|
|
Py_BEGIN_CRITICAL_SECTION(mp);
|
|
if (!IS_DICT_SHARED(mp)) {
|
|
SET_DICT_SHARED(mp);
|
|
}
|
|
Py_END_CRITICAL_SECTION();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
ensure_shared_on_resize(PyDictObject *mp)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
_Py_CRITICAL_SECTION_ASSERT_OBJECT_LOCKED(mp);
|
|
|
|
if (!_Py_IsOwnedByCurrentThread((PyObject *)mp) && !IS_DICT_SHARED(mp)) {
|
|
// We are writing to the dict from another thread that owns
|
|
// it and we haven't marked it as shared which will ensure
|
|
// that when we re-size ma_keys or ma_values that we will
|
|
// free using QSBR. We need to lock the dictionary to
|
|
// contend with writes from the owning thread, mark it as
|
|
// shared, and then we can continue with lock-free reads.
|
|
// Technically this is a little heavy handed, we could just
|
|
// free the individual old keys / old-values using qsbr
|
|
SET_DICT_SHARED(mp);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
|
|
static inline Py_ALWAYS_INLINE int
|
|
compare_unicode_generic_threadsafe(PyDictObject *mp, PyDictKeysObject *dk,
|
|
void *ep0, Py_ssize_t ix, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictUnicodeEntry *ep = &((PyDictUnicodeEntry *)ep0)[ix];
|
|
PyObject *startkey = _Py_atomic_load_ptr_relaxed(&ep->me_key);
|
|
assert(startkey == NULL || PyUnicode_CheckExact(ep->me_key));
|
|
assert(!PyUnicode_CheckExact(key));
|
|
|
|
if (startkey != NULL) {
|
|
if (!_Py_TryIncrefCompare(&ep->me_key, startkey)) {
|
|
return DKIX_KEY_CHANGED;
|
|
}
|
|
|
|
if (unicode_get_hash(startkey) == hash) {
|
|
int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
Py_DECREF(startkey);
|
|
if (cmp < 0) {
|
|
return DKIX_ERROR;
|
|
}
|
|
if (dk == _Py_atomic_load_ptr_relaxed(&mp->ma_keys) &&
|
|
startkey == _Py_atomic_load_ptr_relaxed(&ep->me_key)) {
|
|
return cmp;
|
|
}
|
|
else {
|
|
/* The dict was mutated, restart */
|
|
return DKIX_KEY_CHANGED;
|
|
}
|
|
}
|
|
else {
|
|
Py_DECREF(startkey);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Search non-Unicode key from Unicode table
|
|
static Py_ssize_t
|
|
unicodekeys_lookup_generic_threadsafe(PyDictObject *mp, PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
|
|
{
|
|
return do_lookup(mp, dk, key, hash, compare_unicode_generic_threadsafe);
|
|
}
|
|
|
|
static inline Py_ALWAYS_INLINE int
|
|
compare_unicode_unicode_threadsafe(PyDictObject *mp, PyDictKeysObject *dk,
|
|
void *ep0, Py_ssize_t ix, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictUnicodeEntry *ep = &((PyDictUnicodeEntry *)ep0)[ix];
|
|
PyObject *startkey = _Py_atomic_load_ptr_relaxed(&ep->me_key);
|
|
assert(startkey == NULL || PyUnicode_CheckExact(startkey));
|
|
if (startkey == key) {
|
|
return 1;
|
|
}
|
|
if (startkey != NULL) {
|
|
if (_Py_IsImmortal(startkey)) {
|
|
return unicode_get_hash(startkey) == hash && unicode_eq(startkey, key);
|
|
}
|
|
else {
|
|
if (!_Py_TryIncrefCompare(&ep->me_key, startkey)) {
|
|
return DKIX_KEY_CHANGED;
|
|
}
|
|
if (unicode_get_hash(startkey) == hash && unicode_eq(startkey, key)) {
|
|
Py_DECREF(startkey);
|
|
return 1;
|
|
}
|
|
Py_DECREF(startkey);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Py_ssize_t _Py_HOT_FUNCTION
|
|
unicodekeys_lookup_unicode_threadsafe(PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
|
|
{
|
|
return do_lookup(NULL, dk, key, hash, compare_unicode_unicode_threadsafe);
|
|
}
|
|
|
|
static inline Py_ALWAYS_INLINE int
|
|
compare_generic_threadsafe(PyDictObject *mp, PyDictKeysObject *dk,
|
|
void *ep0, Py_ssize_t ix, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictKeyEntry *ep = &((PyDictKeyEntry *)ep0)[ix];
|
|
PyObject *startkey = _Py_atomic_load_ptr_relaxed(&ep->me_key);
|
|
if (startkey == key) {
|
|
return 1;
|
|
}
|
|
Py_ssize_t ep_hash = _Py_atomic_load_ssize_relaxed(&ep->me_hash);
|
|
if (ep_hash == hash) {
|
|
if (startkey == NULL || !_Py_TryIncrefCompare(&ep->me_key, startkey)) {
|
|
return DKIX_KEY_CHANGED;
|
|
}
|
|
int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
Py_DECREF(startkey);
|
|
if (cmp < 0) {
|
|
return DKIX_ERROR;
|
|
}
|
|
if (dk == _Py_atomic_load_ptr_relaxed(&mp->ma_keys) &&
|
|
startkey == _Py_atomic_load_ptr_relaxed(&ep->me_key)) {
|
|
return cmp;
|
|
}
|
|
else {
|
|
/* The dict was mutated, restart */
|
|
return DKIX_KEY_CHANGED;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dictkeys_generic_lookup_threadsafe(PyDictObject *mp, PyDictKeysObject* dk, PyObject *key, Py_hash_t hash)
|
|
{
|
|
return do_lookup(mp, dk, key, hash, compare_generic_threadsafe);
|
|
}
|
|
|
|
Py_ssize_t
|
|
_Py_dict_lookup_threadsafe(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject **value_addr)
|
|
{
|
|
PyDictKeysObject *dk;
|
|
DictKeysKind kind;
|
|
Py_ssize_t ix;
|
|
PyObject *value;
|
|
|
|
ensure_shared_on_read(mp);
|
|
|
|
dk = _Py_atomic_load_ptr(&mp->ma_keys);
|
|
kind = dk->dk_kind;
|
|
|
|
if (kind != DICT_KEYS_GENERAL) {
|
|
if (PyUnicode_CheckExact(key)) {
|
|
ix = unicodekeys_lookup_unicode_threadsafe(dk, key, hash);
|
|
}
|
|
else {
|
|
ix = unicodekeys_lookup_generic_threadsafe(mp, dk, key, hash);
|
|
}
|
|
if (ix == DKIX_KEY_CHANGED) {
|
|
goto read_failed;
|
|
}
|
|
|
|
if (ix >= 0) {
|
|
if (kind == DICT_KEYS_SPLIT) {
|
|
PyDictValues *values = _Py_atomic_load_ptr(&mp->ma_values);
|
|
if (values == NULL)
|
|
goto read_failed;
|
|
|
|
uint8_t capacity = _Py_atomic_load_uint8_relaxed(&values->capacity);
|
|
if (ix >= (Py_ssize_t)capacity)
|
|
goto read_failed;
|
|
|
|
value = _Py_TryXGetRef(&values->values[ix]);
|
|
if (value == NULL)
|
|
goto read_failed;
|
|
|
|
if (values != _Py_atomic_load_ptr(&mp->ma_values)) {
|
|
Py_DECREF(value);
|
|
goto read_failed;
|
|
}
|
|
}
|
|
else {
|
|
value = _Py_TryXGetRef(&DK_UNICODE_ENTRIES(dk)[ix].me_value);
|
|
if (value == NULL) {
|
|
goto read_failed;
|
|
}
|
|
|
|
if (dk != _Py_atomic_load_ptr(&mp->ma_keys)) {
|
|
Py_DECREF(value);
|
|
goto read_failed;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
value = NULL;
|
|
}
|
|
}
|
|
else {
|
|
ix = dictkeys_generic_lookup_threadsafe(mp, dk, key, hash);
|
|
if (ix == DKIX_KEY_CHANGED) {
|
|
goto read_failed;
|
|
}
|
|
if (ix >= 0) {
|
|
value = _Py_TryXGetRef(&DK_ENTRIES(dk)[ix].me_value);
|
|
if (value == NULL)
|
|
goto read_failed;
|
|
|
|
if (dk != _Py_atomic_load_ptr(&mp->ma_keys)) {
|
|
Py_DECREF(value);
|
|
goto read_failed;
|
|
}
|
|
}
|
|
else {
|
|
value = NULL;
|
|
}
|
|
}
|
|
|
|
*value_addr = value;
|
|
return ix;
|
|
|
|
read_failed:
|
|
// In addition to the normal races of the dict being modified the _Py_TryXGetRef
|
|
// can all fail if they don't yet have a shared ref count. That can happen here
|
|
// or in the *_lookup_* helper. In that case we need to take the lock to avoid
|
|
// mutation and do a normal incref which will make them shared.
|
|
Py_BEGIN_CRITICAL_SECTION(mp);
|
|
ix = _Py_dict_lookup(mp, key, hash, &value);
|
|
*value_addr = value;
|
|
if (value != NULL) {
|
|
assert(ix >= 0);
|
|
_Py_NewRefWithLock(value);
|
|
}
|
|
Py_END_CRITICAL_SECTION();
|
|
return ix;
|
|
}
|
|
|
|
Py_ssize_t
|
|
_Py_dict_lookup_threadsafe_stackref(PyDictObject *mp, PyObject *key, Py_hash_t hash, _PyStackRef *value_addr)
|
|
{
|
|
PyDictKeysObject *dk = _Py_atomic_load_ptr(&mp->ma_keys);
|
|
if (dk->dk_kind == DICT_KEYS_UNICODE && PyUnicode_CheckExact(key)) {
|
|
Py_ssize_t ix = unicodekeys_lookup_unicode_threadsafe(dk, key, hash);
|
|
if (ix == DKIX_EMPTY) {
|
|
*value_addr = PyStackRef_NULL;
|
|
return ix;
|
|
}
|
|
else if (ix >= 0) {
|
|
PyObject **addr_of_value = &DK_UNICODE_ENTRIES(dk)[ix].me_value;
|
|
PyObject *value = _Py_atomic_load_ptr(addr_of_value);
|
|
if (value == NULL) {
|
|
*value_addr = PyStackRef_NULL;
|
|
return DKIX_EMPTY;
|
|
}
|
|
if (_Py_IsImmortal(value) || _PyObject_HasDeferredRefcount(value)) {
|
|
*value_addr = (_PyStackRef){ .bits = (uintptr_t)value | Py_TAG_DEFERRED };
|
|
return ix;
|
|
}
|
|
if (_Py_TryIncrefCompare(addr_of_value, value)) {
|
|
*value_addr = PyStackRef_FromPyObjectSteal(value);
|
|
return ix;
|
|
}
|
|
}
|
|
}
|
|
|
|
PyObject *obj;
|
|
Py_ssize_t ix = _Py_dict_lookup_threadsafe(mp, key, hash, &obj);
|
|
if (ix >= 0 && obj != NULL) {
|
|
*value_addr = PyStackRef_FromPyObjectSteal(obj);
|
|
}
|
|
else {
|
|
*value_addr = PyStackRef_NULL;
|
|
}
|
|
return ix;
|
|
}
|
|
|
|
#else // Py_GIL_DISABLED
|
|
|
|
Py_ssize_t
|
|
_Py_dict_lookup_threadsafe(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject **value_addr)
|
|
{
|
|
Py_ssize_t ix = _Py_dict_lookup(mp, key, hash, value_addr);
|
|
Py_XNewRef(*value_addr);
|
|
return ix;
|
|
}
|
|
|
|
Py_ssize_t
|
|
_Py_dict_lookup_threadsafe_stackref(PyDictObject *mp, PyObject *key, Py_hash_t hash, _PyStackRef *value_addr)
|
|
{
|
|
PyObject *val;
|
|
Py_ssize_t ix = _Py_dict_lookup(mp, key, hash, &val);
|
|
if (val == NULL) {
|
|
*value_addr = PyStackRef_NULL;
|
|
}
|
|
else {
|
|
*value_addr = PyStackRef_FromPyObjectNew(val);
|
|
}
|
|
return ix;
|
|
}
|
|
|
|
#endif
|
|
|
|
int
|
|
_PyDict_HasOnlyStringKeys(PyObject *dict)
|
|
{
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key, *value;
|
|
assert(PyDict_Check(dict));
|
|
/* Shortcut */
|
|
if (((PyDictObject *)dict)->ma_keys->dk_kind != DICT_KEYS_GENERAL)
|
|
return 1;
|
|
while (PyDict_Next(dict, &pos, &key, &value))
|
|
if (!PyUnicode_Check(key))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
_PyDict_EnablePerThreadRefcounting(PyObject *op)
|
|
{
|
|
assert(PyDict_Check(op));
|
|
#ifdef Py_GIL_DISABLED
|
|
Py_ssize_t id = _PyObject_AssignUniqueId(op);
|
|
if ((uint64_t)id >= (uint64_t)DICT_UNIQUE_ID_MAX) {
|
|
_PyObject_ReleaseUniqueId(id);
|
|
return;
|
|
}
|
|
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
assert((mp->_ma_watcher_tag >> DICT_UNIQUE_ID_SHIFT) == 0);
|
|
// Plus 1 so that _ma_watcher_tag=0 represents an unassigned id
|
|
mp->_ma_watcher_tag += ((uint64_t)id + 1) << DICT_UNIQUE_ID_SHIFT;
|
|
#endif
|
|
}
|
|
|
|
static inline int
|
|
is_unusable_slot(Py_ssize_t ix)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
return ix >= 0 || ix == DKIX_DUMMY;
|
|
#else
|
|
return ix >= 0;
|
|
#endif
|
|
}
|
|
|
|
/* Internal function to find slot for an item from its hash
|
|
when it is known that the key is not present in the dict.
|
|
*/
|
|
static Py_ssize_t
|
|
find_empty_slot(PyDictKeysObject *keys, Py_hash_t hash)
|
|
{
|
|
assert(keys != NULL);
|
|
|
|
const size_t mask = DK_MASK(keys);
|
|
size_t i = hash & mask;
|
|
Py_ssize_t ix = dictkeys_get_index(keys, i);
|
|
for (size_t perturb = hash; is_unusable_slot(ix);) {
|
|
perturb >>= PERTURB_SHIFT;
|
|
i = (i*5 + perturb + 1) & mask;
|
|
ix = dictkeys_get_index(keys, i);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static int
|
|
insertion_resize(PyInterpreterState *interp, PyDictObject *mp, int unicode)
|
|
{
|
|
return dictresize(interp, mp, calculate_log2_keysize(GROWTH_RATE(mp)), unicode);
|
|
}
|
|
|
|
static inline int
|
|
insert_combined_dict(PyInterpreterState *interp, PyDictObject *mp,
|
|
Py_hash_t hash, PyObject *key, PyObject *value)
|
|
{
|
|
if (mp->ma_keys->dk_usable <= 0) {
|
|
/* Need to resize. */
|
|
if (insertion_resize(interp, mp, 1) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_ADDED, mp, key, value);
|
|
mp->ma_keys->dk_version = 0;
|
|
|
|
Py_ssize_t hashpos = find_empty_slot(mp->ma_keys, hash);
|
|
dictkeys_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries);
|
|
|
|
if (DK_IS_UNICODE(mp->ma_keys)) {
|
|
PyDictUnicodeEntry *ep;
|
|
ep = &DK_UNICODE_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries];
|
|
STORE_KEY(ep, key);
|
|
STORE_VALUE(ep, value);
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep;
|
|
ep = &DK_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries];
|
|
STORE_KEY(ep, key);
|
|
STORE_VALUE(ep, value);
|
|
STORE_HASH(ep, hash);
|
|
}
|
|
STORE_KEYS_USABLE(mp->ma_keys, mp->ma_keys->dk_usable - 1);
|
|
STORE_KEYS_NENTRIES(mp->ma_keys, mp->ma_keys->dk_nentries + 1);
|
|
assert(mp->ma_keys->dk_usable >= 0);
|
|
return 0;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
insert_split_key(PyDictKeysObject *keys, PyObject *key, Py_hash_t hash)
|
|
{
|
|
assert(PyUnicode_CheckExact(key));
|
|
Py_ssize_t ix;
|
|
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
ix = unicodekeys_lookup_unicode_threadsafe(keys, key, hash);
|
|
if (ix >= 0) {
|
|
return ix;
|
|
}
|
|
#endif
|
|
|
|
LOCK_KEYS(keys);
|
|
ix = unicodekeys_lookup_unicode(keys, key, hash);
|
|
if (ix == DKIX_EMPTY && keys->dk_usable > 0) {
|
|
// Insert into new slot
|
|
keys->dk_version = 0;
|
|
Py_ssize_t hashpos = find_empty_slot(keys, hash);
|
|
ix = keys->dk_nentries;
|
|
dictkeys_set_index(keys, hashpos, ix);
|
|
PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(keys)[ix];
|
|
STORE_SHARED_KEY(ep->me_key, Py_NewRef(key));
|
|
split_keys_entry_added(keys);
|
|
}
|
|
assert (ix < SHARED_KEYS_MAX_SIZE);
|
|
UNLOCK_KEYS(keys);
|
|
return ix;
|
|
}
|
|
|
|
static void
|
|
insert_split_value(PyInterpreterState *interp, PyDictObject *mp, PyObject *key, PyObject *value, Py_ssize_t ix)
|
|
{
|
|
assert(PyUnicode_CheckExact(key));
|
|
ASSERT_DICT_LOCKED(mp);
|
|
PyObject *old_value = mp->ma_values->values[ix];
|
|
if (old_value == NULL) {
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_ADDED, mp, key, value);
|
|
STORE_SPLIT_VALUE(mp, ix, Py_NewRef(value));
|
|
_PyDictValues_AddToInsertionOrder(mp->ma_values, ix);
|
|
STORE_USED(mp, mp->ma_used + 1);
|
|
}
|
|
else {
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_MODIFIED, mp, key, value);
|
|
STORE_SPLIT_VALUE(mp, ix, Py_NewRef(value));
|
|
// old_value should be DECREFed after GC track checking is done, if not, it could raise a segmentation fault,
|
|
// when dict only holds the strong reference to value in ep->me_value.
|
|
Py_DECREF(old_value);
|
|
}
|
|
ASSERT_CONSISTENT(mp);
|
|
}
|
|
|
|
/*
|
|
Internal routine to insert a new item into the table.
|
|
Used both by the internal resize routine and by the public insert routine.
|
|
Returns -1 if an error occurred, or 0 on success.
|
|
Consumes key and value references.
|
|
*/
|
|
static int
|
|
insertdict(PyInterpreterState *interp, PyDictObject *mp,
|
|
PyObject *key, Py_hash_t hash, PyObject *value)
|
|
{
|
|
PyObject *old_value;
|
|
|
|
ASSERT_DICT_LOCKED(mp);
|
|
|
|
if (DK_IS_UNICODE(mp->ma_keys) && !PyUnicode_CheckExact(key)) {
|
|
if (insertion_resize(interp, mp, 0) < 0)
|
|
goto Fail;
|
|
assert(mp->ma_keys->dk_kind == DICT_KEYS_GENERAL);
|
|
}
|
|
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
Py_ssize_t ix = insert_split_key(mp->ma_keys, key, hash);
|
|
if (ix != DKIX_EMPTY) {
|
|
insert_split_value(interp, mp, key, value, ix);
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
return 0;
|
|
}
|
|
|
|
/* No space in shared keys. Resize and continue below. */
|
|
if (insertion_resize(interp, mp, 1) < 0) {
|
|
goto Fail;
|
|
}
|
|
}
|
|
|
|
Py_ssize_t ix = _Py_dict_lookup(mp, key, hash, &old_value);
|
|
if (ix == DKIX_ERROR)
|
|
goto Fail;
|
|
|
|
if (ix == DKIX_EMPTY) {
|
|
assert(!_PyDict_HasSplitTable(mp));
|
|
/* Insert into new slot. */
|
|
assert(old_value == NULL);
|
|
if (insert_combined_dict(interp, mp, hash, key, value) < 0) {
|
|
goto Fail;
|
|
}
|
|
STORE_USED(mp, mp->ma_used + 1);
|
|
ASSERT_CONSISTENT(mp);
|
|
return 0;
|
|
}
|
|
|
|
if (old_value != value) {
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_MODIFIED, mp, key, value);
|
|
assert(old_value != NULL);
|
|
assert(!_PyDict_HasSplitTable(mp));
|
|
if (DK_IS_UNICODE(mp->ma_keys)) {
|
|
PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(mp->ma_keys)[ix];
|
|
STORE_VALUE(ep, value);
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep = &DK_ENTRIES(mp->ma_keys)[ix];
|
|
STORE_VALUE(ep, value);
|
|
}
|
|
}
|
|
Py_XDECREF(old_value); /* which **CAN** re-enter (see issue #22653) */
|
|
ASSERT_CONSISTENT(mp);
|
|
Py_DECREF(key);
|
|
return 0;
|
|
|
|
Fail:
|
|
Py_DECREF(value);
|
|
Py_DECREF(key);
|
|
return -1;
|
|
}
|
|
|
|
// Same as insertdict but specialized for ma_keys == Py_EMPTY_KEYS.
|
|
// Consumes key and value references.
|
|
static int
|
|
insert_to_emptydict(PyInterpreterState *interp, PyDictObject *mp,
|
|
PyObject *key, Py_hash_t hash, PyObject *value)
|
|
{
|
|
assert(mp->ma_keys == Py_EMPTY_KEYS);
|
|
ASSERT_DICT_LOCKED(mp);
|
|
|
|
int unicode = PyUnicode_CheckExact(key);
|
|
PyDictKeysObject *newkeys = new_keys_object(
|
|
interp, PyDict_LOG_MINSIZE, unicode);
|
|
if (newkeys == NULL) {
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
return -1;
|
|
}
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_ADDED, mp, key, value);
|
|
|
|
/* We don't decref Py_EMPTY_KEYS here because it is immortal. */
|
|
assert(mp->ma_values == NULL);
|
|
|
|
size_t hashpos = (size_t)hash & (PyDict_MINSIZE-1);
|
|
dictkeys_set_index(newkeys, hashpos, 0);
|
|
if (unicode) {
|
|
PyDictUnicodeEntry *ep = DK_UNICODE_ENTRIES(newkeys);
|
|
ep->me_key = key;
|
|
STORE_VALUE(ep, value);
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep = DK_ENTRIES(newkeys);
|
|
ep->me_key = key;
|
|
ep->me_hash = hash;
|
|
STORE_VALUE(ep, value);
|
|
}
|
|
STORE_USED(mp, mp->ma_used + 1);
|
|
newkeys->dk_usable--;
|
|
newkeys->dk_nentries++;
|
|
// We store the keys last so no one can see them in a partially inconsistent
|
|
// state so that we don't need to switch the keys to being shared yet for
|
|
// the case where we're inserting from the non-owner thread. We don't use
|
|
// set_keys here because the transition from empty to non-empty is safe
|
|
// as the empty keys will never be freed.
|
|
FT_ATOMIC_STORE_PTR_RELEASE(mp->ma_keys, newkeys);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Internal routine used by dictresize() to build a hashtable of entries.
|
|
*/
|
|
static void
|
|
build_indices_generic(PyDictKeysObject *keys, PyDictKeyEntry *ep, Py_ssize_t n)
|
|
{
|
|
size_t mask = DK_MASK(keys);
|
|
for (Py_ssize_t ix = 0; ix != n; ix++, ep++) {
|
|
Py_hash_t hash = ep->me_hash;
|
|
size_t i = hash & mask;
|
|
for (size_t perturb = hash; dictkeys_get_index(keys, i) != DKIX_EMPTY;) {
|
|
perturb >>= PERTURB_SHIFT;
|
|
i = mask & (i*5 + perturb + 1);
|
|
}
|
|
dictkeys_set_index(keys, i, ix);
|
|
}
|
|
}
|
|
|
|
static void
|
|
build_indices_unicode(PyDictKeysObject *keys, PyDictUnicodeEntry *ep, Py_ssize_t n)
|
|
{
|
|
size_t mask = DK_MASK(keys);
|
|
for (Py_ssize_t ix = 0; ix != n; ix++, ep++) {
|
|
Py_hash_t hash = unicode_get_hash(ep->me_key);
|
|
assert(hash != -1);
|
|
size_t i = hash & mask;
|
|
for (size_t perturb = hash; dictkeys_get_index(keys, i) != DKIX_EMPTY;) {
|
|
perturb >>= PERTURB_SHIFT;
|
|
i = mask & (i*5 + perturb + 1);
|
|
}
|
|
dictkeys_set_index(keys, i, ix);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Restructure the table by allocating a new table and reinserting all
|
|
items again. When entries have been deleted, the new table may
|
|
actually be smaller than the old one.
|
|
If a table is split (its keys and hashes are shared, its values are not),
|
|
then the values are temporarily copied into the table, it is resized as
|
|
a combined table, then the me_value slots in the old table are NULLed out.
|
|
After resizing, a table is always combined.
|
|
|
|
This function supports:
|
|
- Unicode split -> Unicode combined or Generic
|
|
- Unicode combined -> Unicode combined or Generic
|
|
- Generic -> Generic
|
|
*/
|
|
static int
|
|
dictresize(PyInterpreterState *interp, PyDictObject *mp,
|
|
uint8_t log2_newsize, int unicode)
|
|
{
|
|
PyDictKeysObject *oldkeys, *newkeys;
|
|
PyDictValues *oldvalues;
|
|
|
|
ASSERT_DICT_LOCKED(mp);
|
|
|
|
if (log2_newsize >= SIZEOF_SIZE_T*8) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
assert(log2_newsize >= PyDict_LOG_MINSIZE);
|
|
|
|
oldkeys = mp->ma_keys;
|
|
oldvalues = mp->ma_values;
|
|
|
|
if (!DK_IS_UNICODE(oldkeys)) {
|
|
unicode = 0;
|
|
}
|
|
|
|
ensure_shared_on_resize(mp);
|
|
/* NOTE: Current odict checks mp->ma_keys to detect resize happen.
|
|
* So we can't reuse oldkeys even if oldkeys->dk_size == newsize.
|
|
* TODO: Try reusing oldkeys when reimplement odict.
|
|
*/
|
|
|
|
/* Allocate a new table. */
|
|
newkeys = new_keys_object(interp, log2_newsize, unicode);
|
|
if (newkeys == NULL) {
|
|
return -1;
|
|
}
|
|
// New table must be large enough.
|
|
assert(newkeys->dk_usable >= mp->ma_used);
|
|
|
|
Py_ssize_t numentries = mp->ma_used;
|
|
|
|
if (oldvalues != NULL) {
|
|
LOCK_KEYS(oldkeys);
|
|
PyDictUnicodeEntry *oldentries = DK_UNICODE_ENTRIES(oldkeys);
|
|
/* Convert split table into new combined table.
|
|
* We must incref keys; we can transfer values.
|
|
*/
|
|
if (newkeys->dk_kind == DICT_KEYS_GENERAL) {
|
|
// split -> generic
|
|
PyDictKeyEntry *newentries = DK_ENTRIES(newkeys);
|
|
|
|
for (Py_ssize_t i = 0; i < numentries; i++) {
|
|
int index = get_index_from_order(mp, i);
|
|
PyDictUnicodeEntry *ep = &oldentries[index];
|
|
assert(oldvalues->values[index] != NULL);
|
|
newentries[i].me_key = Py_NewRef(ep->me_key);
|
|
newentries[i].me_hash = unicode_get_hash(ep->me_key);
|
|
newentries[i].me_value = oldvalues->values[index];
|
|
}
|
|
build_indices_generic(newkeys, newentries, numentries);
|
|
}
|
|
else { // split -> combined unicode
|
|
PyDictUnicodeEntry *newentries = DK_UNICODE_ENTRIES(newkeys);
|
|
|
|
for (Py_ssize_t i = 0; i < numentries; i++) {
|
|
int index = get_index_from_order(mp, i);
|
|
PyDictUnicodeEntry *ep = &oldentries[index];
|
|
assert(oldvalues->values[index] != NULL);
|
|
newentries[i].me_key = Py_NewRef(ep->me_key);
|
|
newentries[i].me_value = oldvalues->values[index];
|
|
}
|
|
build_indices_unicode(newkeys, newentries, numentries);
|
|
}
|
|
UNLOCK_KEYS(oldkeys);
|
|
set_keys(mp, newkeys);
|
|
dictkeys_decref(interp, oldkeys, IS_DICT_SHARED(mp));
|
|
set_values(mp, NULL);
|
|
if (oldvalues->embedded) {
|
|
assert(oldvalues->embedded == 1);
|
|
assert(oldvalues->valid == 1);
|
|
FT_ATOMIC_STORE_UINT8(oldvalues->valid, 0);
|
|
}
|
|
else {
|
|
free_values(oldvalues, IS_DICT_SHARED(mp));
|
|
}
|
|
}
|
|
else { // oldkeys is combined.
|
|
if (oldkeys->dk_kind == DICT_KEYS_GENERAL) {
|
|
// generic -> generic
|
|
assert(newkeys->dk_kind == DICT_KEYS_GENERAL);
|
|
PyDictKeyEntry *oldentries = DK_ENTRIES(oldkeys);
|
|
PyDictKeyEntry *newentries = DK_ENTRIES(newkeys);
|
|
if (oldkeys->dk_nentries == numentries) {
|
|
memcpy(newentries, oldentries, numentries * sizeof(PyDictKeyEntry));
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep = oldentries;
|
|
for (Py_ssize_t i = 0; i < numentries; i++) {
|
|
while (ep->me_value == NULL)
|
|
ep++;
|
|
newentries[i] = *ep++;
|
|
}
|
|
}
|
|
build_indices_generic(newkeys, newentries, numentries);
|
|
}
|
|
else { // oldkeys is combined unicode
|
|
PyDictUnicodeEntry *oldentries = DK_UNICODE_ENTRIES(oldkeys);
|
|
if (unicode) { // combined unicode -> combined unicode
|
|
PyDictUnicodeEntry *newentries = DK_UNICODE_ENTRIES(newkeys);
|
|
if (oldkeys->dk_nentries == numentries && mp->ma_keys->dk_kind == DICT_KEYS_UNICODE) {
|
|
memcpy(newentries, oldentries, numentries * sizeof(PyDictUnicodeEntry));
|
|
}
|
|
else {
|
|
PyDictUnicodeEntry *ep = oldentries;
|
|
for (Py_ssize_t i = 0; i < numentries; i++) {
|
|
while (ep->me_value == NULL)
|
|
ep++;
|
|
newentries[i] = *ep++;
|
|
}
|
|
}
|
|
build_indices_unicode(newkeys, newentries, numentries);
|
|
}
|
|
else { // combined unicode -> generic
|
|
PyDictKeyEntry *newentries = DK_ENTRIES(newkeys);
|
|
PyDictUnicodeEntry *ep = oldentries;
|
|
for (Py_ssize_t i = 0; i < numentries; i++) {
|
|
while (ep->me_value == NULL)
|
|
ep++;
|
|
newentries[i].me_key = ep->me_key;
|
|
newentries[i].me_hash = unicode_get_hash(ep->me_key);
|
|
newentries[i].me_value = ep->me_value;
|
|
ep++;
|
|
}
|
|
build_indices_generic(newkeys, newentries, numentries);
|
|
}
|
|
}
|
|
|
|
set_keys(mp, newkeys);
|
|
|
|
if (oldkeys != Py_EMPTY_KEYS) {
|
|
#ifdef Py_REF_DEBUG
|
|
_Py_DecRefTotal(_PyThreadState_GET());
|
|
#endif
|
|
assert(oldkeys->dk_kind != DICT_KEYS_SPLIT);
|
|
assert(oldkeys->dk_refcnt == 1);
|
|
free_keys_object(oldkeys, IS_DICT_SHARED(mp));
|
|
}
|
|
}
|
|
|
|
STORE_KEYS_USABLE(mp->ma_keys, mp->ma_keys->dk_usable - numentries);
|
|
STORE_KEYS_NENTRIES(mp->ma_keys, numentries);
|
|
ASSERT_CONSISTENT(mp);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_new_presized(PyInterpreterState *interp, Py_ssize_t minused, bool unicode)
|
|
{
|
|
const uint8_t log2_max_presize = 17;
|
|
const Py_ssize_t max_presize = ((Py_ssize_t)1) << log2_max_presize;
|
|
uint8_t log2_newsize;
|
|
PyDictKeysObject *new_keys;
|
|
|
|
if (minused <= USABLE_FRACTION(PyDict_MINSIZE)) {
|
|
return PyDict_New();
|
|
}
|
|
/* There are no strict guarantee that returned dict can contain minused
|
|
* items without resize. So we create medium size dict instead of very
|
|
* large dict or MemoryError.
|
|
*/
|
|
if (minused > USABLE_FRACTION(max_presize)) {
|
|
log2_newsize = log2_max_presize;
|
|
}
|
|
else {
|
|
log2_newsize = estimate_log2_keysize(minused);
|
|
}
|
|
|
|
new_keys = new_keys_object(interp, log2_newsize, unicode);
|
|
if (new_keys == NULL)
|
|
return NULL;
|
|
return new_dict(interp, new_keys, NULL, 0, 0);
|
|
}
|
|
|
|
PyObject *
|
|
_PyDict_NewPresized(Py_ssize_t minused)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
return dict_new_presized(interp, minused, false);
|
|
}
|
|
|
|
PyObject *
|
|
_PyDict_FromItems(PyObject *const *keys, Py_ssize_t keys_offset,
|
|
PyObject *const *values, Py_ssize_t values_offset,
|
|
Py_ssize_t length)
|
|
{
|
|
bool unicode = true;
|
|
PyObject *const *ks = keys;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
for (Py_ssize_t i = 0; i < length; i++) {
|
|
if (!PyUnicode_CheckExact(*ks)) {
|
|
unicode = false;
|
|
break;
|
|
}
|
|
ks += keys_offset;
|
|
}
|
|
|
|
PyObject *dict = dict_new_presized(interp, length, unicode);
|
|
if (dict == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
ks = keys;
|
|
PyObject *const *vs = values;
|
|
|
|
for (Py_ssize_t i = 0; i < length; i++) {
|
|
PyObject *key = *ks;
|
|
PyObject *value = *vs;
|
|
if (setitem_lock_held((PyDictObject *)dict, key, value) < 0) {
|
|
Py_DECREF(dict);
|
|
return NULL;
|
|
}
|
|
ks += keys_offset;
|
|
vs += values_offset;
|
|
}
|
|
|
|
return dict;
|
|
}
|
|
|
|
/* Note that, for historical reasons, PyDict_GetItem() suppresses all errors
|
|
* that may occur (originally dicts supported only string keys, and exceptions
|
|
* weren't possible). So, while the original intent was that a NULL return
|
|
* meant the key wasn't present, in reality it can mean that, or that an error
|
|
* (suppressed) occurred while computing the key's hash, or that some error
|
|
* (suppressed) occurred when comparing keys in the dict's internal probe
|
|
* sequence. A nasty example of the latter is when a Python-coded comparison
|
|
* function hits a stack-depth error, which can cause this to return NULL
|
|
* even if the key is present.
|
|
*/
|
|
static PyObject *
|
|
dict_getitem(PyObject *op, PyObject *key, const char *warnmsg)
|
|
{
|
|
if (!PyDict_Check(op)) {
|
|
return NULL;
|
|
}
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
|
|
Py_hash_t hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
PyErr_FormatUnraisable(warnmsg);
|
|
return NULL;
|
|
}
|
|
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
#ifdef Py_DEBUG
|
|
// bpo-40839: Before Python 3.10, it was possible to call PyDict_GetItem()
|
|
// with the GIL released.
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
#endif
|
|
|
|
/* Preserve the existing exception */
|
|
PyObject *value;
|
|
Py_ssize_t ix; (void)ix;
|
|
|
|
PyObject *exc = _PyErr_GetRaisedException(tstate);
|
|
#ifdef Py_GIL_DISABLED
|
|
ix = _Py_dict_lookup_threadsafe(mp, key, hash, &value);
|
|
Py_XDECREF(value);
|
|
#else
|
|
ix = _Py_dict_lookup(mp, key, hash, &value);
|
|
#endif
|
|
|
|
/* Ignore any exception raised by the lookup */
|
|
PyObject *exc2 = _PyErr_Occurred(tstate);
|
|
if (exc2 && !PyErr_GivenExceptionMatches(exc2, PyExc_KeyError)) {
|
|
PyErr_FormatUnraisable(warnmsg);
|
|
}
|
|
_PyErr_SetRaisedException(tstate, exc);
|
|
|
|
assert(ix >= 0 || value == NULL);
|
|
return value; // borrowed reference
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_GetItem(PyObject *op, PyObject *key)
|
|
{
|
|
return dict_getitem(op, key,
|
|
"Exception ignored in PyDict_GetItem(); consider using "
|
|
"PyDict_GetItemRef() or PyDict_GetItemWithError()");
|
|
}
|
|
|
|
Py_ssize_t
|
|
_PyDict_LookupIndex(PyDictObject *mp, PyObject *key)
|
|
{
|
|
// TODO: Thread safety
|
|
PyObject *value;
|
|
assert(PyDict_CheckExact((PyObject*)mp));
|
|
assert(PyUnicode_CheckExact(key));
|
|
|
|
Py_hash_t hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
return -1;
|
|
}
|
|
|
|
return _Py_dict_lookup(mp, key, hash, &value);
|
|
}
|
|
|
|
/* Same as PyDict_GetItemWithError() but with hash supplied by caller.
|
|
This returns NULL *with* an exception set if an exception occurred.
|
|
It returns NULL *without* an exception set if the key wasn't present.
|
|
*/
|
|
PyObject *
|
|
_PyDict_GetItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
|
|
{
|
|
Py_ssize_t ix; (void)ix;
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyObject *value;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
ix = _Py_dict_lookup_threadsafe(mp, key, hash, &value);
|
|
Py_XDECREF(value);
|
|
#else
|
|
ix = _Py_dict_lookup(mp, key, hash, &value);
|
|
#endif
|
|
assert(ix >= 0 || value == NULL);
|
|
return value; // borrowed reference
|
|
}
|
|
|
|
/* Gets an item and provides a new reference if the value is present.
|
|
* Returns 1 if the key is present, 0 if the key is missing, and -1 if an
|
|
* exception occurred.
|
|
*/
|
|
int
|
|
_PyDict_GetItemRef_KnownHash_LockHeld(PyDictObject *op, PyObject *key,
|
|
Py_hash_t hash, PyObject **result)
|
|
{
|
|
PyObject *value;
|
|
Py_ssize_t ix = _Py_dict_lookup(op, key, hash, &value);
|
|
assert(ix >= 0 || value == NULL);
|
|
if (ix == DKIX_ERROR) {
|
|
*result = NULL;
|
|
return -1;
|
|
}
|
|
if (value == NULL) {
|
|
*result = NULL;
|
|
return 0; // missing key
|
|
}
|
|
*result = Py_NewRef(value);
|
|
return 1; // key is present
|
|
}
|
|
|
|
/* Gets an item and provides a new reference if the value is present.
|
|
* Returns 1 if the key is present, 0 if the key is missing, and -1 if an
|
|
* exception occurred.
|
|
*/
|
|
int
|
|
_PyDict_GetItemRef_KnownHash(PyDictObject *op, PyObject *key, Py_hash_t hash, PyObject **result)
|
|
{
|
|
PyObject *value;
|
|
#ifdef Py_GIL_DISABLED
|
|
Py_ssize_t ix = _Py_dict_lookup_threadsafe(op, key, hash, &value);
|
|
#else
|
|
Py_ssize_t ix = _Py_dict_lookup(op, key, hash, &value);
|
|
#endif
|
|
assert(ix >= 0 || value == NULL);
|
|
if (ix == DKIX_ERROR) {
|
|
*result = NULL;
|
|
return -1;
|
|
}
|
|
if (value == NULL) {
|
|
*result = NULL;
|
|
return 0; // missing key
|
|
}
|
|
#ifdef Py_GIL_DISABLED
|
|
*result = value;
|
|
#else
|
|
*result = Py_NewRef(value);
|
|
#endif
|
|
return 1; // key is present
|
|
}
|
|
|
|
int
|
|
PyDict_GetItemRef(PyObject *op, PyObject *key, PyObject **result)
|
|
{
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
*result = NULL;
|
|
return -1;
|
|
}
|
|
|
|
Py_hash_t hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
*result = NULL;
|
|
return -1;
|
|
}
|
|
|
|
return _PyDict_GetItemRef_KnownHash((PyDictObject *)op, key, hash, result);
|
|
}
|
|
|
|
int
|
|
_PyDict_GetItemRef_Unicode_LockHeld(PyDictObject *op, PyObject *key, PyObject **result)
|
|
{
|
|
ASSERT_DICT_LOCKED(op);
|
|
assert(PyUnicode_CheckExact(key));
|
|
|
|
Py_hash_t hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
*result = NULL;
|
|
return -1;
|
|
}
|
|
|
|
PyObject *value;
|
|
Py_ssize_t ix = _Py_dict_lookup(op, key, hash, &value);
|
|
assert(ix >= 0 || value == NULL);
|
|
if (ix == DKIX_ERROR) {
|
|
*result = NULL;
|
|
return -1;
|
|
}
|
|
if (value == NULL) {
|
|
*result = NULL;
|
|
return 0; // missing key
|
|
}
|
|
*result = Py_NewRef(value);
|
|
return 1; // key is present
|
|
}
|
|
|
|
/* Variant of PyDict_GetItem() that doesn't suppress exceptions.
|
|
This returns NULL *with* an exception set if an exception occurred.
|
|
It returns NULL *without* an exception set if the key wasn't present.
|
|
*/
|
|
PyObject *
|
|
PyDict_GetItemWithError(PyObject *op, PyObject *key)
|
|
{
|
|
Py_ssize_t ix; (void)ix;
|
|
Py_hash_t hash;
|
|
PyDictObject*mp = (PyDictObject *)op;
|
|
PyObject *value;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
ix = _Py_dict_lookup_threadsafe(mp, key, hash, &value);
|
|
Py_XDECREF(value);
|
|
#else
|
|
ix = _Py_dict_lookup(mp, key, hash, &value);
|
|
#endif
|
|
assert(ix >= 0 || value == NULL);
|
|
return value; // borrowed reference
|
|
}
|
|
|
|
PyObject *
|
|
_PyDict_GetItemWithError(PyObject *dp, PyObject *kv)
|
|
{
|
|
assert(PyUnicode_CheckExact(kv));
|
|
Py_hash_t hash = Py_TYPE(kv)->tp_hash(kv);
|
|
if (hash == -1) {
|
|
return NULL;
|
|
}
|
|
return _PyDict_GetItem_KnownHash(dp, kv, hash); // borrowed reference
|
|
}
|
|
|
|
PyObject *
|
|
_PyDict_GetItemIdWithError(PyObject *dp, _Py_Identifier *key)
|
|
{
|
|
PyObject *kv;
|
|
kv = _PyUnicode_FromId(key); /* borrowed */
|
|
if (kv == NULL)
|
|
return NULL;
|
|
Py_hash_t hash = unicode_get_hash(kv);
|
|
assert (hash != -1); /* interned strings have their hash value initialised */
|
|
return _PyDict_GetItem_KnownHash(dp, kv, hash); // borrowed reference
|
|
}
|
|
|
|
PyObject *
|
|
_PyDict_GetItemStringWithError(PyObject *v, const char *key)
|
|
{
|
|
PyObject *kv, *rv;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL) {
|
|
return NULL;
|
|
}
|
|
rv = PyDict_GetItemWithError(v, kv);
|
|
Py_DECREF(kv);
|
|
return rv;
|
|
}
|
|
|
|
/* Fast version of global value lookup (LOAD_GLOBAL).
|
|
* Lookup in globals, then builtins.
|
|
*
|
|
*
|
|
*
|
|
*
|
|
* Raise an exception and return NULL if an error occurred (ex: computing the
|
|
* key hash failed, key comparison failed, ...). Return NULL if the key doesn't
|
|
* exist. Return the value if the key exists.
|
|
*
|
|
* Returns a new reference.
|
|
*/
|
|
PyObject *
|
|
_PyDict_LoadGlobal(PyDictObject *globals, PyDictObject *builtins, PyObject *key)
|
|
{
|
|
Py_ssize_t ix;
|
|
Py_hash_t hash;
|
|
PyObject *value;
|
|
|
|
hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
/* namespace 1: globals */
|
|
ix = _Py_dict_lookup_threadsafe(globals, key, hash, &value);
|
|
if (ix == DKIX_ERROR)
|
|
return NULL;
|
|
if (ix != DKIX_EMPTY && value != NULL)
|
|
return value;
|
|
|
|
/* namespace 2: builtins */
|
|
ix = _Py_dict_lookup_threadsafe(builtins, key, hash, &value);
|
|
assert(ix >= 0 || value == NULL);
|
|
return value;
|
|
}
|
|
|
|
void
|
|
_PyDict_LoadGlobalStackRef(PyDictObject *globals, PyDictObject *builtins, PyObject *key, _PyStackRef *res)
|
|
{
|
|
Py_ssize_t ix;
|
|
Py_hash_t hash;
|
|
|
|
hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
*res = PyStackRef_NULL;
|
|
return;
|
|
}
|
|
|
|
/* namespace 1: globals */
|
|
ix = _Py_dict_lookup_threadsafe_stackref(globals, key, hash, res);
|
|
if (ix == DKIX_ERROR) {
|
|
return;
|
|
}
|
|
if (ix != DKIX_EMPTY && !PyStackRef_IsNull(*res)) {
|
|
return;
|
|
}
|
|
|
|
/* namespace 2: builtins */
|
|
ix = _Py_dict_lookup_threadsafe_stackref(builtins, key, hash, res);
|
|
assert(ix >= 0 || PyStackRef_IsNull(*res));
|
|
}
|
|
|
|
PyObject *
|
|
_PyDict_LoadBuiltinsFromGlobals(PyObject *globals)
|
|
{
|
|
if (!PyDict_Check(globals)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
|
|
PyDictObject *mp = (PyDictObject *)globals;
|
|
PyObject *key = &_Py_ID(__builtins__);
|
|
Py_hash_t hash = unicode_get_hash(key);
|
|
|
|
// Use the stackref variant to avoid reference count contention on the
|
|
// builtins module in the free threading build. It's important not to
|
|
// make any escaping calls between the lookup and the `PyStackRef_CLOSE()`
|
|
// because the `ref` is not visible to the GC.
|
|
_PyStackRef ref;
|
|
Py_ssize_t ix = _Py_dict_lookup_threadsafe_stackref(mp, key, hash, &ref);
|
|
if (ix == DKIX_ERROR) {
|
|
return NULL;
|
|
}
|
|
if (PyStackRef_IsNull(ref)) {
|
|
return Py_NewRef(PyEval_GetBuiltins());
|
|
}
|
|
PyObject *builtins = PyStackRef_AsPyObjectBorrow(ref);
|
|
if (PyModule_Check(builtins)) {
|
|
builtins = _PyModule_GetDict(builtins);
|
|
assert(builtins != NULL);
|
|
}
|
|
_Py_INCREF_BUILTINS(builtins);
|
|
PyStackRef_CLOSE(ref);
|
|
return builtins;
|
|
}
|
|
|
|
/* Consumes references to key and value */
|
|
static int
|
|
setitem_take2_lock_held(PyDictObject *mp, PyObject *key, PyObject *value)
|
|
{
|
|
ASSERT_DICT_LOCKED(mp);
|
|
|
|
assert(key);
|
|
assert(value);
|
|
assert(PyDict_Check(mp));
|
|
Py_hash_t hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
return -1;
|
|
}
|
|
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
if (mp->ma_keys == Py_EMPTY_KEYS) {
|
|
return insert_to_emptydict(interp, mp, key, hash, value);
|
|
}
|
|
/* insertdict() handles any resizing that might be necessary */
|
|
return insertdict(interp, mp, key, hash, value);
|
|
}
|
|
|
|
int
|
|
_PyDict_SetItem_Take2(PyDictObject *mp, PyObject *key, PyObject *value)
|
|
{
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION(mp);
|
|
res = setitem_take2_lock_held(mp, key, value);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
|
|
* dictionary if it's merely replacing the value for an existing key.
|
|
* This means that it's safe to loop over a dictionary with PyDict_Next()
|
|
* and occasionally replace a value -- but you can't insert new keys or
|
|
* remove them.
|
|
*/
|
|
int
|
|
PyDict_SetItem(PyObject *op, PyObject *key, PyObject *value)
|
|
{
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
assert(key);
|
|
assert(value);
|
|
return _PyDict_SetItem_Take2((PyDictObject *)op,
|
|
Py_NewRef(key), Py_NewRef(value));
|
|
}
|
|
|
|
static int
|
|
setitem_lock_held(PyDictObject *mp, PyObject *key, PyObject *value)
|
|
{
|
|
assert(key);
|
|
assert(value);
|
|
return setitem_take2_lock_held(mp,
|
|
Py_NewRef(key), Py_NewRef(value));
|
|
}
|
|
|
|
|
|
int
|
|
_PyDict_SetItem_KnownHash_LockHeld(PyDictObject *mp, PyObject *key, PyObject *value,
|
|
Py_hash_t hash)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
if (mp->ma_keys == Py_EMPTY_KEYS) {
|
|
return insert_to_emptydict(interp, mp, Py_NewRef(key), hash, Py_NewRef(value));
|
|
}
|
|
/* insertdict() handles any resizing that might be necessary */
|
|
return insertdict(interp, mp, Py_NewRef(key), hash, Py_NewRef(value));
|
|
}
|
|
|
|
int
|
|
_PyDict_SetItem_KnownHash(PyObject *op, PyObject *key, PyObject *value,
|
|
Py_hash_t hash)
|
|
{
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
assert(key);
|
|
assert(value);
|
|
assert(hash != -1);
|
|
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION(op);
|
|
res = _PyDict_SetItem_KnownHash_LockHeld((PyDictObject *)op, key, value, hash);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
delete_index_from_values(PyDictValues *values, Py_ssize_t ix)
|
|
{
|
|
uint8_t *array = get_insertion_order_array(values);
|
|
int size = values->size;
|
|
assert(size <= values->capacity);
|
|
int i;
|
|
for (i = 0; array[i] != ix; i++) {
|
|
assert(i < size);
|
|
}
|
|
assert(i < size);
|
|
size--;
|
|
for (; i < size; i++) {
|
|
array[i] = array[i+1];
|
|
}
|
|
values->size = size;
|
|
}
|
|
|
|
static void
|
|
delitem_common(PyDictObject *mp, Py_hash_t hash, Py_ssize_t ix,
|
|
PyObject *old_value)
|
|
{
|
|
PyObject *old_key;
|
|
|
|
ASSERT_DICT_LOCKED(mp);
|
|
|
|
Py_ssize_t hashpos = lookdict_index(mp->ma_keys, hash, ix);
|
|
assert(hashpos >= 0);
|
|
|
|
STORE_USED(mp, mp->ma_used - 1);
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
assert(old_value == mp->ma_values->values[ix]);
|
|
STORE_SPLIT_VALUE(mp, ix, NULL);
|
|
assert(ix < SHARED_KEYS_MAX_SIZE);
|
|
/* Update order */
|
|
delete_index_from_values(mp->ma_values, ix);
|
|
ASSERT_CONSISTENT(mp);
|
|
}
|
|
else {
|
|
mp->ma_keys->dk_version = 0;
|
|
dictkeys_set_index(mp->ma_keys, hashpos, DKIX_DUMMY);
|
|
if (DK_IS_UNICODE(mp->ma_keys)) {
|
|
PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(mp->ma_keys)[ix];
|
|
old_key = ep->me_key;
|
|
STORE_KEY(ep, NULL);
|
|
STORE_VALUE(ep, NULL);
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep = &DK_ENTRIES(mp->ma_keys)[ix];
|
|
old_key = ep->me_key;
|
|
STORE_KEY(ep, NULL);
|
|
STORE_VALUE(ep, NULL);
|
|
STORE_HASH(ep, 0);
|
|
}
|
|
Py_DECREF(old_key);
|
|
}
|
|
Py_DECREF(old_value);
|
|
|
|
ASSERT_CONSISTENT(mp);
|
|
}
|
|
|
|
int
|
|
PyDict_DelItem(PyObject *op, PyObject *key)
|
|
{
|
|
assert(key);
|
|
Py_hash_t hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
return -1;
|
|
}
|
|
|
|
return _PyDict_DelItem_KnownHash(op, key, hash);
|
|
}
|
|
|
|
static int
|
|
delitem_knownhash_lock_held(PyObject *op, PyObject *key, Py_hash_t hash)
|
|
{
|
|
Py_ssize_t ix;
|
|
PyDictObject *mp;
|
|
PyObject *old_value;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
|
|
ASSERT_DICT_LOCKED(op);
|
|
|
|
assert(key);
|
|
assert(hash != -1);
|
|
mp = (PyDictObject *)op;
|
|
ix = _Py_dict_lookup(mp, key, hash, &old_value);
|
|
if (ix == DKIX_ERROR)
|
|
return -1;
|
|
if (ix == DKIX_EMPTY || old_value == NULL) {
|
|
_PyErr_SetKeyError(key);
|
|
return -1;
|
|
}
|
|
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_DELETED, mp, key, NULL);
|
|
delitem_common(mp, hash, ix, old_value);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyDict_DelItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
|
|
{
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION(op);
|
|
res = delitem_knownhash_lock_held(op, key, hash);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
delitemif_lock_held(PyObject *op, PyObject *key,
|
|
int (*predicate)(PyObject *value, void *arg),
|
|
void *arg)
|
|
{
|
|
Py_ssize_t ix;
|
|
PyDictObject *mp;
|
|
Py_hash_t hash;
|
|
PyObject *old_value;
|
|
int res;
|
|
|
|
ASSERT_DICT_LOCKED(op);
|
|
|
|
assert(key);
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
mp = (PyDictObject *)op;
|
|
ix = _Py_dict_lookup(mp, key, hash, &old_value);
|
|
if (ix == DKIX_ERROR) {
|
|
return -1;
|
|
}
|
|
if (ix == DKIX_EMPTY || old_value == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
res = predicate(old_value, arg);
|
|
if (res == -1)
|
|
return -1;
|
|
|
|
if (res > 0) {
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_DELETED, mp, key, NULL);
|
|
delitem_common(mp, hash, ix, old_value);
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
/* This function promises that the predicate -> deletion sequence is atomic
|
|
* (i.e. protected by the GIL or the per-dict mutex in free threaded builds),
|
|
* assuming the predicate itself doesn't release the GIL (or cause re-entrancy
|
|
* which would release the per-dict mutex)
|
|
*/
|
|
int
|
|
_PyDict_DelItemIf(PyObject *op, PyObject *key,
|
|
int (*predicate)(PyObject *value, void *arg),
|
|
void *arg)
|
|
{
|
|
assert(PyDict_Check(op));
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION(op);
|
|
res = delitemif_lock_held(op, key, predicate, arg);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
clear_lock_held(PyObject *op)
|
|
{
|
|
PyDictObject *mp;
|
|
PyDictKeysObject *oldkeys;
|
|
PyDictValues *oldvalues;
|
|
Py_ssize_t i, n;
|
|
|
|
ASSERT_DICT_LOCKED(op);
|
|
|
|
if (!PyDict_Check(op))
|
|
return;
|
|
mp = ((PyDictObject *)op);
|
|
oldkeys = mp->ma_keys;
|
|
oldvalues = mp->ma_values;
|
|
if (oldkeys == Py_EMPTY_KEYS) {
|
|
return;
|
|
}
|
|
/* Empty the dict... */
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_CLEARED, mp, NULL, NULL);
|
|
// We don't inc ref empty keys because they're immortal
|
|
ensure_shared_on_resize(mp);
|
|
STORE_USED(mp, 0);
|
|
if (oldvalues == NULL) {
|
|
set_keys(mp, Py_EMPTY_KEYS);
|
|
assert(oldkeys->dk_refcnt == 1);
|
|
dictkeys_decref(interp, oldkeys, IS_DICT_SHARED(mp));
|
|
}
|
|
else {
|
|
n = oldkeys->dk_nentries;
|
|
for (i = 0; i < n; i++) {
|
|
Py_CLEAR(oldvalues->values[i]);
|
|
}
|
|
if (oldvalues->embedded) {
|
|
oldvalues->size = 0;
|
|
}
|
|
else {
|
|
set_values(mp, NULL);
|
|
set_keys(mp, Py_EMPTY_KEYS);
|
|
free_values(oldvalues, IS_DICT_SHARED(mp));
|
|
dictkeys_decref(interp, oldkeys, false);
|
|
}
|
|
}
|
|
ASSERT_CONSISTENT(mp);
|
|
}
|
|
|
|
void
|
|
PyDict_Clear(PyObject *op)
|
|
{
|
|
Py_BEGIN_CRITICAL_SECTION(op);
|
|
clear_lock_held(op);
|
|
Py_END_CRITICAL_SECTION();
|
|
}
|
|
|
|
/* Internal version of PyDict_Next that returns a hash value in addition
|
|
* to the key and value.
|
|
* Return 1 on success, return 0 when the reached the end of the dictionary
|
|
* (or if op is not a dictionary)
|
|
*/
|
|
int
|
|
_PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey,
|
|
PyObject **pvalue, Py_hash_t *phash)
|
|
{
|
|
Py_ssize_t i;
|
|
PyDictObject *mp;
|
|
PyObject *key, *value;
|
|
Py_hash_t hash;
|
|
|
|
if (!PyDict_Check(op))
|
|
return 0;
|
|
|
|
mp = (PyDictObject *)op;
|
|
i = *ppos;
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
assert(mp->ma_used <= SHARED_KEYS_MAX_SIZE);
|
|
if (i < 0 || i >= mp->ma_used)
|
|
return 0;
|
|
int index = get_index_from_order(mp, i);
|
|
value = mp->ma_values->values[index];
|
|
key = LOAD_SHARED_KEY(DK_UNICODE_ENTRIES(mp->ma_keys)[index].me_key);
|
|
hash = unicode_get_hash(key);
|
|
assert(value != NULL);
|
|
}
|
|
else {
|
|
Py_ssize_t n = mp->ma_keys->dk_nentries;
|
|
if (i < 0 || i >= n)
|
|
return 0;
|
|
if (DK_IS_UNICODE(mp->ma_keys)) {
|
|
PyDictUnicodeEntry *entry_ptr = &DK_UNICODE_ENTRIES(mp->ma_keys)[i];
|
|
while (i < n && entry_ptr->me_value == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
return 0;
|
|
key = entry_ptr->me_key;
|
|
hash = unicode_get_hash(entry_ptr->me_key);
|
|
value = entry_ptr->me_value;
|
|
}
|
|
else {
|
|
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(mp->ma_keys)[i];
|
|
while (i < n && entry_ptr->me_value == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
return 0;
|
|
key = entry_ptr->me_key;
|
|
hash = entry_ptr->me_hash;
|
|
value = entry_ptr->me_value;
|
|
}
|
|
}
|
|
*ppos = i+1;
|
|
if (pkey)
|
|
*pkey = key;
|
|
if (pvalue)
|
|
*pvalue = value;
|
|
if (phash)
|
|
*phash = hash;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Iterate over a dict. Use like so:
|
|
*
|
|
* Py_ssize_t i;
|
|
* PyObject *key, *value;
|
|
* i = 0; # important! i should not otherwise be changed by you
|
|
* while (PyDict_Next(yourdict, &i, &key, &value)) {
|
|
* Refer to borrowed references in key and value.
|
|
* }
|
|
*
|
|
* Return 1 on success, return 0 when the reached the end of the dictionary
|
|
* (or if op is not a dictionary)
|
|
*
|
|
* CAUTION: In general, it isn't safe to use PyDict_Next in a loop that
|
|
* mutates the dict. One exception: it is safe if the loop merely changes
|
|
* the values associated with the keys (but doesn't insert new keys or
|
|
* delete keys), via PyDict_SetItem().
|
|
*/
|
|
int
|
|
PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
|
|
{
|
|
return _PyDict_Next(op, ppos, pkey, pvalue, NULL);
|
|
}
|
|
|
|
|
|
/* Internal version of dict.pop(). */
|
|
int
|
|
_PyDict_Pop_KnownHash(PyDictObject *mp, PyObject *key, Py_hash_t hash,
|
|
PyObject **result)
|
|
{
|
|
assert(PyDict_Check(mp));
|
|
|
|
ASSERT_DICT_LOCKED(mp);
|
|
|
|
if (mp->ma_used == 0) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
PyObject *old_value;
|
|
Py_ssize_t ix = _Py_dict_lookup(mp, key, hash, &old_value);
|
|
if (ix == DKIX_ERROR) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (ix == DKIX_EMPTY || old_value == NULL) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
assert(old_value != NULL);
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_DELETED, mp, key, NULL);
|
|
delitem_common(mp, hash, ix, Py_NewRef(old_value));
|
|
|
|
ASSERT_CONSISTENT(mp);
|
|
if (result) {
|
|
*result = old_value;
|
|
}
|
|
else {
|
|
Py_DECREF(old_value);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
pop_lock_held(PyObject *op, PyObject *key, PyObject **result)
|
|
{
|
|
ASSERT_DICT_LOCKED(op);
|
|
|
|
if (!PyDict_Check(op)) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
PyDictObject *dict = (PyDictObject *)op;
|
|
|
|
if (dict->ma_used == 0) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Py_hash_t hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
return _PyDict_Pop_KnownHash(dict, key, hash, result);
|
|
}
|
|
|
|
int
|
|
PyDict_Pop(PyObject *op, PyObject *key, PyObject **result)
|
|
{
|
|
int err;
|
|
Py_BEGIN_CRITICAL_SECTION(op);
|
|
err = pop_lock_held(op, key, result);
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
return err;
|
|
}
|
|
|
|
|
|
int
|
|
PyDict_PopString(PyObject *op, const char *key, PyObject **result)
|
|
{
|
|
PyObject *key_obj = PyUnicode_FromString(key);
|
|
if (key_obj == NULL) {
|
|
if (result != NULL) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int res = PyDict_Pop(op, key_obj, result);
|
|
Py_DECREF(key_obj);
|
|
return res;
|
|
}
|
|
|
|
|
|
PyObject *
|
|
_PyDict_Pop(PyObject *dict, PyObject *key, PyObject *default_value)
|
|
{
|
|
PyObject *result;
|
|
if (PyDict_Pop(dict, key, &result) == 0) {
|
|
if (default_value != NULL) {
|
|
return Py_NewRef(default_value);
|
|
}
|
|
_PyErr_SetKeyError(key);
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyDictObject *
|
|
dict_dict_fromkeys(PyInterpreterState *interp, PyDictObject *mp,
|
|
PyObject *iterable, PyObject *value)
|
|
{
|
|
PyObject *oldvalue;
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key;
|
|
Py_hash_t hash;
|
|
int unicode = DK_IS_UNICODE(((PyDictObject*)iterable)->ma_keys);
|
|
uint8_t new_size = Py_MAX(
|
|
estimate_log2_keysize(PyDict_GET_SIZE(iterable)),
|
|
DK_LOG_SIZE(mp->ma_keys));
|
|
if (dictresize(interp, mp, new_size, unicode)) {
|
|
Py_DECREF(mp);
|
|
return NULL;
|
|
}
|
|
|
|
while (_PyDict_Next(iterable, &pos, &key, &oldvalue, &hash)) {
|
|
if (insertdict(interp, mp,
|
|
Py_NewRef(key), hash, Py_NewRef(value))) {
|
|
Py_DECREF(mp);
|
|
return NULL;
|
|
}
|
|
}
|
|
return mp;
|
|
}
|
|
|
|
static PyDictObject *
|
|
dict_set_fromkeys(PyInterpreterState *interp, PyDictObject *mp,
|
|
PyObject *iterable, PyObject *value)
|
|
{
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key;
|
|
Py_hash_t hash;
|
|
|
|
if (dictresize(interp, mp,
|
|
estimate_log2_keysize(PySet_GET_SIZE(iterable)), 0)) {
|
|
Py_DECREF(mp);
|
|
return NULL;
|
|
}
|
|
|
|
_Py_CRITICAL_SECTION_ASSERT_OBJECT_LOCKED(iterable);
|
|
while (_PySet_NextEntryRef(iterable, &pos, &key, &hash)) {
|
|
if (insertdict(interp, mp, key, hash, Py_NewRef(value))) {
|
|
Py_DECREF(mp);
|
|
return NULL;
|
|
}
|
|
}
|
|
return mp;
|
|
}
|
|
|
|
/* Internal version of dict.from_keys(). It is subclass-friendly. */
|
|
PyObject *
|
|
_PyDict_FromKeys(PyObject *cls, PyObject *iterable, PyObject *value)
|
|
{
|
|
PyObject *it; /* iter(iterable) */
|
|
PyObject *key;
|
|
PyObject *d;
|
|
int status;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
d = _PyObject_CallNoArgs(cls);
|
|
if (d == NULL)
|
|
return NULL;
|
|
|
|
|
|
if (PyDict_CheckExact(d)) {
|
|
if (PyDict_CheckExact(iterable)) {
|
|
PyDictObject *mp = (PyDictObject *)d;
|
|
|
|
Py_BEGIN_CRITICAL_SECTION2(d, iterable);
|
|
d = (PyObject *)dict_dict_fromkeys(interp, mp, iterable, value);
|
|
Py_END_CRITICAL_SECTION2();
|
|
return d;
|
|
}
|
|
else if (PyAnySet_CheckExact(iterable)) {
|
|
PyDictObject *mp = (PyDictObject *)d;
|
|
|
|
Py_BEGIN_CRITICAL_SECTION2(d, iterable);
|
|
d = (PyObject *)dict_set_fromkeys(interp, mp, iterable, value);
|
|
Py_END_CRITICAL_SECTION2();
|
|
return d;
|
|
}
|
|
}
|
|
|
|
it = PyObject_GetIter(iterable);
|
|
if (it == NULL){
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
if (PyDict_CheckExact(d)) {
|
|
Py_BEGIN_CRITICAL_SECTION(d);
|
|
while ((key = PyIter_Next(it)) != NULL) {
|
|
status = setitem_lock_held((PyDictObject *)d, key, value);
|
|
Py_DECREF(key);
|
|
if (status < 0) {
|
|
assert(PyErr_Occurred());
|
|
goto dict_iter_exit;
|
|
}
|
|
}
|
|
dict_iter_exit:;
|
|
Py_END_CRITICAL_SECTION();
|
|
} else {
|
|
while ((key = PyIter_Next(it)) != NULL) {
|
|
status = PyObject_SetItem(d, key, value);
|
|
Py_DECREF(key);
|
|
if (status < 0)
|
|
goto Fail;
|
|
}
|
|
}
|
|
|
|
if (PyErr_Occurred())
|
|
goto Fail;
|
|
Py_DECREF(it);
|
|
return d;
|
|
|
|
Fail:
|
|
Py_DECREF(it);
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
/* Methods */
|
|
|
|
static void
|
|
dict_dealloc(PyObject *self)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)self;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
assert(Py_REFCNT(mp) == 0);
|
|
Py_SET_REFCNT(mp, 1);
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_DEALLOCATED, mp, NULL, NULL);
|
|
if (Py_REFCNT(mp) > 1) {
|
|
Py_SET_REFCNT(mp, Py_REFCNT(mp) - 1);
|
|
return;
|
|
}
|
|
Py_SET_REFCNT(mp, 0);
|
|
PyDictValues *values = mp->ma_values;
|
|
PyDictKeysObject *keys = mp->ma_keys;
|
|
Py_ssize_t i, n;
|
|
|
|
/* bpo-31095: UnTrack is needed before calling any callbacks */
|
|
PyObject_GC_UnTrack(mp);
|
|
Py_TRASHCAN_BEGIN(mp, dict_dealloc)
|
|
if (values != NULL) {
|
|
if (values->embedded == 0) {
|
|
for (i = 0, n = mp->ma_keys->dk_nentries; i < n; i++) {
|
|
Py_XDECREF(values->values[i]);
|
|
}
|
|
free_values(values, false);
|
|
}
|
|
dictkeys_decref(interp, keys, false);
|
|
}
|
|
else if (keys != NULL) {
|
|
assert(keys->dk_refcnt == 1 || keys == Py_EMPTY_KEYS);
|
|
dictkeys_decref(interp, keys, false);
|
|
}
|
|
if (Py_IS_TYPE(mp, &PyDict_Type)) {
|
|
_Py_FREELIST_FREE(dicts, mp, Py_TYPE(mp)->tp_free);
|
|
}
|
|
else {
|
|
Py_TYPE(mp)->tp_free((PyObject *)mp);
|
|
}
|
|
Py_TRASHCAN_END
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
dict_repr_lock_held(PyObject *self)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)self;
|
|
PyObject *key = NULL, *value = NULL;
|
|
ASSERT_DICT_LOCKED(mp);
|
|
|
|
int res = Py_ReprEnter((PyObject *)mp);
|
|
if (res != 0) {
|
|
return (res > 0 ? PyUnicode_FromString("{...}") : NULL);
|
|
}
|
|
|
|
if (mp->ma_used == 0) {
|
|
Py_ReprLeave((PyObject *)mp);
|
|
return PyUnicode_FromString("{}");
|
|
}
|
|
|
|
// "{" + "1: 2" + ", 3: 4" * (len - 1) + "}"
|
|
Py_ssize_t prealloc = 1 + 4 + 6 * (mp->ma_used - 1) + 1;
|
|
PyUnicodeWriter *writer = PyUnicodeWriter_Create(prealloc);
|
|
if (writer == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
if (PyUnicodeWriter_WriteChar(writer, '{') < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* Do repr() on each key+value pair, and insert ": " between them.
|
|
Note that repr may mutate the dict. */
|
|
Py_ssize_t i = 0;
|
|
int first = 1;
|
|
while (_PyDict_Next((PyObject *)mp, &i, &key, &value, NULL)) {
|
|
// Prevent repr from deleting key or value during key format.
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
|
|
if (!first) {
|
|
// Write ", "
|
|
if (PyUnicodeWriter_WriteChar(writer, ',') < 0) {
|
|
goto error;
|
|
}
|
|
if (PyUnicodeWriter_WriteChar(writer, ' ') < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
first = 0;
|
|
|
|
// Write repr(key)
|
|
if (PyUnicodeWriter_WriteRepr(writer, key) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
// Write ": "
|
|
if (PyUnicodeWriter_WriteChar(writer, ':') < 0) {
|
|
goto error;
|
|
}
|
|
if (PyUnicodeWriter_WriteChar(writer, ' ') < 0) {
|
|
goto error;
|
|
}
|
|
|
|
// Write repr(value)
|
|
if (PyUnicodeWriter_WriteRepr(writer, value) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
Py_CLEAR(key);
|
|
Py_CLEAR(value);
|
|
}
|
|
|
|
if (PyUnicodeWriter_WriteChar(writer, '}') < 0) {
|
|
goto error;
|
|
}
|
|
|
|
Py_ReprLeave((PyObject *)mp);
|
|
|
|
return PyUnicodeWriter_Finish(writer);
|
|
|
|
error:
|
|
Py_ReprLeave((PyObject *)mp);
|
|
PyUnicodeWriter_Discard(writer);
|
|
Py_XDECREF(key);
|
|
Py_XDECREF(value);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_repr(PyObject *self)
|
|
{
|
|
PyObject *res;
|
|
Py_BEGIN_CRITICAL_SECTION(self);
|
|
res = dict_repr_lock_held(self);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dict_length(PyObject *self)
|
|
{
|
|
return FT_ATOMIC_LOAD_SSIZE_RELAXED(((PyDictObject *)self)->ma_used);
|
|
}
|
|
|
|
static PyObject *
|
|
dict_subscript(PyObject *self, PyObject *key)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)self;
|
|
Py_ssize_t ix;
|
|
Py_hash_t hash;
|
|
PyObject *value;
|
|
|
|
hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
return NULL;
|
|
}
|
|
ix = _Py_dict_lookup_threadsafe(mp, key, hash, &value);
|
|
if (ix == DKIX_ERROR)
|
|
return NULL;
|
|
if (ix == DKIX_EMPTY || value == NULL) {
|
|
if (!PyDict_CheckExact(mp)) {
|
|
/* Look up __missing__ method if we're a subclass. */
|
|
PyObject *missing, *res;
|
|
missing = _PyObject_LookupSpecial(
|
|
(PyObject *)mp, &_Py_ID(__missing__));
|
|
if (missing != NULL) {
|
|
res = PyObject_CallOneArg(missing, key);
|
|
Py_DECREF(missing);
|
|
return res;
|
|
}
|
|
else if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
_PyErr_SetKeyError(key);
|
|
return NULL;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static int
|
|
dict_ass_sub(PyObject *mp, PyObject *v, PyObject *w)
|
|
{
|
|
if (w == NULL)
|
|
return PyDict_DelItem(mp, v);
|
|
else
|
|
return PyDict_SetItem(mp, v, w);
|
|
}
|
|
|
|
static PyMappingMethods dict_as_mapping = {
|
|
dict_length, /*mp_length*/
|
|
dict_subscript, /*mp_subscript*/
|
|
dict_ass_sub, /*mp_ass_subscript*/
|
|
};
|
|
|
|
static PyObject *
|
|
keys_lock_held(PyObject *dict)
|
|
{
|
|
ASSERT_DICT_LOCKED(dict);
|
|
|
|
if (dict == NULL || !PyDict_Check(dict)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
PyDictObject *mp = (PyDictObject *)dict;
|
|
PyObject *v;
|
|
Py_ssize_t n;
|
|
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
|
|
/* Nothing we do below makes any function calls. */
|
|
Py_ssize_t j = 0, pos = 0;
|
|
PyObject *key;
|
|
while (_PyDict_Next((PyObject*)mp, &pos, &key, NULL, NULL)) {
|
|
assert(j < n);
|
|
PyList_SET_ITEM(v, j, Py_NewRef(key));
|
|
j++;
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Keys(PyObject *dict)
|
|
{
|
|
PyObject *res;
|
|
Py_BEGIN_CRITICAL_SECTION(dict);
|
|
res = keys_lock_held(dict);
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
values_lock_held(PyObject *dict)
|
|
{
|
|
ASSERT_DICT_LOCKED(dict);
|
|
|
|
if (dict == NULL || !PyDict_Check(dict)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
PyDictObject *mp = (PyDictObject *)dict;
|
|
PyObject *v;
|
|
Py_ssize_t n;
|
|
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
|
|
/* Nothing we do below makes any function calls. */
|
|
Py_ssize_t j = 0, pos = 0;
|
|
PyObject *value;
|
|
while (_PyDict_Next((PyObject*)mp, &pos, NULL, &value, NULL)) {
|
|
assert(j < n);
|
|
PyList_SET_ITEM(v, j, Py_NewRef(value));
|
|
j++;
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Values(PyObject *dict)
|
|
{
|
|
PyObject *res;
|
|
Py_BEGIN_CRITICAL_SECTION(dict);
|
|
res = values_lock_held(dict);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
items_lock_held(PyObject *dict)
|
|
{
|
|
ASSERT_DICT_LOCKED(dict);
|
|
|
|
if (dict == NULL || !PyDict_Check(dict)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
PyDictObject *mp = (PyDictObject *)dict;
|
|
PyObject *v;
|
|
Py_ssize_t i, n;
|
|
PyObject *item;
|
|
|
|
/* Preallocate the list of tuples, to avoid allocations during
|
|
* the loop over the items, which could trigger GC, which
|
|
* could resize the dict. :-(
|
|
*/
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
for (i = 0; i < n; i++) {
|
|
item = PyTuple_New(2);
|
|
if (item == NULL) {
|
|
Py_DECREF(v);
|
|
return NULL;
|
|
}
|
|
PyList_SET_ITEM(v, i, item);
|
|
}
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
|
|
/* Nothing we do below makes any function calls. */
|
|
Py_ssize_t j = 0, pos = 0;
|
|
PyObject *key, *value;
|
|
while (_PyDict_Next((PyObject*)mp, &pos, &key, &value, NULL)) {
|
|
assert(j < n);
|
|
PyObject *item = PyList_GET_ITEM(v, j);
|
|
PyTuple_SET_ITEM(item, 0, Py_NewRef(key));
|
|
PyTuple_SET_ITEM(item, 1, Py_NewRef(value));
|
|
j++;
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Items(PyObject *dict)
|
|
{
|
|
PyObject *res;
|
|
Py_BEGIN_CRITICAL_SECTION(dict);
|
|
res = items_lock_held(dict);
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
return res;
|
|
}
|
|
|
|
/*[clinic input]
|
|
@classmethod
|
|
dict.fromkeys
|
|
iterable: object
|
|
value: object=None
|
|
/
|
|
|
|
Create a new dictionary with keys from iterable and values set to value.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_fromkeys_impl(PyTypeObject *type, PyObject *iterable, PyObject *value)
|
|
/*[clinic end generated code: output=8fb98e4b10384999 input=382ba4855d0f74c3]*/
|
|
{
|
|
return _PyDict_FromKeys((PyObject *)type, iterable, value);
|
|
}
|
|
|
|
/* Single-arg dict update; used by dict_update_common and operators. */
|
|
static int
|
|
dict_update_arg(PyObject *self, PyObject *arg)
|
|
{
|
|
if (PyDict_CheckExact(arg)) {
|
|
return PyDict_Merge(self, arg, 1);
|
|
}
|
|
int has_keys = PyObject_HasAttrWithError(arg, &_Py_ID(keys));
|
|
if (has_keys < 0) {
|
|
return -1;
|
|
}
|
|
if (has_keys) {
|
|
return PyDict_Merge(self, arg, 1);
|
|
}
|
|
return PyDict_MergeFromSeq2(self, arg, 1);
|
|
}
|
|
|
|
static int
|
|
dict_update_common(PyObject *self, PyObject *args, PyObject *kwds,
|
|
const char *methname)
|
|
{
|
|
PyObject *arg = NULL;
|
|
int result = 0;
|
|
|
|
if (!PyArg_UnpackTuple(args, methname, 0, 1, &arg)) {
|
|
result = -1;
|
|
}
|
|
else if (arg != NULL) {
|
|
result = dict_update_arg(self, arg);
|
|
}
|
|
|
|
if (result == 0 && kwds != NULL) {
|
|
if (PyArg_ValidateKeywordArguments(kwds))
|
|
result = PyDict_Merge(self, kwds, 1);
|
|
else
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Note: dict.update() uses the METH_VARARGS|METH_KEYWORDS calling convention.
|
|
Using METH_FASTCALL|METH_KEYWORDS would make dict.update(**dict2) calls
|
|
slower, see the issue #29312. */
|
|
static PyObject *
|
|
dict_update(PyObject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
if (dict_update_common(self, args, kwds, "update") != -1)
|
|
Py_RETURN_NONE;
|
|
return NULL;
|
|
}
|
|
|
|
/* Update unconditionally replaces existing items.
|
|
Merge has a 3rd argument 'override'; if set, it acts like Update,
|
|
otherwise it leaves existing items unchanged.
|
|
|
|
PyDict_{Update,Merge} update/merge from a mapping object.
|
|
|
|
PyDict_MergeFromSeq2 updates/merges from any iterable object
|
|
producing iterable objects of length 2.
|
|
*/
|
|
|
|
static int
|
|
merge_from_seq2_lock_held(PyObject *d, PyObject *seq2, int override)
|
|
{
|
|
PyObject *it; /* iter(seq2) */
|
|
Py_ssize_t i; /* index into seq2 of current element */
|
|
PyObject *item; /* seq2[i] */
|
|
PyObject *fast; /* item as a 2-tuple or 2-list */
|
|
|
|
assert(d != NULL);
|
|
assert(PyDict_Check(d));
|
|
assert(seq2 != NULL);
|
|
|
|
it = PyObject_GetIter(seq2);
|
|
if (it == NULL)
|
|
return -1;
|
|
|
|
for (i = 0; ; ++i) {
|
|
PyObject *key, *value;
|
|
Py_ssize_t n;
|
|
|
|
fast = NULL;
|
|
item = PyIter_Next(it);
|
|
if (item == NULL) {
|
|
if (PyErr_Occurred())
|
|
goto Fail;
|
|
break;
|
|
}
|
|
|
|
/* Convert item to sequence, and verify length 2. */
|
|
fast = PySequence_Fast(item, "");
|
|
if (fast == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_TypeError))
|
|
PyErr_Format(PyExc_TypeError,
|
|
"cannot convert dictionary update "
|
|
"sequence element #%zd to a sequence",
|
|
i);
|
|
goto Fail;
|
|
}
|
|
n = PySequence_Fast_GET_SIZE(fast);
|
|
if (n != 2) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"dictionary update sequence element #%zd "
|
|
"has length %zd; 2 is required",
|
|
i, n);
|
|
goto Fail;
|
|
}
|
|
|
|
/* Update/merge with this (key, value) pair. */
|
|
key = PySequence_Fast_GET_ITEM(fast, 0);
|
|
value = PySequence_Fast_GET_ITEM(fast, 1);
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
if (override) {
|
|
if (setitem_lock_held((PyDictObject *)d, key, value) < 0) {
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
goto Fail;
|
|
}
|
|
}
|
|
else {
|
|
if (dict_setdefault_ref_lock_held(d, key, value, NULL, 0) < 0) {
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
goto Fail;
|
|
}
|
|
}
|
|
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
Py_DECREF(fast);
|
|
Py_DECREF(item);
|
|
}
|
|
|
|
i = 0;
|
|
ASSERT_CONSISTENT(d);
|
|
goto Return;
|
|
Fail:
|
|
Py_XDECREF(item);
|
|
Py_XDECREF(fast);
|
|
i = -1;
|
|
Return:
|
|
Py_DECREF(it);
|
|
return Py_SAFE_DOWNCAST(i, Py_ssize_t, int);
|
|
}
|
|
|
|
int
|
|
PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override)
|
|
{
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION(d);
|
|
res = merge_from_seq2_lock_held(d, seq2, override);
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
dict_dict_merge(PyInterpreterState *interp, PyDictObject *mp, PyDictObject *other, int override)
|
|
{
|
|
ASSERT_DICT_LOCKED(mp);
|
|
ASSERT_DICT_LOCKED(other);
|
|
|
|
if (other == mp || other->ma_used == 0)
|
|
/* a.update(a) or a.update({}); nothing to do */
|
|
return 0;
|
|
if (mp->ma_used == 0) {
|
|
/* Since the target dict is empty, PyDict_GetItem()
|
|
* always returns NULL. Setting override to 1
|
|
* skips the unnecessary test.
|
|
*/
|
|
override = 1;
|
|
PyDictKeysObject *okeys = other->ma_keys;
|
|
|
|
// If other is clean, combined, and just allocated, just clone it.
|
|
if (mp->ma_values == NULL &&
|
|
other->ma_values == NULL &&
|
|
other->ma_used == okeys->dk_nentries &&
|
|
(DK_LOG_SIZE(okeys) == PyDict_LOG_MINSIZE ||
|
|
USABLE_FRACTION(DK_SIZE(okeys)/2) < other->ma_used)
|
|
) {
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_CLONED, mp, (PyObject *)other, NULL);
|
|
PyDictKeysObject *keys = clone_combined_dict_keys(other);
|
|
if (keys == NULL)
|
|
return -1;
|
|
|
|
ensure_shared_on_resize(mp);
|
|
dictkeys_decref(interp, mp->ma_keys, IS_DICT_SHARED(mp));
|
|
mp->ma_keys = keys;
|
|
STORE_USED(mp, other->ma_used);
|
|
ASSERT_CONSISTENT(mp);
|
|
|
|
if (_PyObject_GC_IS_TRACKED(other) && !_PyObject_GC_IS_TRACKED(mp)) {
|
|
/* Maintain tracking. */
|
|
_PyObject_GC_TRACK(mp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
/* Do one big resize at the start, rather than
|
|
* incrementally resizing as we insert new items. Expect
|
|
* that there will be no (or few) overlapping keys.
|
|
*/
|
|
if (USABLE_FRACTION(DK_SIZE(mp->ma_keys)) < other->ma_used) {
|
|
int unicode = DK_IS_UNICODE(other->ma_keys);
|
|
if (dictresize(interp, mp,
|
|
estimate_log2_keysize(mp->ma_used + other->ma_used),
|
|
unicode)) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
Py_ssize_t orig_size = other->ma_keys->dk_nentries;
|
|
Py_ssize_t pos = 0;
|
|
Py_hash_t hash;
|
|
PyObject *key, *value;
|
|
|
|
while (_PyDict_Next((PyObject*)other, &pos, &key, &value, &hash)) {
|
|
int err = 0;
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
if (override == 1) {
|
|
err = insertdict(interp, mp,
|
|
Py_NewRef(key), hash, Py_NewRef(value));
|
|
}
|
|
else {
|
|
err = _PyDict_Contains_KnownHash((PyObject *)mp, key, hash);
|
|
if (err == 0) {
|
|
err = insertdict(interp, mp,
|
|
Py_NewRef(key), hash, Py_NewRef(value));
|
|
}
|
|
else if (err > 0) {
|
|
if (override != 0) {
|
|
_PyErr_SetKeyError(key);
|
|
Py_DECREF(value);
|
|
Py_DECREF(key);
|
|
return -1;
|
|
}
|
|
err = 0;
|
|
}
|
|
}
|
|
Py_DECREF(value);
|
|
Py_DECREF(key);
|
|
if (err != 0)
|
|
return -1;
|
|
|
|
if (orig_size != other->ma_keys->dk_nentries) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dict mutated during update");
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
dict_merge(PyInterpreterState *interp, PyObject *a, PyObject *b, int override)
|
|
{
|
|
PyDictObject *mp, *other;
|
|
|
|
assert(0 <= override && override <= 2);
|
|
|
|
/* We accept for the argument either a concrete dictionary object,
|
|
* or an abstract "mapping" object. For the former, we can do
|
|
* things quite efficiently. For the latter, we only require that
|
|
* PyMapping_Keys() and PyObject_GetItem() be supported.
|
|
*/
|
|
if (a == NULL || !PyDict_Check(a) || b == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
mp = (PyDictObject*)a;
|
|
int res = 0;
|
|
if (PyDict_Check(b) && (Py_TYPE(b)->tp_iter == dict_iter)) {
|
|
other = (PyDictObject*)b;
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION2(a, b);
|
|
res = dict_dict_merge(interp, (PyDictObject *)a, other, override);
|
|
ASSERT_CONSISTENT(a);
|
|
Py_END_CRITICAL_SECTION2();
|
|
return res;
|
|
}
|
|
else {
|
|
/* Do it the generic, slower way */
|
|
Py_BEGIN_CRITICAL_SECTION(a);
|
|
PyObject *keys = PyMapping_Keys(b);
|
|
PyObject *iter;
|
|
PyObject *key, *value;
|
|
int status;
|
|
|
|
if (keys == NULL) {
|
|
/* Docstring says this is equivalent to E.keys() so
|
|
* if E doesn't have a .keys() method we want
|
|
* AttributeError to percolate up. Might as well
|
|
* do the same for any other error.
|
|
*/
|
|
res = -1;
|
|
goto slow_exit;
|
|
}
|
|
|
|
iter = PyObject_GetIter(keys);
|
|
Py_DECREF(keys);
|
|
if (iter == NULL) {
|
|
res = -1;
|
|
goto slow_exit;
|
|
}
|
|
|
|
for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) {
|
|
if (override != 1) {
|
|
status = PyDict_Contains(a, key);
|
|
if (status != 0) {
|
|
if (status > 0) {
|
|
if (override == 0) {
|
|
Py_DECREF(key);
|
|
continue;
|
|
}
|
|
_PyErr_SetKeyError(key);
|
|
}
|
|
Py_DECREF(key);
|
|
Py_DECREF(iter);
|
|
res = -1;
|
|
goto slow_exit;
|
|
}
|
|
}
|
|
value = PyObject_GetItem(b, key);
|
|
if (value == NULL) {
|
|
Py_DECREF(iter);
|
|
Py_DECREF(key);
|
|
res = -1;
|
|
goto slow_exit;
|
|
}
|
|
status = setitem_lock_held(mp, key, value);
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
if (status < 0) {
|
|
Py_DECREF(iter);
|
|
res = -1;
|
|
goto slow_exit;
|
|
return -1;
|
|
}
|
|
}
|
|
Py_DECREF(iter);
|
|
if (PyErr_Occurred()) {
|
|
/* Iterator completed, via error */
|
|
res = -1;
|
|
goto slow_exit;
|
|
}
|
|
|
|
slow_exit:
|
|
ASSERT_CONSISTENT(a);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
}
|
|
|
|
int
|
|
PyDict_Update(PyObject *a, PyObject *b)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
return dict_merge(interp, a, b, 1);
|
|
}
|
|
|
|
int
|
|
PyDict_Merge(PyObject *a, PyObject *b, int override)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
/* XXX Deprecate override not in (0, 1). */
|
|
return dict_merge(interp, a, b, override != 0);
|
|
}
|
|
|
|
int
|
|
_PyDict_MergeEx(PyObject *a, PyObject *b, int override)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
return dict_merge(interp, a, b, override);
|
|
}
|
|
|
|
/*[clinic input]
|
|
dict.copy
|
|
|
|
Return a shallow copy of the dict.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_copy_impl(PyDictObject *self)
|
|
/*[clinic end generated code: output=ffb782cf970a5c39 input=73935f042b639de4]*/
|
|
{
|
|
return PyDict_Copy((PyObject *)self);
|
|
}
|
|
|
|
/* Copies the values, but does not change the reference
|
|
* counts of the objects in the array.
|
|
* Return NULL, but does *not* set an exception on failure */
|
|
static PyDictValues *
|
|
copy_values(PyDictValues *values)
|
|
{
|
|
PyDictValues *newvalues = new_values(values->capacity);
|
|
if (newvalues == NULL) {
|
|
return NULL;
|
|
}
|
|
newvalues->size = values->size;
|
|
uint8_t *values_order = get_insertion_order_array(values);
|
|
uint8_t *new_values_order = get_insertion_order_array(newvalues);
|
|
memcpy(new_values_order, values_order, values->capacity);
|
|
for (int i = 0; i < values->capacity; i++) {
|
|
newvalues->values[i] = values->values[i];
|
|
}
|
|
assert(newvalues->embedded == 0);
|
|
return newvalues;
|
|
}
|
|
|
|
static PyObject *
|
|
copy_lock_held(PyObject *o)
|
|
{
|
|
PyObject *copy;
|
|
PyDictObject *mp;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
ASSERT_DICT_LOCKED(o);
|
|
|
|
mp = (PyDictObject *)o;
|
|
if (mp->ma_used == 0) {
|
|
/* The dict is empty; just return a new dict. */
|
|
return PyDict_New();
|
|
}
|
|
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
PyDictObject *split_copy;
|
|
PyDictValues *newvalues = copy_values(mp->ma_values);
|
|
if (newvalues == NULL) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
split_copy = PyObject_GC_New(PyDictObject, &PyDict_Type);
|
|
if (split_copy == NULL) {
|
|
free_values(newvalues, false);
|
|
return NULL;
|
|
}
|
|
for (size_t i = 0; i < newvalues->capacity; i++) {
|
|
Py_XINCREF(newvalues->values[i]);
|
|
}
|
|
split_copy->ma_values = newvalues;
|
|
split_copy->ma_keys = mp->ma_keys;
|
|
split_copy->ma_used = mp->ma_used;
|
|
split_copy->_ma_watcher_tag = 0;
|
|
dictkeys_incref(mp->ma_keys);
|
|
_PyObject_GC_TRACK(split_copy);
|
|
return (PyObject *)split_copy;
|
|
}
|
|
|
|
if (Py_TYPE(mp)->tp_iter == dict_iter &&
|
|
mp->ma_values == NULL &&
|
|
(mp->ma_used >= (mp->ma_keys->dk_nentries * 2) / 3))
|
|
{
|
|
/* Use fast-copy if:
|
|
|
|
(1) type(mp) doesn't override tp_iter; and
|
|
|
|
(2) 'mp' is not a split-dict; and
|
|
|
|
(3) if 'mp' is non-compact ('del' operation does not resize dicts),
|
|
do fast-copy only if it has at most 1/3 non-used keys.
|
|
|
|
The last condition (3) is important to guard against a pathological
|
|
case when a large dict is almost emptied with multiple del/pop
|
|
operations and copied after that. In cases like this, we defer to
|
|
PyDict_Merge, which produces a compacted copy.
|
|
*/
|
|
PyDictKeysObject *keys = clone_combined_dict_keys(mp);
|
|
if (keys == NULL) {
|
|
return NULL;
|
|
}
|
|
PyDictObject *new = (PyDictObject *)new_dict(interp, keys, NULL, 0, 0);
|
|
if (new == NULL) {
|
|
/* In case of an error, `new_dict()` takes care of
|
|
cleaning up `keys`. */
|
|
return NULL;
|
|
}
|
|
|
|
new->ma_used = mp->ma_used;
|
|
ASSERT_CONSISTENT(new);
|
|
return (PyObject *)new;
|
|
}
|
|
|
|
copy = PyDict_New();
|
|
if (copy == NULL)
|
|
return NULL;
|
|
if (dict_merge(interp, copy, o, 1) == 0)
|
|
return copy;
|
|
Py_DECREF(copy);
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Copy(PyObject *o)
|
|
{
|
|
if (o == NULL || !PyDict_Check(o)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *res;
|
|
Py_BEGIN_CRITICAL_SECTION(o);
|
|
|
|
res = copy_lock_held(o);
|
|
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
Py_ssize_t
|
|
PyDict_Size(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return FT_ATOMIC_LOAD_SSIZE_RELAXED(((PyDictObject *)mp)->ma_used);
|
|
}
|
|
|
|
/* Return 1 if dicts equal, 0 if not, -1 if error.
|
|
* Gets out as soon as any difference is detected.
|
|
* Uses only Py_EQ comparison.
|
|
*/
|
|
static int
|
|
dict_equal_lock_held(PyDictObject *a, PyDictObject *b)
|
|
{
|
|
Py_ssize_t i;
|
|
|
|
ASSERT_DICT_LOCKED(a);
|
|
ASSERT_DICT_LOCKED(b);
|
|
|
|
if (a->ma_used != b->ma_used)
|
|
/* can't be equal if # of entries differ */
|
|
return 0;
|
|
/* Same # of entries -- check all of 'em. Exit early on any diff. */
|
|
for (i = 0; i < LOAD_KEYS_NENTRIES(a->ma_keys); i++) {
|
|
PyObject *key, *aval;
|
|
Py_hash_t hash;
|
|
if (DK_IS_UNICODE(a->ma_keys)) {
|
|
PyDictUnicodeEntry *ep = &DK_UNICODE_ENTRIES(a->ma_keys)[i];
|
|
key = ep->me_key;
|
|
if (key == NULL) {
|
|
continue;
|
|
}
|
|
hash = unicode_get_hash(key);
|
|
if (_PyDict_HasSplitTable(a))
|
|
aval = a->ma_values->values[i];
|
|
else
|
|
aval = ep->me_value;
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep = &DK_ENTRIES(a->ma_keys)[i];
|
|
key = ep->me_key;
|
|
aval = ep->me_value;
|
|
hash = ep->me_hash;
|
|
}
|
|
if (aval != NULL) {
|
|
int cmp;
|
|
PyObject *bval;
|
|
/* temporarily bump aval's refcount to ensure it stays
|
|
alive until we're done with it */
|
|
Py_INCREF(aval);
|
|
/* ditto for key */
|
|
Py_INCREF(key);
|
|
/* reuse the known hash value */
|
|
_Py_dict_lookup(b, key, hash, &bval);
|
|
if (bval == NULL) {
|
|
Py_DECREF(key);
|
|
Py_DECREF(aval);
|
|
if (PyErr_Occurred())
|
|
return -1;
|
|
return 0;
|
|
}
|
|
Py_INCREF(bval);
|
|
cmp = PyObject_RichCompareBool(aval, bval, Py_EQ);
|
|
Py_DECREF(key);
|
|
Py_DECREF(aval);
|
|
Py_DECREF(bval);
|
|
if (cmp <= 0) /* error or not equal */
|
|
return cmp;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
dict_equal(PyDictObject *a, PyDictObject *b)
|
|
{
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION2(a, b);
|
|
res = dict_equal_lock_held(a, b);
|
|
Py_END_CRITICAL_SECTION2();
|
|
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
int cmp;
|
|
PyObject *res;
|
|
|
|
if (!PyDict_Check(v) || !PyDict_Check(w)) {
|
|
res = Py_NotImplemented;
|
|
}
|
|
else if (op == Py_EQ || op == Py_NE) {
|
|
cmp = dict_equal((PyDictObject *)v, (PyDictObject *)w);
|
|
if (cmp < 0)
|
|
return NULL;
|
|
res = (cmp == (op == Py_EQ)) ? Py_True : Py_False;
|
|
}
|
|
else
|
|
res = Py_NotImplemented;
|
|
return Py_NewRef(res);
|
|
}
|
|
|
|
/*[clinic input]
|
|
|
|
@coexist
|
|
dict.__contains__
|
|
|
|
key: object
|
|
/
|
|
|
|
True if the dictionary has the specified key, else False.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict___contains__(PyDictObject *self, PyObject *key)
|
|
/*[clinic end generated code: output=a3d03db709ed6e6b input=fe1cb42ad831e820]*/
|
|
{
|
|
int contains = PyDict_Contains((PyObject *)self, key);
|
|
if (contains < 0) {
|
|
return NULL;
|
|
}
|
|
if (contains) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
dict.get
|
|
|
|
key: object
|
|
default: object = None
|
|
/
|
|
|
|
Return the value for key if key is in the dictionary, else default.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_get_impl(PyDictObject *self, PyObject *key, PyObject *default_value)
|
|
/*[clinic end generated code: output=bba707729dee05bf input=a631d3f18f584c60]*/
|
|
{
|
|
PyObject *val = NULL;
|
|
Py_hash_t hash;
|
|
Py_ssize_t ix;
|
|
|
|
hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
return NULL;
|
|
}
|
|
ix = _Py_dict_lookup_threadsafe(self, key, hash, &val);
|
|
if (ix == DKIX_ERROR)
|
|
return NULL;
|
|
if (ix == DKIX_EMPTY || val == NULL) {
|
|
val = Py_NewRef(default_value);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static int
|
|
dict_setdefault_ref_lock_held(PyObject *d, PyObject *key, PyObject *default_value,
|
|
PyObject **result, int incref_result)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)d;
|
|
PyObject *value;
|
|
Py_hash_t hash;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
ASSERT_DICT_LOCKED(d);
|
|
|
|
if (!PyDict_Check(d)) {
|
|
PyErr_BadInternalCall();
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
hash = _PyObject_HashFast(key);
|
|
if (hash == -1) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (mp->ma_keys == Py_EMPTY_KEYS) {
|
|
if (insert_to_emptydict(interp, mp, Py_NewRef(key), hash,
|
|
Py_NewRef(default_value)) < 0) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
if (result) {
|
|
*result = incref_result ? Py_NewRef(default_value) : default_value;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (!PyUnicode_CheckExact(key) && DK_IS_UNICODE(mp->ma_keys)) {
|
|
if (insertion_resize(interp, mp, 0) < 0) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
Py_ssize_t ix = insert_split_key(mp->ma_keys, key, hash);
|
|
if (ix != DKIX_EMPTY) {
|
|
PyObject *value = mp->ma_values->values[ix];
|
|
int already_present = value != NULL;
|
|
if (!already_present) {
|
|
insert_split_value(interp, mp, key, default_value, ix);
|
|
value = default_value;
|
|
}
|
|
if (result) {
|
|
*result = incref_result ? Py_NewRef(value) : value;
|
|
}
|
|
return already_present;
|
|
}
|
|
|
|
/* No space in shared keys. Resize and continue below. */
|
|
if (insertion_resize(interp, mp, 1) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
assert(!_PyDict_HasSplitTable(mp));
|
|
|
|
Py_ssize_t ix = _Py_dict_lookup(mp, key, hash, &value);
|
|
if (ix == DKIX_ERROR) {
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (ix == DKIX_EMPTY) {
|
|
assert(!_PyDict_HasSplitTable(mp));
|
|
value = default_value;
|
|
|
|
if (insert_combined_dict(interp, mp, hash, Py_NewRef(key), Py_NewRef(value)) < 0) {
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
}
|
|
|
|
STORE_USED(mp, mp->ma_used + 1);
|
|
assert(mp->ma_keys->dk_usable >= 0);
|
|
ASSERT_CONSISTENT(mp);
|
|
if (result) {
|
|
*result = incref_result ? Py_NewRef(value) : value;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
assert(value != NULL);
|
|
ASSERT_CONSISTENT(mp);
|
|
if (result) {
|
|
*result = incref_result ? Py_NewRef(value) : value;
|
|
}
|
|
return 1;
|
|
|
|
error:
|
|
if (result) {
|
|
*result = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
PyDict_SetDefaultRef(PyObject *d, PyObject *key, PyObject *default_value,
|
|
PyObject **result)
|
|
{
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION(d);
|
|
res = dict_setdefault_ref_lock_held(d, key, default_value, result, 1);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_SetDefault(PyObject *d, PyObject *key, PyObject *defaultobj)
|
|
{
|
|
PyObject *result;
|
|
Py_BEGIN_CRITICAL_SECTION(d);
|
|
dict_setdefault_ref_lock_held(d, key, defaultobj, &result, 0);
|
|
Py_END_CRITICAL_SECTION();
|
|
return result;
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
dict.setdefault
|
|
|
|
key: object
|
|
default: object = None
|
|
/
|
|
|
|
Insert key with a value of default if key is not in the dictionary.
|
|
|
|
Return the value for key if key is in the dictionary, else default.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_setdefault_impl(PyDictObject *self, PyObject *key,
|
|
PyObject *default_value)
|
|
/*[clinic end generated code: output=f8c1101ebf69e220 input=9237af9a0a224302]*/
|
|
{
|
|
PyObject *val;
|
|
dict_setdefault_ref_lock_held((PyObject *)self, key, default_value, &val, 1);
|
|
return val;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
dict.clear
|
|
|
|
Remove all items from the dict.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_clear_impl(PyDictObject *self)
|
|
/*[clinic end generated code: output=5139a830df00830a input=0bf729baba97a4c2]*/
|
|
{
|
|
PyDict_Clear((PyObject *)self);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/*[clinic input]
|
|
dict.pop
|
|
|
|
key: object
|
|
default: object = NULL
|
|
/
|
|
|
|
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
|
|
|
|
If the key is not found, return the default if given; otherwise,
|
|
raise a KeyError.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_pop_impl(PyDictObject *self, PyObject *key, PyObject *default_value)
|
|
/*[clinic end generated code: output=3abb47b89f24c21c input=e221baa01044c44c]*/
|
|
{
|
|
return _PyDict_Pop((PyObject*)self, key, default_value);
|
|
}
|
|
|
|
/*[clinic input]
|
|
@critical_section
|
|
dict.popitem
|
|
|
|
Remove and return a (key, value) pair as a 2-tuple.
|
|
|
|
Pairs are returned in LIFO (last-in, first-out) order.
|
|
Raises KeyError if the dict is empty.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_popitem_impl(PyDictObject *self)
|
|
/*[clinic end generated code: output=e65fcb04420d230d input=ef28b4da5f0f762e]*/
|
|
{
|
|
Py_ssize_t i, j;
|
|
PyObject *res;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
ASSERT_DICT_LOCKED(self);
|
|
|
|
/* Allocate the result tuple before checking the size. Believe it
|
|
* or not, this allocation could trigger a garbage collection which
|
|
* could empty the dict, so if we checked the size first and that
|
|
* happened, the result would be an infinite loop (searching for an
|
|
* entry that no longer exists). Note that the usual popitem()
|
|
* idiom is "while d: k, v = d.popitem()". so needing to throw the
|
|
* tuple away if the dict *is* empty isn't a significant
|
|
* inefficiency -- possible, but unlikely in practice.
|
|
*/
|
|
res = PyTuple_New(2);
|
|
if (res == NULL)
|
|
return NULL;
|
|
if (self->ma_used == 0) {
|
|
Py_DECREF(res);
|
|
PyErr_SetString(PyExc_KeyError, "popitem(): dictionary is empty");
|
|
return NULL;
|
|
}
|
|
/* Convert split table to combined table */
|
|
if (_PyDict_HasSplitTable(self)) {
|
|
if (dictresize(interp, self, DK_LOG_SIZE(self->ma_keys), 1) < 0) {
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
}
|
|
self->ma_keys->dk_version = 0;
|
|
|
|
/* Pop last item */
|
|
PyObject *key, *value;
|
|
Py_hash_t hash;
|
|
if (DK_IS_UNICODE(self->ma_keys)) {
|
|
PyDictUnicodeEntry *ep0 = DK_UNICODE_ENTRIES(self->ma_keys);
|
|
i = self->ma_keys->dk_nentries - 1;
|
|
while (i >= 0 && ep0[i].me_value == NULL) {
|
|
i--;
|
|
}
|
|
assert(i >= 0);
|
|
|
|
key = ep0[i].me_key;
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_DELETED, self, key, NULL);
|
|
hash = unicode_get_hash(key);
|
|
value = ep0[i].me_value;
|
|
ep0[i].me_key = NULL;
|
|
ep0[i].me_value = NULL;
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep0 = DK_ENTRIES(self->ma_keys);
|
|
i = self->ma_keys->dk_nentries - 1;
|
|
while (i >= 0 && ep0[i].me_value == NULL) {
|
|
i--;
|
|
}
|
|
assert(i >= 0);
|
|
|
|
key = ep0[i].me_key;
|
|
_PyDict_NotifyEvent(interp, PyDict_EVENT_DELETED, self, key, NULL);
|
|
hash = ep0[i].me_hash;
|
|
value = ep0[i].me_value;
|
|
ep0[i].me_key = NULL;
|
|
ep0[i].me_hash = -1;
|
|
ep0[i].me_value = NULL;
|
|
}
|
|
|
|
j = lookdict_index(self->ma_keys, hash, i);
|
|
assert(j >= 0);
|
|
assert(dictkeys_get_index(self->ma_keys, j) == i);
|
|
dictkeys_set_index(self->ma_keys, j, DKIX_DUMMY);
|
|
|
|
PyTuple_SET_ITEM(res, 0, key);
|
|
PyTuple_SET_ITEM(res, 1, value);
|
|
/* We can't dk_usable++ since there is DKIX_DUMMY in indices */
|
|
STORE_KEYS_NENTRIES(self->ma_keys, i);
|
|
STORE_USED(self, self->ma_used - 1);
|
|
ASSERT_CONSISTENT(self);
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
dict_traverse(PyObject *op, visitproc visit, void *arg)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyDictKeysObject *keys = mp->ma_keys;
|
|
Py_ssize_t i, n = keys->dk_nentries;
|
|
|
|
if (DK_IS_UNICODE(keys)) {
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
if (!mp->ma_values->embedded) {
|
|
for (i = 0; i < n; i++) {
|
|
Py_VISIT(mp->ma_values->values[i]);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
PyDictUnicodeEntry *entries = DK_UNICODE_ENTRIES(keys);
|
|
for (i = 0; i < n; i++) {
|
|
Py_VISIT(entries[i].me_value);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
PyDictKeyEntry *entries = DK_ENTRIES(keys);
|
|
for (i = 0; i < n; i++) {
|
|
if (entries[i].me_value != NULL) {
|
|
Py_VISIT(entries[i].me_value);
|
|
Py_VISIT(entries[i].me_key);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
dict_tp_clear(PyObject *op)
|
|
{
|
|
PyDict_Clear(op);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *dictiter_new(PyDictObject *, PyTypeObject *);
|
|
|
|
static Py_ssize_t
|
|
sizeof_lock_held(PyDictObject *mp)
|
|
{
|
|
size_t res = _PyObject_SIZE(Py_TYPE(mp));
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
res += shared_keys_usable_size(mp->ma_keys) * sizeof(PyObject*);
|
|
}
|
|
/* If the dictionary is split, the keys portion is accounted-for
|
|
in the type object. */
|
|
if (mp->ma_keys->dk_refcnt == 1) {
|
|
res += _PyDict_KeysSize(mp->ma_keys);
|
|
}
|
|
assert(res <= (size_t)PY_SSIZE_T_MAX);
|
|
return (Py_ssize_t)res;
|
|
}
|
|
|
|
Py_ssize_t
|
|
_PyDict_SizeOf(PyDictObject *mp)
|
|
{
|
|
Py_ssize_t res;
|
|
Py_BEGIN_CRITICAL_SECTION(mp);
|
|
res = sizeof_lock_held(mp);
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
return res;
|
|
}
|
|
|
|
size_t
|
|
_PyDict_KeysSize(PyDictKeysObject *keys)
|
|
{
|
|
size_t es = (keys->dk_kind == DICT_KEYS_GENERAL
|
|
? sizeof(PyDictKeyEntry) : sizeof(PyDictUnicodeEntry));
|
|
size_t size = sizeof(PyDictKeysObject);
|
|
size += (size_t)1 << keys->dk_log2_index_bytes;
|
|
size += USABLE_FRACTION((size_t)DK_SIZE(keys)) * es;
|
|
return size;
|
|
}
|
|
|
|
/*[clinic input]
|
|
dict.__sizeof__
|
|
|
|
Return the size of the dict in memory, in bytes.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict___sizeof___impl(PyDictObject *self)
|
|
/*[clinic end generated code: output=44279379b3824bda input=4fec4ddfc44a4d1a]*/
|
|
{
|
|
return PyLong_FromSsize_t(_PyDict_SizeOf(self));
|
|
}
|
|
|
|
static PyObject *
|
|
dict_or(PyObject *self, PyObject *other)
|
|
{
|
|
if (!PyDict_Check(self) || !PyDict_Check(other)) {
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
PyObject *new = PyDict_Copy(self);
|
|
if (new == NULL) {
|
|
return NULL;
|
|
}
|
|
if (dict_update_arg(new, other)) {
|
|
Py_DECREF(new);
|
|
return NULL;
|
|
}
|
|
return new;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_ior(PyObject *self, PyObject *other)
|
|
{
|
|
if (dict_update_arg(self, other)) {
|
|
return NULL;
|
|
}
|
|
return Py_NewRef(self);
|
|
}
|
|
|
|
PyDoc_STRVAR(getitem__doc__,
|
|
"__getitem__($self, key, /)\n--\n\nReturn self[key].");
|
|
|
|
PyDoc_STRVAR(update__doc__,
|
|
"D.update([E, ]**F) -> None. Update D from mapping/iterable E and F.\n\
|
|
If E is present and has a .keys() method, then does: for k in E.keys(): D[k] = E[k]\n\
|
|
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v\n\
|
|
In either case, this is followed by: for k in F: D[k] = F[k]");
|
|
|
|
/* Forward */
|
|
|
|
static PyMethodDef mapp_methods[] = {
|
|
DICT___CONTAINS___METHODDEF
|
|
{"__getitem__", dict_subscript, METH_O | METH_COEXIST,
|
|
getitem__doc__},
|
|
DICT___SIZEOF___METHODDEF
|
|
DICT_GET_METHODDEF
|
|
DICT_SETDEFAULT_METHODDEF
|
|
DICT_POP_METHODDEF
|
|
DICT_POPITEM_METHODDEF
|
|
DICT_KEYS_METHODDEF
|
|
DICT_ITEMS_METHODDEF
|
|
DICT_VALUES_METHODDEF
|
|
{"update", _PyCFunction_CAST(dict_update), METH_VARARGS | METH_KEYWORDS,
|
|
update__doc__},
|
|
DICT_FROMKEYS_METHODDEF
|
|
DICT_CLEAR_METHODDEF
|
|
DICT_COPY_METHODDEF
|
|
DICT___REVERSED___METHODDEF
|
|
{"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, PyDoc_STR("See PEP 585")},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
/* Return 1 if `key` is in dict `op`, 0 if not, and -1 on error. */
|
|
int
|
|
PyDict_Contains(PyObject *op, PyObject *key)
|
|
{
|
|
Py_hash_t hash = _PyObject_HashFast(key);
|
|
|
|
if (hash == -1) {
|
|
return -1;
|
|
}
|
|
|
|
return _PyDict_Contains_KnownHash(op, key, hash);
|
|
}
|
|
|
|
int
|
|
PyDict_ContainsString(PyObject *op, const char *key)
|
|
{
|
|
PyObject *key_obj = PyUnicode_FromString(key);
|
|
if (key_obj == NULL) {
|
|
return -1;
|
|
}
|
|
int res = PyDict_Contains(op, key_obj);
|
|
Py_DECREF(key_obj);
|
|
return res;
|
|
}
|
|
|
|
/* Internal version of PyDict_Contains used when the hash value is already known */
|
|
int
|
|
_PyDict_Contains_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyObject *value;
|
|
Py_ssize_t ix;
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
ix = _Py_dict_lookup_threadsafe(mp, key, hash, &value);
|
|
#else
|
|
ix = _Py_dict_lookup(mp, key, hash, &value);
|
|
#endif
|
|
if (ix == DKIX_ERROR)
|
|
return -1;
|
|
if (ix != DKIX_EMPTY && value != NULL) {
|
|
#ifdef Py_GIL_DISABLED
|
|
Py_DECREF(value);
|
|
#endif
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyDict_ContainsId(PyObject *op, _Py_Identifier *key)
|
|
{
|
|
PyObject *kv = _PyUnicode_FromId(key); /* borrowed */
|
|
if (kv == NULL) {
|
|
return -1;
|
|
}
|
|
return PyDict_Contains(op, kv);
|
|
}
|
|
|
|
/* Hack to implement "key in dict" */
|
|
static PySequenceMethods dict_as_sequence = {
|
|
0, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
PyDict_Contains, /* sq_contains */
|
|
0, /* sq_inplace_concat */
|
|
0, /* sq_inplace_repeat */
|
|
};
|
|
|
|
static PyNumberMethods dict_as_number = {
|
|
.nb_or = dict_or,
|
|
.nb_inplace_or = dict_ior,
|
|
};
|
|
|
|
static PyObject *
|
|
dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
assert(type != NULL);
|
|
assert(type->tp_alloc != NULL);
|
|
// dict subclasses must implement the GC protocol
|
|
assert(_PyType_IS_GC(type));
|
|
|
|
PyObject *self = type->tp_alloc(type, 0);
|
|
if (self == NULL) {
|
|
return NULL;
|
|
}
|
|
PyDictObject *d = (PyDictObject *)self;
|
|
|
|
d->ma_used = 0;
|
|
d->_ma_watcher_tag = 0;
|
|
dictkeys_incref(Py_EMPTY_KEYS);
|
|
d->ma_keys = Py_EMPTY_KEYS;
|
|
d->ma_values = NULL;
|
|
ASSERT_CONSISTENT(d);
|
|
if (!_PyObject_GC_IS_TRACKED(d)) {
|
|
_PyObject_GC_TRACK(d);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static int
|
|
dict_init(PyObject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
return dict_update_common(self, args, kwds, "dict");
|
|
}
|
|
|
|
static PyObject *
|
|
dict_vectorcall(PyObject *type, PyObject * const*args,
|
|
size_t nargsf, PyObject *kwnames)
|
|
{
|
|
Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
|
|
if (!_PyArg_CheckPositional("dict", nargs, 0, 1)) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *self = dict_new(_PyType_CAST(type), NULL, NULL);
|
|
if (self == NULL) {
|
|
return NULL;
|
|
}
|
|
if (nargs == 1) {
|
|
if (dict_update_arg(self, args[0]) < 0) {
|
|
Py_DECREF(self);
|
|
return NULL;
|
|
}
|
|
args++;
|
|
}
|
|
if (kwnames != NULL) {
|
|
for (Py_ssize_t i = 0; i < PyTuple_GET_SIZE(kwnames); i++) {
|
|
if (PyDict_SetItem(self, PyTuple_GET_ITEM(kwnames, i), args[i]) < 0) {
|
|
Py_DECREF(self);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_iter(PyObject *self)
|
|
{
|
|
PyDictObject *dict = (PyDictObject *)self;
|
|
return dictiter_new(dict, &PyDictIterKey_Type);
|
|
}
|
|
|
|
PyDoc_STRVAR(dictionary_doc,
|
|
"dict() -> new empty dictionary\n"
|
|
"dict(mapping) -> new dictionary initialized from a mapping object's\n"
|
|
" (key, value) pairs\n"
|
|
"dict(iterable) -> new dictionary initialized as if via:\n"
|
|
" d = {}\n"
|
|
" for k, v in iterable:\n"
|
|
" d[k] = v\n"
|
|
"dict(**kwargs) -> new dictionary initialized with the name=value pairs\n"
|
|
" in the keyword argument list. For example: dict(one=1, two=2)");
|
|
|
|
PyTypeObject PyDict_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict",
|
|
sizeof(PyDictObject),
|
|
0,
|
|
dict_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
dict_repr, /* tp_repr */
|
|
&dict_as_number, /* tp_as_number */
|
|
&dict_as_sequence, /* tp_as_sequence */
|
|
&dict_as_mapping, /* tp_as_mapping */
|
|
PyObject_HashNotImplemented, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
|
|
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_DICT_SUBCLASS |
|
|
_Py_TPFLAGS_MATCH_SELF | Py_TPFLAGS_MAPPING, /* tp_flags */
|
|
dictionary_doc, /* tp_doc */
|
|
dict_traverse, /* tp_traverse */
|
|
dict_tp_clear, /* tp_clear */
|
|
dict_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
dict_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
mapp_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
dict_init, /* tp_init */
|
|
_PyType_AllocNoTrack, /* tp_alloc */
|
|
dict_new, /* tp_new */
|
|
PyObject_GC_Del, /* tp_free */
|
|
.tp_vectorcall = dict_vectorcall,
|
|
.tp_version_tag = _Py_TYPE_VERSION_DICT,
|
|
};
|
|
|
|
/* For backward compatibility with old dictionary interface */
|
|
|
|
PyObject *
|
|
PyDict_GetItemString(PyObject *v, const char *key)
|
|
{
|
|
PyObject *kv, *rv;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL) {
|
|
PyErr_FormatUnraisable(
|
|
"Exception ignored in PyDict_GetItemString(); consider using "
|
|
"PyDict_GetItemRefString()");
|
|
return NULL;
|
|
}
|
|
rv = dict_getitem(v, kv,
|
|
"Exception ignored in PyDict_GetItemString(); consider using "
|
|
"PyDict_GetItemRefString()");
|
|
Py_DECREF(kv);
|
|
return rv; // borrowed reference
|
|
}
|
|
|
|
int
|
|
PyDict_GetItemStringRef(PyObject *v, const char *key, PyObject **result)
|
|
{
|
|
PyObject *key_obj = PyUnicode_FromString(key);
|
|
if (key_obj == NULL) {
|
|
*result = NULL;
|
|
return -1;
|
|
}
|
|
int res = PyDict_GetItemRef(v, key_obj, result);
|
|
Py_DECREF(key_obj);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
_PyDict_SetItemId(PyObject *v, _Py_Identifier *key, PyObject *item)
|
|
{
|
|
PyObject *kv;
|
|
kv = _PyUnicode_FromId(key); /* borrowed */
|
|
if (kv == NULL)
|
|
return -1;
|
|
return PyDict_SetItem(v, kv, item);
|
|
}
|
|
|
|
int
|
|
PyDict_SetItemString(PyObject *v, const char *key, PyObject *item)
|
|
{
|
|
PyObject *kv;
|
|
int err;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL)
|
|
return -1;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
_PyUnicode_InternImmortal(interp, &kv); /* XXX Should we really? */
|
|
err = PyDict_SetItem(v, kv, item);
|
|
Py_DECREF(kv);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
_PyDict_DelItemId(PyObject *v, _Py_Identifier *key)
|
|
{
|
|
PyObject *kv = _PyUnicode_FromId(key); /* borrowed */
|
|
if (kv == NULL)
|
|
return -1;
|
|
return PyDict_DelItem(v, kv);
|
|
}
|
|
|
|
int
|
|
PyDict_DelItemString(PyObject *v, const char *key)
|
|
{
|
|
PyObject *kv;
|
|
int err;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL)
|
|
return -1;
|
|
err = PyDict_DelItem(v, kv);
|
|
Py_DECREF(kv);
|
|
return err;
|
|
}
|
|
|
|
/* Dictionary iterator types */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyDictObject *di_dict; /* Set to NULL when iterator is exhausted */
|
|
Py_ssize_t di_used;
|
|
Py_ssize_t di_pos;
|
|
PyObject* di_result; /* reusable result tuple for iteritems */
|
|
Py_ssize_t len;
|
|
} dictiterobject;
|
|
|
|
static PyObject *
|
|
dictiter_new(PyDictObject *dict, PyTypeObject *itertype)
|
|
{
|
|
Py_ssize_t used;
|
|
dictiterobject *di;
|
|
di = PyObject_GC_New(dictiterobject, itertype);
|
|
if (di == NULL) {
|
|
return NULL;
|
|
}
|
|
di->di_dict = (PyDictObject*)Py_NewRef(dict);
|
|
used = FT_ATOMIC_LOAD_SSIZE_RELAXED(dict->ma_used);
|
|
di->di_used = used;
|
|
di->len = used;
|
|
if (itertype == &PyDictRevIterKey_Type ||
|
|
itertype == &PyDictRevIterItem_Type ||
|
|
itertype == &PyDictRevIterValue_Type) {
|
|
if (_PyDict_HasSplitTable(dict)) {
|
|
di->di_pos = used - 1;
|
|
}
|
|
else {
|
|
di->di_pos = load_keys_nentries(dict) - 1;
|
|
}
|
|
}
|
|
else {
|
|
di->di_pos = 0;
|
|
}
|
|
if (itertype == &PyDictIterItem_Type ||
|
|
itertype == &PyDictRevIterItem_Type) {
|
|
di->di_result = PyTuple_Pack(2, Py_None, Py_None);
|
|
if (di->di_result == NULL) {
|
|
Py_DECREF(di);
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
di->di_result = NULL;
|
|
}
|
|
_PyObject_GC_TRACK(di);
|
|
return (PyObject *)di;
|
|
}
|
|
|
|
static void
|
|
dictiter_dealloc(PyObject *self)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
/* bpo-31095: UnTrack is needed before calling any callbacks */
|
|
_PyObject_GC_UNTRACK(di);
|
|
Py_XDECREF(di->di_dict);
|
|
Py_XDECREF(di->di_result);
|
|
PyObject_GC_Del(di);
|
|
}
|
|
|
|
static int
|
|
dictiter_traverse(PyObject *self, visitproc visit, void *arg)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
Py_VISIT(di->di_dict);
|
|
Py_VISIT(di->di_result);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
dictiter_len(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
Py_ssize_t len = 0;
|
|
if (di->di_dict != NULL && di->di_used == FT_ATOMIC_LOAD_SSIZE_RELAXED(di->di_dict->ma_used))
|
|
len = FT_ATOMIC_LOAD_SSIZE_RELAXED(di->len);
|
|
return PyLong_FromSize_t(len);
|
|
}
|
|
|
|
PyDoc_STRVAR(length_hint_doc,
|
|
"Private method returning an estimate of len(list(it)).");
|
|
|
|
static PyObject *
|
|
dictiter_reduce(PyObject *di, PyObject *Py_UNUSED(ignored));
|
|
|
|
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
|
|
|
|
static PyMethodDef dictiter_methods[] = {
|
|
{"__length_hint__", dictiter_len, METH_NOARGS,
|
|
length_hint_doc},
|
|
{"__reduce__", dictiter_reduce, METH_NOARGS,
|
|
reduce_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
|
|
static int
|
|
dictiter_iternext_threadsafe(PyDictObject *d, PyObject *self,
|
|
PyObject **out_key, PyObject **out_value);
|
|
|
|
#else /* Py_GIL_DISABLED */
|
|
|
|
static PyObject*
|
|
dictiter_iternextkey_lock_held(PyDictObject *d, PyObject *self)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
PyObject *key;
|
|
Py_ssize_t i;
|
|
PyDictKeysObject *k;
|
|
|
|
assert (PyDict_Check(d));
|
|
ASSERT_DICT_LOCKED(d);
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
i = di->di_pos;
|
|
k = d->ma_keys;
|
|
assert(i >= 0);
|
|
if (_PyDict_HasSplitTable(d)) {
|
|
if (i >= d->ma_used)
|
|
goto fail;
|
|
int index = get_index_from_order(d, i);
|
|
key = LOAD_SHARED_KEY(DK_UNICODE_ENTRIES(k)[index].me_key);
|
|
assert(d->ma_values->values[index] != NULL);
|
|
}
|
|
else {
|
|
Py_ssize_t n = k->dk_nentries;
|
|
if (DK_IS_UNICODE(k)) {
|
|
PyDictUnicodeEntry *entry_ptr = &DK_UNICODE_ENTRIES(k)[i];
|
|
while (i < n && entry_ptr->me_value == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
goto fail;
|
|
key = entry_ptr->me_key;
|
|
}
|
|
else {
|
|
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(k)[i];
|
|
while (i < n && entry_ptr->me_value == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
goto fail;
|
|
key = entry_ptr->me_key;
|
|
}
|
|
}
|
|
// We found an element (key), but did not expect it
|
|
if (di->len == 0) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary keys changed during iteration");
|
|
goto fail;
|
|
}
|
|
di->di_pos = i+1;
|
|
di->len--;
|
|
return Py_NewRef(key);
|
|
|
|
fail:
|
|
di->di_dict = NULL;
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* Py_GIL_DISABLED */
|
|
|
|
static PyObject*
|
|
dictiter_iternextkey(PyObject *self)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
PyDictObject *d = di->di_dict;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
|
|
PyObject *value;
|
|
#ifdef Py_GIL_DISABLED
|
|
if (dictiter_iternext_threadsafe(d, self, &value, NULL) < 0) {
|
|
value = NULL;
|
|
}
|
|
#else
|
|
value = dictiter_iternextkey_lock_held(d, self);
|
|
#endif
|
|
|
|
return value;
|
|
}
|
|
|
|
PyTypeObject PyDictIterKey_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_keyiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
dictiter_iternextkey, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
#ifndef Py_GIL_DISABLED
|
|
|
|
static PyObject *
|
|
dictiter_iternextvalue_lock_held(PyDictObject *d, PyObject *self)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
PyObject *value;
|
|
Py_ssize_t i;
|
|
|
|
assert (PyDict_Check(d));
|
|
ASSERT_DICT_LOCKED(d);
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
i = di->di_pos;
|
|
assert(i >= 0);
|
|
if (_PyDict_HasSplitTable(d)) {
|
|
if (i >= d->ma_used)
|
|
goto fail;
|
|
int index = get_index_from_order(d, i);
|
|
value = d->ma_values->values[index];
|
|
assert(value != NULL);
|
|
}
|
|
else {
|
|
Py_ssize_t n = d->ma_keys->dk_nentries;
|
|
if (DK_IS_UNICODE(d->ma_keys)) {
|
|
PyDictUnicodeEntry *entry_ptr = &DK_UNICODE_ENTRIES(d->ma_keys)[i];
|
|
while (i < n && entry_ptr->me_value == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
goto fail;
|
|
value = entry_ptr->me_value;
|
|
}
|
|
else {
|
|
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(d->ma_keys)[i];
|
|
while (i < n && entry_ptr->me_value == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
goto fail;
|
|
value = entry_ptr->me_value;
|
|
}
|
|
}
|
|
// We found an element, but did not expect it
|
|
if (di->len == 0) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary keys changed during iteration");
|
|
goto fail;
|
|
}
|
|
di->di_pos = i+1;
|
|
di->len--;
|
|
return Py_NewRef(value);
|
|
|
|
fail:
|
|
di->di_dict = NULL;
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* Py_GIL_DISABLED */
|
|
|
|
static PyObject *
|
|
dictiter_iternextvalue(PyObject *self)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
PyDictObject *d = di->di_dict;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
|
|
PyObject *value;
|
|
#ifdef Py_GIL_DISABLED
|
|
if (dictiter_iternext_threadsafe(d, self, NULL, &value) < 0) {
|
|
value = NULL;
|
|
}
|
|
#else
|
|
value = dictiter_iternextvalue_lock_held(d, self);
|
|
#endif
|
|
|
|
return value;
|
|
}
|
|
|
|
PyTypeObject PyDictIterValue_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_valueiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
|
|
0, /* tp_doc */
|
|
dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
dictiter_iternextvalue, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static int
|
|
dictiter_iternextitem_lock_held(PyDictObject *d, PyObject *self,
|
|
PyObject **out_key, PyObject **out_value)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
PyObject *key, *value;
|
|
Py_ssize_t i;
|
|
|
|
assert (PyDict_Check(d));
|
|
ASSERT_DICT_LOCKED(d);
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return -1;
|
|
}
|
|
|
|
i = FT_ATOMIC_LOAD_SSIZE_RELAXED(di->di_pos);
|
|
|
|
assert(i >= 0);
|
|
if (_PyDict_HasSplitTable(d)) {
|
|
if (i >= d->ma_used)
|
|
goto fail;
|
|
int index = get_index_from_order(d, i);
|
|
key = LOAD_SHARED_KEY(DK_UNICODE_ENTRIES(d->ma_keys)[index].me_key);
|
|
value = d->ma_values->values[index];
|
|
assert(value != NULL);
|
|
}
|
|
else {
|
|
Py_ssize_t n = d->ma_keys->dk_nentries;
|
|
if (DK_IS_UNICODE(d->ma_keys)) {
|
|
PyDictUnicodeEntry *entry_ptr = &DK_UNICODE_ENTRIES(d->ma_keys)[i];
|
|
while (i < n && entry_ptr->me_value == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
goto fail;
|
|
key = entry_ptr->me_key;
|
|
value = entry_ptr->me_value;
|
|
}
|
|
else {
|
|
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(d->ma_keys)[i];
|
|
while (i < n && entry_ptr->me_value == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
goto fail;
|
|
key = entry_ptr->me_key;
|
|
value = entry_ptr->me_value;
|
|
}
|
|
}
|
|
// We found an element, but did not expect it
|
|
if (di->len == 0) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary keys changed during iteration");
|
|
goto fail;
|
|
}
|
|
di->di_pos = i+1;
|
|
di->len--;
|
|
if (out_key != NULL) {
|
|
*out_key = Py_NewRef(key);
|
|
}
|
|
if (out_value != NULL) {
|
|
*out_value = Py_NewRef(value);
|
|
}
|
|
return 0;
|
|
|
|
fail:
|
|
di->di_dict = NULL;
|
|
Py_DECREF(d);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
|
|
// Grabs the key and/or value from the provided locations and if successful
|
|
// returns them with an increased reference count. If either one is unsuccessful
|
|
// nothing is incref'd and returns -1.
|
|
static int
|
|
acquire_key_value(PyObject **key_loc, PyObject *value, PyObject **value_loc,
|
|
PyObject **out_key, PyObject **out_value)
|
|
{
|
|
if (out_key) {
|
|
*out_key = _Py_TryXGetRef(key_loc);
|
|
if (*out_key == NULL) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (out_value) {
|
|
if (!_Py_TryIncrefCompare(value_loc, value)) {
|
|
if (out_key) {
|
|
Py_DECREF(*out_key);
|
|
}
|
|
return -1;
|
|
}
|
|
*out_value = value;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
dictiter_iternext_threadsafe(PyDictObject *d, PyObject *self,
|
|
PyObject **out_key, PyObject **out_value)
|
|
{
|
|
int res;
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
Py_ssize_t i;
|
|
PyDictKeysObject *k;
|
|
|
|
assert (PyDict_Check(d));
|
|
|
|
if (di->di_used != _Py_atomic_load_ssize_relaxed(&d->ma_used)) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return -1;
|
|
}
|
|
|
|
ensure_shared_on_read(d);
|
|
|
|
i = _Py_atomic_load_ssize_relaxed(&di->di_pos);
|
|
k = _Py_atomic_load_ptr_relaxed(&d->ma_keys);
|
|
assert(i >= 0);
|
|
if (_PyDict_HasSplitTable(d)) {
|
|
PyDictValues *values = _Py_atomic_load_ptr_relaxed(&d->ma_values);
|
|
if (values == NULL) {
|
|
goto concurrent_modification;
|
|
}
|
|
|
|
Py_ssize_t used = (Py_ssize_t)_Py_atomic_load_uint8(&values->size);
|
|
if (i >= used) {
|
|
goto fail;
|
|
}
|
|
|
|
// We're racing against writes to the order from delete_index_from_values, but
|
|
// single threaded can suffer from concurrent modification to those as well and
|
|
// can have either duplicated or skipped attributes, so we strive to do no better
|
|
// here.
|
|
int index = get_index_from_order(d, i);
|
|
PyObject *value = _Py_atomic_load_ptr(&values->values[index]);
|
|
if (acquire_key_value(&DK_UNICODE_ENTRIES(k)[index].me_key, value,
|
|
&values->values[index], out_key, out_value) < 0) {
|
|
goto try_locked;
|
|
}
|
|
}
|
|
else {
|
|
Py_ssize_t n = _Py_atomic_load_ssize_relaxed(&k->dk_nentries);
|
|
if (DK_IS_UNICODE(k)) {
|
|
PyDictUnicodeEntry *entry_ptr = &DK_UNICODE_ENTRIES(k)[i];
|
|
PyObject *value;
|
|
while (i < n &&
|
|
(value = _Py_atomic_load_ptr(&entry_ptr->me_value)) == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
if (i >= n)
|
|
goto fail;
|
|
|
|
if (acquire_key_value(&entry_ptr->me_key, value,
|
|
&entry_ptr->me_value, out_key, out_value) < 0) {
|
|
goto try_locked;
|
|
}
|
|
}
|
|
else {
|
|
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(k)[i];
|
|
PyObject *value;
|
|
while (i < n &&
|
|
(value = _Py_atomic_load_ptr(&entry_ptr->me_value)) == NULL) {
|
|
entry_ptr++;
|
|
i++;
|
|
}
|
|
|
|
if (i >= n)
|
|
goto fail;
|
|
|
|
if (acquire_key_value(&entry_ptr->me_key, value,
|
|
&entry_ptr->me_value, out_key, out_value) < 0) {
|
|
goto try_locked;
|
|
}
|
|
}
|
|
}
|
|
// We found an element (key), but did not expect it
|
|
Py_ssize_t len;
|
|
if ((len = _Py_atomic_load_ssize_relaxed(&di->len)) == 0) {
|
|
goto concurrent_modification;
|
|
}
|
|
|
|
_Py_atomic_store_ssize_relaxed(&di->di_pos, i + 1);
|
|
_Py_atomic_store_ssize_relaxed(&di->len, len - 1);
|
|
return 0;
|
|
|
|
concurrent_modification:
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary keys changed during iteration");
|
|
|
|
fail:
|
|
di->di_dict = NULL;
|
|
Py_DECREF(d);
|
|
return -1;
|
|
|
|
try_locked:
|
|
Py_BEGIN_CRITICAL_SECTION(d);
|
|
res = dictiter_iternextitem_lock_held(d, self, out_key, out_value);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
#endif
|
|
|
|
static bool
|
|
has_unique_reference(PyObject *op)
|
|
{
|
|
#ifdef Py_GIL_DISABLED
|
|
return (_Py_IsOwnedByCurrentThread(op) &&
|
|
op->ob_ref_local == 1 &&
|
|
_Py_atomic_load_ssize_relaxed(&op->ob_ref_shared) == 0);
|
|
#else
|
|
return Py_REFCNT(op) == 1;
|
|
#endif
|
|
}
|
|
|
|
static bool
|
|
acquire_iter_result(PyObject *result)
|
|
{
|
|
if (has_unique_reference(result)) {
|
|
Py_INCREF(result);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static PyObject *
|
|
dictiter_iternextitem(PyObject *self)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
PyDictObject *d = di->di_dict;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
|
|
PyObject *key, *value;
|
|
#ifdef Py_GIL_DISABLED
|
|
if (dictiter_iternext_threadsafe(d, self, &key, &value) == 0) {
|
|
#else
|
|
if (dictiter_iternextitem_lock_held(d, self, &key, &value) == 0) {
|
|
|
|
#endif
|
|
PyObject *result = di->di_result;
|
|
if (acquire_iter_result(result)) {
|
|
PyObject *oldkey = PyTuple_GET_ITEM(result, 0);
|
|
PyObject *oldvalue = PyTuple_GET_ITEM(result, 1);
|
|
PyTuple_SET_ITEM(result, 0, key);
|
|
PyTuple_SET_ITEM(result, 1, value);
|
|
Py_DECREF(oldkey);
|
|
Py_DECREF(oldvalue);
|
|
// bpo-42536: The GC may have untracked this result tuple. Since we're
|
|
// recycling it, make sure it's tracked again:
|
|
if (!_PyObject_GC_IS_TRACKED(result)) {
|
|
_PyObject_GC_TRACK(result);
|
|
}
|
|
}
|
|
else {
|
|
result = PyTuple_New(2);
|
|
if (result == NULL)
|
|
return NULL;
|
|
PyTuple_SET_ITEM(result, 0, key);
|
|
PyTuple_SET_ITEM(result, 1, value);
|
|
}
|
|
return result;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
PyTypeObject PyDictIterItem_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_itemiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
dictiter_iternextitem, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
|
|
/* dictreviter */
|
|
|
|
static PyObject *
|
|
dictreviter_iter_lock_held(PyDictObject *d, PyObject *self)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
|
|
assert (PyDict_Check(d));
|
|
ASSERT_DICT_LOCKED(d);
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
Py_ssize_t i = di->di_pos;
|
|
PyDictKeysObject *k = d->ma_keys;
|
|
PyObject *key, *value, *result;
|
|
|
|
if (i < 0) {
|
|
goto fail;
|
|
}
|
|
if (_PyDict_HasSplitTable(d)) {
|
|
int index = get_index_from_order(d, i);
|
|
key = LOAD_SHARED_KEY(DK_UNICODE_ENTRIES(k)[index].me_key);
|
|
value = d->ma_values->values[index];
|
|
assert (value != NULL);
|
|
}
|
|
else {
|
|
if (DK_IS_UNICODE(k)) {
|
|
PyDictUnicodeEntry *entry_ptr = &DK_UNICODE_ENTRIES(k)[i];
|
|
while (entry_ptr->me_value == NULL) {
|
|
if (--i < 0) {
|
|
goto fail;
|
|
}
|
|
entry_ptr--;
|
|
}
|
|
key = entry_ptr->me_key;
|
|
value = entry_ptr->me_value;
|
|
}
|
|
else {
|
|
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(k)[i];
|
|
while (entry_ptr->me_value == NULL) {
|
|
if (--i < 0) {
|
|
goto fail;
|
|
}
|
|
entry_ptr--;
|
|
}
|
|
key = entry_ptr->me_key;
|
|
value = entry_ptr->me_value;
|
|
}
|
|
}
|
|
di->di_pos = i-1;
|
|
di->len--;
|
|
|
|
if (Py_IS_TYPE(di, &PyDictRevIterKey_Type)) {
|
|
return Py_NewRef(key);
|
|
}
|
|
else if (Py_IS_TYPE(di, &PyDictRevIterValue_Type)) {
|
|
return Py_NewRef(value);
|
|
}
|
|
else if (Py_IS_TYPE(di, &PyDictRevIterItem_Type)) {
|
|
result = di->di_result;
|
|
if (Py_REFCNT(result) == 1) {
|
|
PyObject *oldkey = PyTuple_GET_ITEM(result, 0);
|
|
PyObject *oldvalue = PyTuple_GET_ITEM(result, 1);
|
|
PyTuple_SET_ITEM(result, 0, Py_NewRef(key));
|
|
PyTuple_SET_ITEM(result, 1, Py_NewRef(value));
|
|
Py_INCREF(result);
|
|
Py_DECREF(oldkey);
|
|
Py_DECREF(oldvalue);
|
|
// bpo-42536: The GC may have untracked this result tuple. Since
|
|
// we're recycling it, make sure it's tracked again:
|
|
if (!_PyObject_GC_IS_TRACKED(result)) {
|
|
_PyObject_GC_TRACK(result);
|
|
}
|
|
}
|
|
else {
|
|
result = PyTuple_New(2);
|
|
if (result == NULL) {
|
|
return NULL;
|
|
}
|
|
PyTuple_SET_ITEM(result, 0, Py_NewRef(key));
|
|
PyTuple_SET_ITEM(result, 1, Py_NewRef(value));
|
|
}
|
|
return result;
|
|
}
|
|
else {
|
|
Py_UNREACHABLE();
|
|
}
|
|
|
|
fail:
|
|
di->di_dict = NULL;
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
dictreviter_iternext(PyObject *self)
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
PyDictObject *d = di->di_dict;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
|
|
PyObject *value;
|
|
Py_BEGIN_CRITICAL_SECTION(d);
|
|
value = dictreviter_iter_lock_held(d, self);
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
return value;
|
|
}
|
|
|
|
PyTypeObject PyDictRevIterKey_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_reversekeyiterator",
|
|
sizeof(dictiterobject),
|
|
.tp_dealloc = dictiter_dealloc,
|
|
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
|
|
.tp_traverse = dictiter_traverse,
|
|
.tp_iter = PyObject_SelfIter,
|
|
.tp_iternext = dictreviter_iternext,
|
|
.tp_methods = dictiter_methods
|
|
};
|
|
|
|
|
|
/*[clinic input]
|
|
dict.__reversed__
|
|
|
|
Return a reverse iterator over the dict keys.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict___reversed___impl(PyDictObject *self)
|
|
/*[clinic end generated code: output=e674483336d1ed51 input=23210ef3477d8c4d]*/
|
|
{
|
|
assert (PyDict_Check(self));
|
|
return dictiter_new(self, &PyDictRevIterKey_Type);
|
|
}
|
|
|
|
static PyObject *
|
|
dictiter_reduce(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
dictiterobject *di = (dictiterobject *)self;
|
|
/* copy the iterator state */
|
|
dictiterobject tmp = *di;
|
|
Py_XINCREF(tmp.di_dict);
|
|
PyObject *list = PySequence_List((PyObject*)&tmp);
|
|
Py_XDECREF(tmp.di_dict);
|
|
if (list == NULL) {
|
|
return NULL;
|
|
}
|
|
return Py_BuildValue("N(N)", _PyEval_GetBuiltin(&_Py_ID(iter)), list);
|
|
}
|
|
|
|
PyTypeObject PyDictRevIterItem_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_reverseitemiterator",
|
|
sizeof(dictiterobject),
|
|
.tp_dealloc = dictiter_dealloc,
|
|
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
|
|
.tp_traverse = dictiter_traverse,
|
|
.tp_iter = PyObject_SelfIter,
|
|
.tp_iternext = dictreviter_iternext,
|
|
.tp_methods = dictiter_methods
|
|
};
|
|
|
|
PyTypeObject PyDictRevIterValue_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_reversevalueiterator",
|
|
sizeof(dictiterobject),
|
|
.tp_dealloc = dictiter_dealloc,
|
|
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
|
|
.tp_traverse = dictiter_traverse,
|
|
.tp_iter = PyObject_SelfIter,
|
|
.tp_iternext = dictreviter_iternext,
|
|
.tp_methods = dictiter_methods
|
|
};
|
|
|
|
/***********************************************/
|
|
/* View objects for keys(), items(), values(). */
|
|
/***********************************************/
|
|
|
|
/* The instance lay-out is the same for all three; but the type differs. */
|
|
|
|
static void
|
|
dictview_dealloc(PyObject *self)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
/* bpo-31095: UnTrack is needed before calling any callbacks */
|
|
_PyObject_GC_UNTRACK(dv);
|
|
Py_XDECREF(dv->dv_dict);
|
|
PyObject_GC_Del(dv);
|
|
}
|
|
|
|
static int
|
|
dictview_traverse(PyObject *self, visitproc visit, void *arg)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
Py_VISIT(dv->dv_dict);
|
|
return 0;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dictview_len(PyObject *self)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
Py_ssize_t len = 0;
|
|
if (dv->dv_dict != NULL)
|
|
len = FT_ATOMIC_LOAD_SSIZE_RELAXED(dv->dv_dict->ma_used);
|
|
return len;
|
|
}
|
|
|
|
PyObject *
|
|
_PyDictView_New(PyObject *dict, PyTypeObject *type)
|
|
{
|
|
_PyDictViewObject *dv;
|
|
if (dict == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (!PyDict_Check(dict)) {
|
|
/* XXX Get rid of this restriction later */
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%s() requires a dict argument, not '%s'",
|
|
type->tp_name, Py_TYPE(dict)->tp_name);
|
|
return NULL;
|
|
}
|
|
dv = PyObject_GC_New(_PyDictViewObject, type);
|
|
if (dv == NULL)
|
|
return NULL;
|
|
dv->dv_dict = (PyDictObject *)Py_NewRef(dict);
|
|
_PyObject_GC_TRACK(dv);
|
|
return (PyObject *)dv;
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_mapping(PyObject *view, void *Py_UNUSED(ignored)) {
|
|
assert(view != NULL);
|
|
assert(PyDictKeys_Check(view)
|
|
|| PyDictValues_Check(view)
|
|
|| PyDictItems_Check(view));
|
|
PyObject *mapping = (PyObject *)((_PyDictViewObject *)view)->dv_dict;
|
|
return PyDictProxy_New(mapping);
|
|
}
|
|
|
|
static PyGetSetDef dictview_getset[] = {
|
|
{"mapping", dictview_mapping, (setter)NULL,
|
|
PyDoc_STR("dictionary that this view refers to"), NULL},
|
|
{0}
|
|
};
|
|
|
|
/* TODO(guido): The views objects are not complete:
|
|
|
|
* support more set operations
|
|
* support arbitrary mappings?
|
|
- either these should be static or exported in dictobject.h
|
|
- if public then they should probably be in builtins
|
|
*/
|
|
|
|
/* Return 1 if self is a subset of other, iterating over self;
|
|
0 if not; -1 if an error occurred. */
|
|
static int
|
|
all_contained_in(PyObject *self, PyObject *other)
|
|
{
|
|
PyObject *iter = PyObject_GetIter(self);
|
|
int ok = 1;
|
|
|
|
if (iter == NULL)
|
|
return -1;
|
|
for (;;) {
|
|
PyObject *next = PyIter_Next(iter);
|
|
if (next == NULL) {
|
|
if (PyErr_Occurred())
|
|
ok = -1;
|
|
break;
|
|
}
|
|
ok = PySequence_Contains(other, next);
|
|
Py_DECREF(next);
|
|
if (ok <= 0)
|
|
break;
|
|
}
|
|
Py_DECREF(iter);
|
|
return ok;
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
Py_ssize_t len_self, len_other;
|
|
int ok;
|
|
PyObject *result;
|
|
|
|
assert(self != NULL);
|
|
assert(PyDictViewSet_Check(self));
|
|
assert(other != NULL);
|
|
|
|
if (!PyAnySet_Check(other) && !PyDictViewSet_Check(other))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
len_self = PyObject_Size(self);
|
|
if (len_self < 0)
|
|
return NULL;
|
|
len_other = PyObject_Size(other);
|
|
if (len_other < 0)
|
|
return NULL;
|
|
|
|
ok = 0;
|
|
switch(op) {
|
|
|
|
case Py_NE:
|
|
case Py_EQ:
|
|
if (len_self == len_other)
|
|
ok = all_contained_in(self, other);
|
|
if (op == Py_NE && ok >= 0)
|
|
ok = !ok;
|
|
break;
|
|
|
|
case Py_LT:
|
|
if (len_self < len_other)
|
|
ok = all_contained_in(self, other);
|
|
break;
|
|
|
|
case Py_LE:
|
|
if (len_self <= len_other)
|
|
ok = all_contained_in(self, other);
|
|
break;
|
|
|
|
case Py_GT:
|
|
if (len_self > len_other)
|
|
ok = all_contained_in(other, self);
|
|
break;
|
|
|
|
case Py_GE:
|
|
if (len_self >= len_other)
|
|
ok = all_contained_in(other, self);
|
|
break;
|
|
|
|
}
|
|
if (ok < 0)
|
|
return NULL;
|
|
result = ok ? Py_True : Py_False;
|
|
return Py_NewRef(result);
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_repr(PyObject *self)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
PyObject *seq;
|
|
PyObject *result = NULL;
|
|
Py_ssize_t rc;
|
|
|
|
rc = Py_ReprEnter((PyObject *)dv);
|
|
if (rc != 0) {
|
|
return rc > 0 ? PyUnicode_FromString("...") : NULL;
|
|
}
|
|
seq = PySequence_List((PyObject *)dv);
|
|
if (seq == NULL) {
|
|
goto Done;
|
|
}
|
|
result = PyUnicode_FromFormat("%s(%R)", Py_TYPE(dv)->tp_name, seq);
|
|
Py_DECREF(seq);
|
|
|
|
Done:
|
|
Py_ReprLeave((PyObject *)dv);
|
|
return result;
|
|
}
|
|
|
|
/*** dict_keys ***/
|
|
|
|
static PyObject *
|
|
dictkeys_iter(PyObject *self)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterKey_Type);
|
|
}
|
|
|
|
static int
|
|
dictkeys_contains(PyObject *self, PyObject *obj)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
if (dv->dv_dict == NULL)
|
|
return 0;
|
|
return PyDict_Contains((PyObject *)dv->dv_dict, obj);
|
|
}
|
|
|
|
static PySequenceMethods dictkeys_as_sequence = {
|
|
dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
dictkeys_contains, /* sq_contains */
|
|
};
|
|
|
|
// Create a set object from dictviews object.
|
|
// Returns a new reference.
|
|
// This utility function is used by set operations.
|
|
static PyObject*
|
|
dictviews_to_set(PyObject *self)
|
|
{
|
|
PyObject *left = self;
|
|
if (PyDictKeys_Check(self)) {
|
|
// PySet_New() has fast path for the dict object.
|
|
PyObject *dict = (PyObject *)((_PyDictViewObject *)self)->dv_dict;
|
|
if (PyDict_CheckExact(dict)) {
|
|
left = dict;
|
|
}
|
|
}
|
|
return PySet_New(left);
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_sub(PyObject *self, PyObject *other)
|
|
{
|
|
PyObject *result = dictviews_to_set(self);
|
|
if (result == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *tmp = PyObject_CallMethodOneArg(
|
|
result, &_Py_ID(difference_update), other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
dictitems_contains(PyObject *dv, PyObject *obj);
|
|
|
|
PyObject *
|
|
_PyDictView_Intersect(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result;
|
|
PyObject *it;
|
|
PyObject *key;
|
|
Py_ssize_t len_self;
|
|
int rv;
|
|
objobjproc dict_contains;
|
|
|
|
/* Python interpreter swaps parameters when dict view
|
|
is on right side of & */
|
|
if (!PyDictViewSet_Check(self)) {
|
|
PyObject *tmp = other;
|
|
other = self;
|
|
self = tmp;
|
|
}
|
|
|
|
len_self = dictview_len(self);
|
|
|
|
/* if other is a set and self is smaller than other,
|
|
reuse set intersection logic */
|
|
if (PySet_CheckExact(other) && len_self <= PyObject_Size(other)) {
|
|
return PyObject_CallMethodObjArgs(
|
|
other, &_Py_ID(intersection), self, NULL);
|
|
}
|
|
|
|
/* if other is another dict view, and it is bigger than self,
|
|
swap them */
|
|
if (PyDictViewSet_Check(other)) {
|
|
Py_ssize_t len_other = dictview_len(other);
|
|
if (len_other > len_self) {
|
|
PyObject *tmp = other;
|
|
other = self;
|
|
self = tmp;
|
|
}
|
|
}
|
|
|
|
/* at this point, two things should be true
|
|
1. self is a dictview
|
|
2. if other is a dictview then it is smaller than self */
|
|
result = PySet_New(NULL);
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
it = PyObject_GetIter(other);
|
|
if (it == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
if (PyDictKeys_Check(self)) {
|
|
dict_contains = dictkeys_contains;
|
|
}
|
|
/* else PyDictItems_Check(self) */
|
|
else {
|
|
dict_contains = dictitems_contains;
|
|
}
|
|
|
|
while ((key = PyIter_Next(it)) != NULL) {
|
|
rv = dict_contains(self, key);
|
|
if (rv < 0) {
|
|
goto error;
|
|
}
|
|
if (rv) {
|
|
if (PySet_Add(result, key)) {
|
|
goto error;
|
|
}
|
|
}
|
|
Py_DECREF(key);
|
|
}
|
|
Py_DECREF(it);
|
|
if (PyErr_Occurred()) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
return result;
|
|
|
|
error:
|
|
Py_DECREF(it);
|
|
Py_DECREF(result);
|
|
Py_DECREF(key);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_or(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = dictviews_to_set(self);
|
|
if (result == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (_PySet_Update(result, other) < 0) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
dictitems_xor_lock_held(PyObject *d1, PyObject *d2)
|
|
{
|
|
ASSERT_DICT_LOCKED(d1);
|
|
ASSERT_DICT_LOCKED(d2);
|
|
|
|
PyObject *temp_dict = copy_lock_held(d1);
|
|
if (temp_dict == NULL) {
|
|
return NULL;
|
|
}
|
|
PyObject *result_set = PySet_New(NULL);
|
|
if (result_set == NULL) {
|
|
Py_CLEAR(temp_dict);
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *key = NULL, *val1 = NULL, *val2 = NULL;
|
|
Py_ssize_t pos = 0;
|
|
Py_hash_t hash;
|
|
|
|
while (_PyDict_Next(d2, &pos, &key, &val2, &hash)) {
|
|
Py_INCREF(key);
|
|
Py_INCREF(val2);
|
|
val1 = _PyDict_GetItem_KnownHash(temp_dict, key, hash);
|
|
|
|
int to_delete;
|
|
if (val1 == NULL) {
|
|
if (PyErr_Occurred()) {
|
|
goto error;
|
|
}
|
|
to_delete = 0;
|
|
}
|
|
else {
|
|
Py_INCREF(val1);
|
|
to_delete = PyObject_RichCompareBool(val1, val2, Py_EQ);
|
|
if (to_delete < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (to_delete) {
|
|
if (_PyDict_DelItem_KnownHash(temp_dict, key, hash) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
else {
|
|
PyObject *pair = PyTuple_Pack(2, key, val2);
|
|
if (pair == NULL) {
|
|
goto error;
|
|
}
|
|
if (PySet_Add(result_set, pair) < 0) {
|
|
Py_DECREF(pair);
|
|
goto error;
|
|
}
|
|
Py_DECREF(pair);
|
|
}
|
|
Py_DECREF(key);
|
|
Py_XDECREF(val1);
|
|
Py_DECREF(val2);
|
|
}
|
|
key = val1 = val2 = NULL;
|
|
|
|
PyObject *remaining_pairs = PyObject_CallMethodNoArgs(
|
|
temp_dict, &_Py_ID(items));
|
|
if (remaining_pairs == NULL) {
|
|
goto error;
|
|
}
|
|
if (_PySet_Update(result_set, remaining_pairs) < 0) {
|
|
Py_DECREF(remaining_pairs);
|
|
goto error;
|
|
}
|
|
Py_DECREF(temp_dict);
|
|
Py_DECREF(remaining_pairs);
|
|
return result_set;
|
|
|
|
error:
|
|
Py_XDECREF(temp_dict);
|
|
Py_XDECREF(result_set);
|
|
Py_XDECREF(key);
|
|
Py_XDECREF(val1);
|
|
Py_XDECREF(val2);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
dictitems_xor(PyObject *self, PyObject *other)
|
|
{
|
|
assert(PyDictItems_Check(self));
|
|
assert(PyDictItems_Check(other));
|
|
PyObject *d1 = (PyObject *)((_PyDictViewObject *)self)->dv_dict;
|
|
PyObject *d2 = (PyObject *)((_PyDictViewObject *)other)->dv_dict;
|
|
|
|
PyObject *res;
|
|
Py_BEGIN_CRITICAL_SECTION2(d1, d2);
|
|
res = dictitems_xor_lock_held(d1, d2);
|
|
Py_END_CRITICAL_SECTION2();
|
|
|
|
return res;
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_xor(PyObject* self, PyObject *other)
|
|
{
|
|
if (PyDictItems_Check(self) && PyDictItems_Check(other)) {
|
|
return dictitems_xor(self, other);
|
|
}
|
|
PyObject *result = dictviews_to_set(self);
|
|
if (result == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *tmp = PyObject_CallMethodOneArg(
|
|
result, &_Py_ID(symmetric_difference_update), other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyNumberMethods dictviews_as_number = {
|
|
0, /*nb_add*/
|
|
(binaryfunc)dictviews_sub, /*nb_subtract*/
|
|
0, /*nb_multiply*/
|
|
0, /*nb_remainder*/
|
|
0, /*nb_divmod*/
|
|
0, /*nb_power*/
|
|
0, /*nb_negative*/
|
|
0, /*nb_positive*/
|
|
0, /*nb_absolute*/
|
|
0, /*nb_bool*/
|
|
0, /*nb_invert*/
|
|
0, /*nb_lshift*/
|
|
0, /*nb_rshift*/
|
|
(binaryfunc)_PyDictView_Intersect, /*nb_and*/
|
|
(binaryfunc)dictviews_xor, /*nb_xor*/
|
|
(binaryfunc)dictviews_or, /*nb_or*/
|
|
};
|
|
|
|
static PyObject*
|
|
dictviews_isdisjoint(PyObject *self, PyObject *other)
|
|
{
|
|
PyObject *it;
|
|
PyObject *item = NULL;
|
|
|
|
if (self == other) {
|
|
if (dictview_len(self) == 0)
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
/* Iterate over the shorter object (only if other is a set,
|
|
* because PySequence_Contains may be expensive otherwise): */
|
|
if (PyAnySet_Check(other) || PyDictViewSet_Check(other)) {
|
|
Py_ssize_t len_self = dictview_len(self);
|
|
Py_ssize_t len_other = PyObject_Size(other);
|
|
if (len_other == -1)
|
|
return NULL;
|
|
|
|
if ((len_other > len_self)) {
|
|
PyObject *tmp = other;
|
|
other = self;
|
|
self = tmp;
|
|
}
|
|
}
|
|
|
|
it = PyObject_GetIter(other);
|
|
if (it == NULL)
|
|
return NULL;
|
|
|
|
while ((item = PyIter_Next(it)) != NULL) {
|
|
int contains = PySequence_Contains(self, item);
|
|
Py_DECREF(item);
|
|
if (contains == -1) {
|
|
Py_DECREF(it);
|
|
return NULL;
|
|
}
|
|
|
|
if (contains) {
|
|
Py_DECREF(it);
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
Py_DECREF(it);
|
|
if (PyErr_Occurred())
|
|
return NULL; /* PyIter_Next raised an exception. */
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyDoc_STRVAR(isdisjoint_doc,
|
|
"Return True if the view and the given iterable have a null intersection.");
|
|
|
|
static PyObject* dictkeys_reversed(PyObject *dv, PyObject *Py_UNUSED(ignored));
|
|
|
|
PyDoc_STRVAR(reversed_keys_doc,
|
|
"Return a reverse iterator over the dict keys.");
|
|
|
|
static PyMethodDef dictkeys_methods[] = {
|
|
{"isdisjoint", dictviews_isdisjoint, METH_O,
|
|
isdisjoint_doc},
|
|
{"__reversed__", dictkeys_reversed, METH_NOARGS,
|
|
reversed_keys_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictKeys_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_keys", /* tp_name */
|
|
sizeof(_PyDictViewObject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
dictview_repr, /* tp_repr */
|
|
&dictviews_as_number, /* tp_as_number */
|
|
&dictkeys_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
dictview_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
dictkeys_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictkeys_methods, /* tp_methods */
|
|
.tp_getset = dictview_getset,
|
|
};
|
|
|
|
/*[clinic input]
|
|
dict.keys
|
|
|
|
Return a set-like object providing a view on the dict's keys.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_keys_impl(PyDictObject *self)
|
|
/*[clinic end generated code: output=aac2830c62990358 input=42f48a7a771212a7]*/
|
|
{
|
|
return _PyDictView_New((PyObject *)self, &PyDictKeys_Type);
|
|
}
|
|
|
|
static PyObject *
|
|
dictkeys_reversed(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictRevIterKey_Type);
|
|
}
|
|
|
|
/*** dict_items ***/
|
|
|
|
static PyObject *
|
|
dictitems_iter(PyObject *self)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterItem_Type);
|
|
}
|
|
|
|
static int
|
|
dictitems_contains(PyObject *self, PyObject *obj)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
int result;
|
|
PyObject *key, *value, *found;
|
|
if (dv->dv_dict == NULL)
|
|
return 0;
|
|
if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 2)
|
|
return 0;
|
|
key = PyTuple_GET_ITEM(obj, 0);
|
|
value = PyTuple_GET_ITEM(obj, 1);
|
|
result = PyDict_GetItemRef((PyObject *)dv->dv_dict, key, &found);
|
|
if (result == 1) {
|
|
result = PyObject_RichCompareBool(found, value, Py_EQ);
|
|
Py_DECREF(found);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PySequenceMethods dictitems_as_sequence = {
|
|
dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
dictitems_contains, /* sq_contains */
|
|
};
|
|
|
|
static PyObject* dictitems_reversed(PyObject *dv, PyObject *Py_UNUSED(ignored));
|
|
|
|
PyDoc_STRVAR(reversed_items_doc,
|
|
"Return a reverse iterator over the dict items.");
|
|
|
|
static PyMethodDef dictitems_methods[] = {
|
|
{"isdisjoint", dictviews_isdisjoint, METH_O,
|
|
isdisjoint_doc},
|
|
{"__reversed__", dictitems_reversed, METH_NOARGS,
|
|
reversed_items_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictItems_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_items", /* tp_name */
|
|
sizeof(_PyDictViewObject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
dictview_repr, /* tp_repr */
|
|
&dictviews_as_number, /* tp_as_number */
|
|
&dictitems_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
dictview_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
dictitems_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictitems_methods, /* tp_methods */
|
|
.tp_getset = dictview_getset,
|
|
};
|
|
|
|
/*[clinic input]
|
|
dict.items
|
|
|
|
Return a set-like object providing a view on the dict's items.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_items_impl(PyDictObject *self)
|
|
/*[clinic end generated code: output=88c7db7150c7909a input=87c822872eb71f5a]*/
|
|
{
|
|
return _PyDictView_New((PyObject *)self, &PyDictItems_Type);
|
|
}
|
|
|
|
static PyObject *
|
|
dictitems_reversed(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictRevIterItem_Type);
|
|
}
|
|
|
|
/*** dict_values ***/
|
|
|
|
static PyObject *
|
|
dictvalues_iter(PyObject *self)
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterValue_Type);
|
|
}
|
|
|
|
static PySequenceMethods dictvalues_as_sequence = {
|
|
dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)0, /* sq_contains */
|
|
};
|
|
|
|
static PyObject* dictvalues_reversed(PyObject *dv, PyObject *Py_UNUSED(ignored));
|
|
|
|
PyDoc_STRVAR(reversed_values_doc,
|
|
"Return a reverse iterator over the dict values.");
|
|
|
|
static PyMethodDef dictvalues_methods[] = {
|
|
{"__reversed__", dictvalues_reversed, METH_NOARGS,
|
|
reversed_values_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictValues_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_values", /* tp_name */
|
|
sizeof(_PyDictViewObject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
dictview_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
&dictvalues_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
dictvalues_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictvalues_methods, /* tp_methods */
|
|
.tp_getset = dictview_getset,
|
|
};
|
|
|
|
/*[clinic input]
|
|
dict.values
|
|
|
|
Return an object providing a view on the dict's values.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
dict_values_impl(PyDictObject *self)
|
|
/*[clinic end generated code: output=ce9f2e9e8a959dd4 input=b46944f85493b230]*/
|
|
{
|
|
return _PyDictView_New((PyObject *)self, &PyDictValues_Type);
|
|
}
|
|
|
|
static PyObject *
|
|
dictvalues_reversed(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
_PyDictViewObject *dv = (_PyDictViewObject *)self;
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictRevIterValue_Type);
|
|
}
|
|
|
|
|
|
/* Returns NULL if cannot allocate a new PyDictKeysObject,
|
|
but does not set an error */
|
|
PyDictKeysObject *
|
|
_PyDict_NewKeysForClass(PyHeapTypeObject *cls)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
PyDictKeysObject *keys = new_keys_object(
|
|
interp, NEXT_LOG2_SHARED_KEYS_MAX_SIZE, 1);
|
|
if (keys == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
else {
|
|
assert(keys->dk_nentries == 0);
|
|
/* Set to max size+1 as it will shrink by one before each new object */
|
|
keys->dk_usable = SHARED_KEYS_MAX_SIZE;
|
|
keys->dk_kind = DICT_KEYS_SPLIT;
|
|
}
|
|
if (cls->ht_type.tp_dict) {
|
|
PyObject *attrs = PyDict_GetItem(cls->ht_type.tp_dict, &_Py_ID(__static_attributes__));
|
|
if (attrs != NULL && PyTuple_Check(attrs)) {
|
|
for (Py_ssize_t i = 0; i < PyTuple_GET_SIZE(attrs); i++) {
|
|
PyObject *key = PyTuple_GET_ITEM(attrs, i);
|
|
Py_hash_t hash;
|
|
if (PyUnicode_CheckExact(key) && (hash = unicode_get_hash(key)) != -1) {
|
|
if (insert_split_key(keys, key, hash) == DKIX_EMPTY) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return keys;
|
|
}
|
|
|
|
void
|
|
_PyObject_InitInlineValues(PyObject *obj, PyTypeObject *tp)
|
|
{
|
|
assert(tp->tp_flags & Py_TPFLAGS_HEAPTYPE);
|
|
assert(tp->tp_flags & Py_TPFLAGS_INLINE_VALUES);
|
|
assert(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT);
|
|
PyDictKeysObject *keys = CACHED_KEYS(tp);
|
|
assert(keys != NULL);
|
|
OBJECT_STAT_INC(inline_values);
|
|
#ifdef Py_GIL_DISABLED
|
|
Py_ssize_t usable = _Py_atomic_load_ssize_relaxed(&keys->dk_usable);
|
|
if (usable > 1) {
|
|
LOCK_KEYS(keys);
|
|
if (keys->dk_usable > 1) {
|
|
_Py_atomic_store_ssize(&keys->dk_usable, keys->dk_usable - 1);
|
|
}
|
|
UNLOCK_KEYS(keys);
|
|
}
|
|
#else
|
|
if (keys->dk_usable > 1) {
|
|
keys->dk_usable--;
|
|
}
|
|
#endif
|
|
size_t size = shared_keys_usable_size(keys);
|
|
PyDictValues *values = _PyObject_InlineValues(obj);
|
|
assert(size < 256);
|
|
values->capacity = (uint8_t)size;
|
|
values->size = 0;
|
|
values->embedded = 1;
|
|
values->valid = 1;
|
|
for (size_t i = 0; i < size; i++) {
|
|
values->values[i] = NULL;
|
|
}
|
|
_PyObject_ManagedDictPointer(obj)->dict = NULL;
|
|
}
|
|
|
|
static PyDictObject *
|
|
make_dict_from_instance_attributes(PyInterpreterState *interp,
|
|
PyDictKeysObject *keys, PyDictValues *values)
|
|
{
|
|
dictkeys_incref(keys);
|
|
Py_ssize_t used = 0;
|
|
size_t size = shared_keys_usable_size(keys);
|
|
for (size_t i = 0; i < size; i++) {
|
|
PyObject *val = values->values[i];
|
|
if (val != NULL) {
|
|
used += 1;
|
|
}
|
|
}
|
|
PyDictObject *res = (PyDictObject *)new_dict(interp, keys, values, used, 0);
|
|
return res;
|
|
}
|
|
|
|
PyDictObject *
|
|
_PyObject_MaterializeManagedDict_LockHeld(PyObject *obj)
|
|
{
|
|
ASSERT_WORLD_STOPPED_OR_OBJ_LOCKED(obj);
|
|
|
|
OBJECT_STAT_INC(dict_materialized_on_request);
|
|
|
|
PyDictValues *values = _PyObject_InlineValues(obj);
|
|
PyDictObject *dict;
|
|
if (values->valid) {
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
PyDictKeysObject *keys = CACHED_KEYS(Py_TYPE(obj));
|
|
dict = make_dict_from_instance_attributes(interp, keys, values);
|
|
}
|
|
else {
|
|
dict = (PyDictObject *)PyDict_New();
|
|
}
|
|
FT_ATOMIC_STORE_PTR_RELEASE(_PyObject_ManagedDictPointer(obj)->dict,
|
|
dict);
|
|
return dict;
|
|
}
|
|
|
|
PyDictObject *
|
|
_PyObject_MaterializeManagedDict(PyObject *obj)
|
|
{
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
if (dict != NULL) {
|
|
return dict;
|
|
}
|
|
|
|
Py_BEGIN_CRITICAL_SECTION(obj);
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
dict = _PyObject_GetManagedDict(obj);
|
|
if (dict != NULL) {
|
|
// We raced with another thread creating the dict
|
|
goto exit;
|
|
}
|
|
#endif
|
|
dict = _PyObject_MaterializeManagedDict_LockHeld(obj);
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
exit:
|
|
#endif
|
|
Py_END_CRITICAL_SECTION();
|
|
return dict;
|
|
}
|
|
|
|
int
|
|
_PyDict_SetItem_LockHeld(PyDictObject *dict, PyObject *name, PyObject *value)
|
|
{
|
|
if (value == NULL) {
|
|
Py_hash_t hash = _PyObject_HashFast(name);
|
|
if (hash == -1) {
|
|
return -1;
|
|
}
|
|
return delitem_knownhash_lock_held((PyObject *)dict, name, hash);
|
|
} else {
|
|
return setitem_lock_held(dict, name, value);
|
|
}
|
|
}
|
|
|
|
// Called with either the object's lock or the dict's lock held
|
|
// depending on whether or not a dict has been materialized for
|
|
// the object.
|
|
static int
|
|
store_instance_attr_lock_held(PyObject *obj, PyDictValues *values,
|
|
PyObject *name, PyObject *value)
|
|
{
|
|
PyDictKeysObject *keys = CACHED_KEYS(Py_TYPE(obj));
|
|
assert(keys != NULL);
|
|
assert(values != NULL);
|
|
assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_INLINE_VALUES);
|
|
Py_ssize_t ix = DKIX_EMPTY;
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
assert(dict == NULL || ((PyDictObject *)dict)->ma_values == values);
|
|
if (PyUnicode_CheckExact(name)) {
|
|
Py_hash_t hash = unicode_get_hash(name);
|
|
if (hash == -1) {
|
|
hash = PyUnicode_Type.tp_hash(name);
|
|
assert(hash != -1);
|
|
}
|
|
|
|
ix = insert_split_key(keys, name, hash);
|
|
|
|
#ifdef Py_STATS
|
|
if (ix == DKIX_EMPTY) {
|
|
if (PyUnicode_CheckExact(name)) {
|
|
if (shared_keys_usable_size(keys) == SHARED_KEYS_MAX_SIZE) {
|
|
OBJECT_STAT_INC(dict_materialized_too_big);
|
|
}
|
|
else {
|
|
OBJECT_STAT_INC(dict_materialized_new_key);
|
|
}
|
|
}
|
|
else {
|
|
OBJECT_STAT_INC(dict_materialized_str_subclass);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (ix == DKIX_EMPTY) {
|
|
int res;
|
|
if (dict == NULL) {
|
|
// Make the dict but don't publish it in the object
|
|
// so that no one else will see it.
|
|
dict = make_dict_from_instance_attributes(PyInterpreterState_Get(), keys, values);
|
|
if (dict == NULL ||
|
|
_PyDict_SetItem_LockHeld(dict, name, value) < 0) {
|
|
Py_XDECREF(dict);
|
|
return -1;
|
|
}
|
|
|
|
FT_ATOMIC_STORE_PTR_RELEASE(_PyObject_ManagedDictPointer(obj)->dict,
|
|
(PyDictObject *)dict);
|
|
return 0;
|
|
}
|
|
|
|
_Py_CRITICAL_SECTION_ASSERT_OBJECT_LOCKED(dict);
|
|
|
|
res = _PyDict_SetItem_LockHeld(dict, name, value);
|
|
return res;
|
|
}
|
|
|
|
PyObject *old_value = values->values[ix];
|
|
if (old_value == NULL && value == NULL) {
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.100s' object has no attribute '%U'",
|
|
Py_TYPE(obj)->tp_name, name);
|
|
return -1;
|
|
}
|
|
|
|
if (dict) {
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
PyDict_WatchEvent event = (old_value == NULL ? PyDict_EVENT_ADDED :
|
|
value == NULL ? PyDict_EVENT_DELETED :
|
|
PyDict_EVENT_MODIFIED);
|
|
_PyDict_NotifyEvent(interp, event, dict, name, value);
|
|
}
|
|
|
|
FT_ATOMIC_STORE_PTR_RELEASE(values->values[ix], Py_XNewRef(value));
|
|
|
|
if (old_value == NULL) {
|
|
_PyDictValues_AddToInsertionOrder(values, ix);
|
|
if (dict) {
|
|
assert(dict->ma_values == values);
|
|
STORE_USED(dict, dict->ma_used + 1);
|
|
}
|
|
}
|
|
else {
|
|
if (value == NULL) {
|
|
delete_index_from_values(values, ix);
|
|
if (dict) {
|
|
assert(dict->ma_values == values);
|
|
STORE_USED(dict, dict->ma_used - 1);
|
|
}
|
|
}
|
|
Py_DECREF(old_value);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
store_instance_attr_dict(PyObject *obj, PyDictObject *dict, PyObject *name, PyObject *value)
|
|
{
|
|
PyDictValues *values = _PyObject_InlineValues(obj);
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION(dict);
|
|
if (dict->ma_values == values) {
|
|
res = store_instance_attr_lock_held(obj, values, name, value);
|
|
}
|
|
else {
|
|
res = _PyDict_SetItem_LockHeld(dict, name, value);
|
|
}
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
int
|
|
_PyObject_StoreInstanceAttribute(PyObject *obj, PyObject *name, PyObject *value)
|
|
{
|
|
PyDictValues *values = _PyObject_InlineValues(obj);
|
|
if (!FT_ATOMIC_LOAD_UINT8(values->valid)) {
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
if (dict == NULL) {
|
|
dict = (PyDictObject *)PyObject_GenericGetDict(obj, NULL);
|
|
if (dict == NULL) {
|
|
return -1;
|
|
}
|
|
int res = store_instance_attr_dict(obj, dict, name, value);
|
|
Py_DECREF(dict);
|
|
return res;
|
|
}
|
|
return store_instance_attr_dict(obj, dict, name, value);
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
// We have a valid inline values, at least for now... There are two potential
|
|
// races with having the values become invalid. One is the dictionary
|
|
// being detached from the object. The other is if someone is inserting
|
|
// into the dictionary directly and therefore causing it to resize.
|
|
//
|
|
// If we haven't materialized the dictionary yet we lock on the object, which
|
|
// will also be used to prevent the dictionary from being materialized while
|
|
// we're doing the insertion. If we race and the dictionary gets created
|
|
// then we'll need to release the object lock and lock the dictionary to
|
|
// prevent resizing.
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
if (dict == NULL) {
|
|
int res;
|
|
Py_BEGIN_CRITICAL_SECTION(obj);
|
|
dict = _PyObject_GetManagedDict(obj);
|
|
|
|
if (dict == NULL) {
|
|
res = store_instance_attr_lock_held(obj, values, name, value);
|
|
}
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
if (dict == NULL) {
|
|
return res;
|
|
}
|
|
}
|
|
return store_instance_attr_dict(obj, dict, name, value);
|
|
#else
|
|
return store_instance_attr_lock_held(obj, values, name, value);
|
|
#endif
|
|
}
|
|
|
|
/* Sanity check for managed dicts */
|
|
#if 0
|
|
#define CHECK(val) assert(val); if (!(val)) { return 0; }
|
|
|
|
int
|
|
_PyObject_ManagedDictValidityCheck(PyObject *obj)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
CHECK(tp->tp_flags & Py_TPFLAGS_MANAGED_DICT);
|
|
PyManagedDictPointer *managed_dict = _PyObject_ManagedDictPointer(obj);
|
|
if (_PyManagedDictPointer_IsValues(*managed_dict)) {
|
|
PyDictValues *values = _PyManagedDictPointer_GetValues(*managed_dict);
|
|
int size = ((uint8_t *)values)[-2];
|
|
int count = 0;
|
|
PyDictKeysObject *keys = CACHED_KEYS(tp);
|
|
for (Py_ssize_t i = 0; i < keys->dk_nentries; i++) {
|
|
if (values->values[i] != NULL) {
|
|
count++;
|
|
}
|
|
}
|
|
CHECK(size == count);
|
|
}
|
|
else {
|
|
if (managed_dict->dict != NULL) {
|
|
CHECK(PyDict_Check(managed_dict->dict));
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
// Attempts to get an instance attribute from the inline values. Returns true
|
|
// if successful, or false if the caller needs to lookup in the dictionary.
|
|
bool
|
|
_PyObject_TryGetInstanceAttribute(PyObject *obj, PyObject *name, PyObject **attr)
|
|
{
|
|
assert(PyUnicode_CheckExact(name));
|
|
PyDictValues *values = _PyObject_InlineValues(obj);
|
|
if (!FT_ATOMIC_LOAD_UINT8(values->valid)) {
|
|
return false;
|
|
}
|
|
|
|
PyDictKeysObject *keys = CACHED_KEYS(Py_TYPE(obj));
|
|
assert(keys != NULL);
|
|
Py_ssize_t ix = _PyDictKeys_StringLookup(keys, name);
|
|
if (ix == DKIX_EMPTY) {
|
|
*attr = NULL;
|
|
return true;
|
|
}
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
PyObject *value = _Py_atomic_load_ptr_acquire(&values->values[ix]);
|
|
if (value == NULL || _Py_TryIncrefCompare(&values->values[ix], value)) {
|
|
*attr = value;
|
|
return true;
|
|
}
|
|
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
if (dict == NULL) {
|
|
// No dict, lock the object to prevent one from being
|
|
// materialized...
|
|
bool success = false;
|
|
Py_BEGIN_CRITICAL_SECTION(obj);
|
|
|
|
dict = _PyObject_GetManagedDict(obj);
|
|
if (dict == NULL) {
|
|
// Still no dict, we can read from the values
|
|
assert(values->valid);
|
|
value = values->values[ix];
|
|
*attr = _Py_XNewRefWithLock(value);
|
|
success = true;
|
|
}
|
|
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
if (success) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We have a dictionary, we'll need to lock it to prevent
|
|
// the values from being resized.
|
|
assert(dict != NULL);
|
|
|
|
bool success;
|
|
Py_BEGIN_CRITICAL_SECTION(dict);
|
|
|
|
if (dict->ma_values == values && FT_ATOMIC_LOAD_UINT8(values->valid)) {
|
|
value = _Py_atomic_load_ptr_relaxed(&values->values[ix]);
|
|
*attr = _Py_XNewRefWithLock(value);
|
|
success = true;
|
|
} else {
|
|
// Caller needs to lookup from the dictionary
|
|
success = false;
|
|
}
|
|
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
return success;
|
|
#else
|
|
PyObject *value = values->values[ix];
|
|
*attr = Py_XNewRef(value);
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
int
|
|
_PyObject_IsInstanceDictEmpty(PyObject *obj)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if (tp->tp_dictoffset == 0) {
|
|
return 1;
|
|
}
|
|
PyDictObject *dict;
|
|
if (tp->tp_flags & Py_TPFLAGS_INLINE_VALUES) {
|
|
PyDictValues *values = _PyObject_InlineValues(obj);
|
|
if (FT_ATOMIC_LOAD_UINT8(values->valid)) {
|
|
PyDictKeysObject *keys = CACHED_KEYS(tp);
|
|
for (Py_ssize_t i = 0; i < keys->dk_nentries; i++) {
|
|
if (FT_ATOMIC_LOAD_PTR_RELAXED(values->values[i]) != NULL) {
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
dict = _PyObject_GetManagedDict(obj);
|
|
}
|
|
else if (tp->tp_flags & Py_TPFLAGS_MANAGED_DICT) {
|
|
dict = _PyObject_GetManagedDict(obj);
|
|
}
|
|
else {
|
|
PyObject **dictptr = _PyObject_ComputedDictPointer(obj);
|
|
dict = (PyDictObject *)*dictptr;
|
|
}
|
|
if (dict == NULL) {
|
|
return 1;
|
|
}
|
|
return FT_ATOMIC_LOAD_SSIZE_RELAXED(((PyDictObject *)dict)->ma_used) == 0;
|
|
}
|
|
|
|
int
|
|
PyObject_VisitManagedDict(PyObject *obj, visitproc visit, void *arg)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if((tp->tp_flags & Py_TPFLAGS_MANAGED_DICT) == 0) {
|
|
return 0;
|
|
}
|
|
if (tp->tp_flags & Py_TPFLAGS_INLINE_VALUES) {
|
|
PyDictValues *values = _PyObject_InlineValues(obj);
|
|
if (values->valid) {
|
|
for (Py_ssize_t i = 0; i < values->capacity; i++) {
|
|
Py_VISIT(values->values[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
Py_VISIT(_PyObject_ManagedDictPointer(obj)->dict);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
set_dict_inline_values(PyObject *obj, PyDictObject *new_dict)
|
|
{
|
|
_Py_CRITICAL_SECTION_ASSERT_OBJECT_LOCKED(obj);
|
|
|
|
PyDictValues *values = _PyObject_InlineValues(obj);
|
|
|
|
Py_XINCREF(new_dict);
|
|
FT_ATOMIC_STORE_PTR(_PyObject_ManagedDictPointer(obj)->dict, new_dict);
|
|
|
|
if (values->valid) {
|
|
FT_ATOMIC_STORE_UINT8(values->valid, 0);
|
|
for (Py_ssize_t i = 0; i < values->capacity; i++) {
|
|
Py_CLEAR(values->values[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyObject_SetManagedDict(PyObject *obj, PyObject *new_dict)
|
|
{
|
|
assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
|
|
assert(_PyObject_InlineValuesConsistencyCheck(obj));
|
|
int err = 0;
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if (tp->tp_flags & Py_TPFLAGS_INLINE_VALUES) {
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
if (dict == NULL) {
|
|
#ifdef Py_GIL_DISABLED
|
|
Py_BEGIN_CRITICAL_SECTION(obj);
|
|
|
|
dict = _PyObject_ManagedDictPointer(obj)->dict;
|
|
if (dict == NULL) {
|
|
set_dict_inline_values(obj, (PyDictObject *)new_dict);
|
|
}
|
|
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
if (dict == NULL) {
|
|
return 0;
|
|
}
|
|
#else
|
|
set_dict_inline_values(obj, (PyDictObject *)new_dict);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
Py_BEGIN_CRITICAL_SECTION2(dict, obj);
|
|
|
|
// We've locked dict, but the actual dict could have changed
|
|
// since we locked it.
|
|
dict = _PyObject_ManagedDictPointer(obj)->dict;
|
|
err = _PyDict_DetachFromObject(dict, obj);
|
|
assert(err == 0 || new_dict == NULL);
|
|
if (err == 0) {
|
|
FT_ATOMIC_STORE_PTR(_PyObject_ManagedDictPointer(obj)->dict,
|
|
(PyDictObject *)Py_XNewRef(new_dict));
|
|
}
|
|
Py_END_CRITICAL_SECTION2();
|
|
|
|
if (err == 0) {
|
|
Py_XDECREF(dict);
|
|
}
|
|
}
|
|
else {
|
|
PyDictObject *dict;
|
|
|
|
Py_BEGIN_CRITICAL_SECTION(obj);
|
|
|
|
dict = _PyObject_ManagedDictPointer(obj)->dict;
|
|
|
|
FT_ATOMIC_STORE_PTR(_PyObject_ManagedDictPointer(obj)->dict,
|
|
(PyDictObject *)Py_XNewRef(new_dict));
|
|
|
|
Py_END_CRITICAL_SECTION();
|
|
|
|
Py_XDECREF(dict);
|
|
}
|
|
assert(_PyObject_InlineValuesConsistencyCheck(obj));
|
|
return err;
|
|
}
|
|
|
|
void
|
|
PyObject_ClearManagedDict(PyObject *obj)
|
|
{
|
|
if (_PyObject_SetManagedDict(obj, NULL) < 0) {
|
|
/* Must be out of memory */
|
|
assert(PyErr_Occurred() == PyExc_MemoryError);
|
|
PyErr_WriteUnraisable(NULL);
|
|
/* Clear the dict */
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
Py_BEGIN_CRITICAL_SECTION2(dict, obj);
|
|
dict = _PyObject_ManagedDictPointer(obj)->dict;
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
PyDictKeysObject *oldkeys = dict->ma_keys;
|
|
set_keys(dict, Py_EMPTY_KEYS);
|
|
dict->ma_values = NULL;
|
|
dictkeys_decref(interp, oldkeys, IS_DICT_SHARED(dict));
|
|
STORE_USED(dict, 0);
|
|
set_dict_inline_values(obj, NULL);
|
|
Py_END_CRITICAL_SECTION2();
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyDict_DetachFromObject(PyDictObject *mp, PyObject *obj)
|
|
{
|
|
ASSERT_WORLD_STOPPED_OR_OBJ_LOCKED(obj);
|
|
assert(_PyObject_ManagedDictPointer(obj)->dict == mp);
|
|
assert(_PyObject_InlineValuesConsistencyCheck(obj));
|
|
|
|
if (FT_ATOMIC_LOAD_PTR_RELAXED(mp->ma_values) != _PyObject_InlineValues(obj)) {
|
|
return 0;
|
|
}
|
|
|
|
// We could be called with an unlocked dict when the caller knows the
|
|
// values are already detached, so we assert after inline values check.
|
|
_Py_CRITICAL_SECTION_ASSERT_OBJECT_LOCKED(mp);
|
|
assert(mp->ma_values->embedded == 1);
|
|
assert(mp->ma_values->valid == 1);
|
|
assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_INLINE_VALUES);
|
|
|
|
PyDictValues *values = copy_values(mp->ma_values);
|
|
|
|
if (values == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
mp->ma_values = values;
|
|
|
|
FT_ATOMIC_STORE_UINT8(_PyObject_InlineValues(obj)->valid, 0);
|
|
|
|
assert(_PyObject_InlineValuesConsistencyCheck(obj));
|
|
ASSERT_CONSISTENT(mp);
|
|
return 0;
|
|
}
|
|
|
|
static inline PyObject *
|
|
ensure_managed_dict(PyObject *obj)
|
|
{
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
if (dict == NULL) {
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if ((tp->tp_flags & Py_TPFLAGS_INLINE_VALUES) &&
|
|
FT_ATOMIC_LOAD_UINT8(_PyObject_InlineValues(obj)->valid)) {
|
|
dict = _PyObject_MaterializeManagedDict(obj);
|
|
}
|
|
else {
|
|
#ifdef Py_GIL_DISABLED
|
|
// Check again that we're not racing with someone else creating the dict
|
|
Py_BEGIN_CRITICAL_SECTION(obj);
|
|
dict = _PyObject_GetManagedDict(obj);
|
|
if (dict != NULL) {
|
|
goto done;
|
|
}
|
|
#endif
|
|
dict = (PyDictObject *)new_dict_with_shared_keys(_PyInterpreterState_GET(),
|
|
CACHED_KEYS(tp));
|
|
FT_ATOMIC_STORE_PTR_RELEASE(_PyObject_ManagedDictPointer(obj)->dict,
|
|
(PyDictObject *)dict);
|
|
|
|
#ifdef Py_GIL_DISABLED
|
|
done:
|
|
Py_END_CRITICAL_SECTION();
|
|
#endif
|
|
}
|
|
}
|
|
return (PyObject *)dict;
|
|
}
|
|
|
|
static inline PyObject *
|
|
ensure_nonmanaged_dict(PyObject *obj, PyObject **dictptr)
|
|
{
|
|
PyDictKeysObject *cached;
|
|
|
|
PyObject *dict = FT_ATOMIC_LOAD_PTR_ACQUIRE(*dictptr);
|
|
if (dict == NULL) {
|
|
#ifdef Py_GIL_DISABLED
|
|
Py_BEGIN_CRITICAL_SECTION(obj);
|
|
dict = *dictptr;
|
|
if (dict != NULL) {
|
|
goto done;
|
|
}
|
|
#endif
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if (_PyType_HasFeature(tp, Py_TPFLAGS_HEAPTYPE) && (cached = CACHED_KEYS(tp))) {
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
assert(!_PyType_HasFeature(tp, Py_TPFLAGS_INLINE_VALUES));
|
|
dict = new_dict_with_shared_keys(interp, cached);
|
|
}
|
|
else {
|
|
dict = PyDict_New();
|
|
}
|
|
FT_ATOMIC_STORE_PTR_RELEASE(*dictptr, dict);
|
|
#ifdef Py_GIL_DISABLED
|
|
done:
|
|
Py_END_CRITICAL_SECTION();
|
|
#endif
|
|
}
|
|
return dict;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_GenericGetDict(PyObject *obj, void *context)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if (_PyType_HasFeature(tp, Py_TPFLAGS_MANAGED_DICT)) {
|
|
return Py_XNewRef(ensure_managed_dict(obj));
|
|
}
|
|
else {
|
|
PyObject **dictptr = _PyObject_ComputedDictPointer(obj);
|
|
if (dictptr == NULL) {
|
|
PyErr_SetString(PyExc_AttributeError,
|
|
"This object has no __dict__");
|
|
return NULL;
|
|
}
|
|
|
|
return Py_XNewRef(ensure_nonmanaged_dict(obj, dictptr));
|
|
}
|
|
}
|
|
|
|
int
|
|
_PyObjectDict_SetItem(PyTypeObject *tp, PyObject *obj, PyObject **dictptr,
|
|
PyObject *key, PyObject *value)
|
|
{
|
|
PyObject *dict;
|
|
int res;
|
|
|
|
assert(dictptr != NULL);
|
|
dict = ensure_nonmanaged_dict(obj, dictptr);
|
|
if (dict == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
Py_BEGIN_CRITICAL_SECTION(dict);
|
|
res = _PyDict_SetItem_LockHeld((PyDictObject *)dict, key, value);
|
|
ASSERT_CONSISTENT(dict);
|
|
Py_END_CRITICAL_SECTION();
|
|
return res;
|
|
}
|
|
|
|
void
|
|
_PyDictKeys_DecRef(PyDictKeysObject *keys)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
dictkeys_decref(interp, keys, false);
|
|
}
|
|
|
|
uint32_t _PyDictKeys_GetVersionForCurrentState(PyInterpreterState *interp,
|
|
PyDictKeysObject *dictkeys)
|
|
{
|
|
if (dictkeys->dk_version != 0) {
|
|
return dictkeys->dk_version;
|
|
}
|
|
if (interp->dict_state.next_keys_version == 0) {
|
|
return 0;
|
|
}
|
|
uint32_t v = interp->dict_state.next_keys_version++;
|
|
dictkeys->dk_version = v;
|
|
return v;
|
|
}
|
|
|
|
static inline int
|
|
validate_watcher_id(PyInterpreterState *interp, int watcher_id)
|
|
{
|
|
if (watcher_id < 0 || watcher_id >= DICT_MAX_WATCHERS) {
|
|
PyErr_Format(PyExc_ValueError, "Invalid dict watcher ID %d", watcher_id);
|
|
return -1;
|
|
}
|
|
if (!interp->dict_state.watchers[watcher_id]) {
|
|
PyErr_Format(PyExc_ValueError, "No dict watcher set for ID %d", watcher_id);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyDict_Watch(int watcher_id, PyObject* dict)
|
|
{
|
|
if (!PyDict_Check(dict)) {
|
|
PyErr_SetString(PyExc_ValueError, "Cannot watch non-dictionary");
|
|
return -1;
|
|
}
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
if (validate_watcher_id(interp, watcher_id)) {
|
|
return -1;
|
|
}
|
|
((PyDictObject*)dict)->_ma_watcher_tag |= (1LL << watcher_id);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyDict_Unwatch(int watcher_id, PyObject* dict)
|
|
{
|
|
if (!PyDict_Check(dict)) {
|
|
PyErr_SetString(PyExc_ValueError, "Cannot watch non-dictionary");
|
|
return -1;
|
|
}
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
if (validate_watcher_id(interp, watcher_id)) {
|
|
return -1;
|
|
}
|
|
((PyDictObject*)dict)->_ma_watcher_tag &= ~(1LL << watcher_id);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyDict_AddWatcher(PyDict_WatchCallback callback)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
|
|
/* Start at 2, as 0 and 1 are reserved for CPython */
|
|
for (int i = 2; i < DICT_MAX_WATCHERS; i++) {
|
|
if (!interp->dict_state.watchers[i]) {
|
|
interp->dict_state.watchers[i] = callback;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
PyErr_SetString(PyExc_RuntimeError, "no more dict watcher IDs available");
|
|
return -1;
|
|
}
|
|
|
|
int
|
|
PyDict_ClearWatcher(int watcher_id)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
if (validate_watcher_id(interp, watcher_id)) {
|
|
return -1;
|
|
}
|
|
interp->dict_state.watchers[watcher_id] = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static const char *
|
|
dict_event_name(PyDict_WatchEvent event) {
|
|
switch (event) {
|
|
#define CASE(op) \
|
|
case PyDict_EVENT_##op: \
|
|
return "PyDict_EVENT_" #op;
|
|
PY_FOREACH_DICT_EVENT(CASE)
|
|
#undef CASE
|
|
}
|
|
Py_UNREACHABLE();
|
|
}
|
|
|
|
void
|
|
_PyDict_SendEvent(int watcher_bits,
|
|
PyDict_WatchEvent event,
|
|
PyDictObject *mp,
|
|
PyObject *key,
|
|
PyObject *value)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
for (int i = 0; i < DICT_MAX_WATCHERS; i++) {
|
|
if (watcher_bits & 1) {
|
|
PyDict_WatchCallback cb = interp->dict_state.watchers[i];
|
|
if (cb && (cb(event, (PyObject*)mp, key, value) < 0)) {
|
|
// We don't want to resurrect the dict by potentially having an
|
|
// unraisablehook keep a reference to it, so we don't pass the
|
|
// dict as context, just an informative string message. Dict
|
|
// repr can call arbitrary code, so we invent a simpler version.
|
|
PyErr_FormatUnraisable(
|
|
"Exception ignored in %s watcher callback for <dict at %p>",
|
|
dict_event_name(event), mp);
|
|
}
|
|
}
|
|
watcher_bits >>= 1;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static int
|
|
_PyObject_InlineValuesConsistencyCheck(PyObject *obj)
|
|
{
|
|
if ((Py_TYPE(obj)->tp_flags & Py_TPFLAGS_INLINE_VALUES) == 0) {
|
|
return 1;
|
|
}
|
|
assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
|
|
PyDictObject *dict = _PyObject_GetManagedDict(obj);
|
|
if (dict == NULL) {
|
|
return 1;
|
|
}
|
|
if (dict->ma_values == _PyObject_InlineValues(obj) ||
|
|
_PyObject_InlineValues(obj)->valid == 0) {
|
|
return 1;
|
|
}
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
#endif
|