#include "Python.h" #ifdef MS_WINDOWS #include #endif #if defined(__APPLE__) #include /* mach_absolute_time(), mach_timebase_info() */ #endif /* To millisecond (10^-3) */ #define SEC_TO_MS 1000 /* To microseconds (10^-6) */ #define MS_TO_US 1000 #define SEC_TO_US (SEC_TO_MS * MS_TO_US) /* To nanoseconds (10^-9) */ #define US_TO_NS 1000 #define MS_TO_NS (MS_TO_US * US_TO_NS) #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) #ifdef MS_WINDOWS static OSVERSIONINFOEX winver; #endif static int pygettimeofday(_PyTime_timeval *tp, _Py_clock_info_t *info, int raise) { #ifdef MS_WINDOWS FILETIME system_time; ULARGE_INTEGER large; ULONGLONG microseconds; assert(info == NULL || raise); GetSystemTimeAsFileTime(&system_time); large.u.LowPart = system_time.dwLowDateTime; large.u.HighPart = system_time.dwHighDateTime; /* 11,644,473,600,000,000: number of microseconds between the 1st january 1601 and the 1st january 1970 (369 years + 89 leap days). */ microseconds = large.QuadPart / 10 - 11644473600000000; tp->tv_sec = microseconds / SEC_TO_US; tp->tv_usec = microseconds % SEC_TO_US; if (info) { DWORD timeAdjustment, timeIncrement; BOOL isTimeAdjustmentDisabled, ok; info->implementation = "GetSystemTimeAsFileTime()"; info->monotonic = 0; ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, &isTimeAdjustmentDisabled); if (!ok) { PyErr_SetFromWindowsErr(0); return -1; } info->resolution = timeIncrement * 1e-7; info->adjustable = 1; } #else /* MS_WINDOWS */ int err; #ifdef HAVE_CLOCK_GETTIME struct timespec ts; #endif assert(info == NULL || raise); #ifdef HAVE_CLOCK_GETTIME err = clock_gettime(CLOCK_REALTIME, &ts); if (err) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } tp->tv_sec = ts.tv_sec; tp->tv_usec = ts.tv_nsec / US_TO_NS; if (info) { struct timespec res; info->implementation = "clock_gettime(CLOCK_REALTIME)"; info->monotonic = 0; info->adjustable = 1; if (clock_getres(CLOCK_REALTIME, &res) == 0) info->resolution = res.tv_sec + res.tv_nsec * 1e-9; else info->resolution = 1e-9; } #else /* HAVE_CLOCK_GETTIME */ /* test gettimeofday() */ #ifdef GETTIMEOFDAY_NO_TZ err = gettimeofday(tp); #else err = gettimeofday(tp, (struct timezone *)NULL); #endif if (err) { if (raise) PyErr_SetFromErrno(PyExc_OSError); return -1; } if (info) { info->implementation = "gettimeofday()"; info->resolution = 1e-6; info->monotonic = 0; info->adjustable = 1; } #endif /* !HAVE_CLOCK_GETTIME */ #endif /* !MS_WINDOWS */ assert(0 <= tp->tv_usec && tp->tv_usec < SEC_TO_US); return 0; } void _PyTime_gettimeofday(_PyTime_timeval *tp) { if (pygettimeofday(tp, NULL, 0) < 0) { /* cannot happen, _PyTime_Init() checks that pygettimeofday() works */ assert(0); tp->tv_sec = 0; tp->tv_usec = 0; } } int _PyTime_gettimeofday_info(_PyTime_timeval *tp, _Py_clock_info_t *info) { return pygettimeofday(tp, info, 1); } static int pymonotonic(_PyTime_timeval *tp, _Py_clock_info_t *info, int raise) { #ifdef Py_DEBUG static _PyTime_timeval last = {0, -1}; #endif #if defined(MS_WINDOWS) ULONGLONG result; assert(info == NULL || raise); result = GetTickCount64(); tp->tv_sec = result / SEC_TO_MS; tp->tv_usec = (result % SEC_TO_MS) * MS_TO_US; if (info) { DWORD timeAdjustment, timeIncrement; BOOL isTimeAdjustmentDisabled, ok; info->implementation = "GetTickCount64()"; info->monotonic = 1; ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, &isTimeAdjustmentDisabled); if (!ok) { PyErr_SetFromWindowsErr(0); return -1; } info->resolution = timeIncrement * 1e-7; info->adjustable = 0; } #elif defined(__APPLE__) static mach_timebase_info_data_t timebase; uint64_t time; if (timebase.denom == 0) { /* According to the Technical Q&A QA1398, mach_timebase_info() cannot fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ (void)mach_timebase_info(&timebase); } time = mach_absolute_time(); /* nanoseconds => microseconds */ time /= US_TO_NS; /* apply timebase factor */ time *= timebase.numer; time /= timebase.denom; tp->tv_sec = time / SEC_TO_US; tp->tv_usec = time % SEC_TO_US; if (info) { info->implementation = "mach_absolute_time()"; info->resolution = (double)timebase.numer / timebase.denom * 1e-9; info->monotonic = 1; info->adjustable = 0; } #else struct timespec ts; #ifdef CLOCK_HIGHRES const clockid_t clk_id = CLOCK_HIGHRES; const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; #else const clockid_t clk_id = CLOCK_MONOTONIC; const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; #endif assert(info == NULL || raise); if (clock_gettime(clk_id, &ts) != 0) { if (raise) { PyErr_SetFromErrno(PyExc_OSError); return -1; } tp->tv_sec = 0; tp->tv_usec = 0; return -1; } if (info) { struct timespec res; info->monotonic = 1; info->implementation = implementation; info->adjustable = 0; if (clock_getres(clk_id, &res) != 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } info->resolution = res.tv_sec + res.tv_nsec * 1e-9; } tp->tv_sec = ts.tv_sec; tp->tv_usec = ts.tv_nsec / US_TO_NS; #endif assert(0 <= tp->tv_usec && tp->tv_usec < SEC_TO_US); #ifdef Py_DEBUG /* monotonic clock cannot go backward */ assert(last.tv_usec == -1 || tp->tv_sec > last.tv_sec || (tp->tv_sec == last.tv_sec && tp->tv_usec >= last.tv_usec)); last = *tp; #endif return 0; } void _PyTime_monotonic(_PyTime_timeval *tp) { if (pymonotonic(tp, NULL, 0) < 0) { /* cannot happen, _PyTime_Init() checks that pymonotonic() works */ assert(0); tp->tv_sec = 0; tp->tv_usec = 0; } } int _PyTime_monotonic_info(_PyTime_timeval *tp, _Py_clock_info_t *info) { return pymonotonic(tp, info, 1); } static void error_time_t_overflow(void) { PyErr_SetString(PyExc_OverflowError, "timestamp out of range for platform time_t"); } time_t _PyLong_AsTime_t(PyObject *obj) { #if defined(HAVE_LONG_LONG) && SIZEOF_TIME_T == SIZEOF_LONG_LONG PY_LONG_LONG val; val = PyLong_AsLongLong(obj); #else long val; assert(sizeof(time_t) <= sizeof(long)); val = PyLong_AsLong(obj); #endif if (val == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) error_time_t_overflow(); return -1; } return (time_t)val; } PyObject * _PyLong_FromTime_t(time_t t) { #if defined(HAVE_LONG_LONG) && SIZEOF_TIME_T == SIZEOF_LONG_LONG return PyLong_FromLongLong((PY_LONG_LONG)t); #else assert(sizeof(time_t) <= sizeof(long)); return PyLong_FromLong((long)t); #endif } static int _PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator, double denominator, _PyTime_round_t round) { assert(denominator <= LONG_MAX); if (PyFloat_Check(obj)) { double d, intpart, err; /* volatile avoids unsafe optimization on float enabled by gcc -O3 */ volatile double floatpart; d = PyFloat_AsDouble(obj); floatpart = modf(d, &intpart); if (floatpart < 0) { floatpart = 1.0 + floatpart; intpart -= 1.0; } floatpart *= denominator; if (round == _PyTime_ROUND_UP) { if (intpart >= 0) { floatpart = ceil(floatpart); if (floatpart >= denominator) { floatpart = 0.0; intpart += 1.0; } } else { floatpart = floor(floatpart); } } *sec = (time_t)intpart; err = intpart - (double)*sec; if (err <= -1.0 || err >= 1.0) { error_time_t_overflow(); return -1; } *numerator = (long)floatpart; return 0; } else { *sec = _PyLong_AsTime_t(obj); if (*sec == (time_t)-1 && PyErr_Occurred()) return -1; *numerator = 0; return 0; } } int _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) { if (PyFloat_Check(obj)) { double d, intpart, err; d = PyFloat_AsDouble(obj); if (round == _PyTime_ROUND_UP) { if (d >= 0) d = ceil(d); else d = floor(d); } (void)modf(d, &intpart); *sec = (time_t)intpart; err = intpart - (double)*sec; if (err <= -1.0 || err >= 1.0) { error_time_t_overflow(); return -1; } return 0; } else { *sec = _PyLong_AsTime_t(obj); if (*sec == (time_t)-1 && PyErr_Occurred()) return -1; return 0; } } int _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, _PyTime_round_t round) { return _PyTime_ObjectToDenominator(obj, sec, nsec, 1e9, round); } int _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, _PyTime_round_t round) { return _PyTime_ObjectToDenominator(obj, sec, usec, 1e6, round); } void _PyTime_AddDouble(_PyTime_timeval *tv, double interval, _PyTime_round_t round) { _PyTime_timeval tv2; double frac; frac = fmod(interval, 1.0); interval = floor(interval); tv2.tv_sec = (long)interval; tv2.tv_usec = (long)(frac*1e6); tv->tv_sec += tv2.tv_sec; tv->tv_usec += tv2.tv_usec; tv->tv_sec += (time_t)(tv->tv_usec / SEC_TO_US); tv->tv_usec %= SEC_TO_US; } /****************** NEW _PyTime_t API **********************/ static void _PyTime_overflow(void) { PyErr_SetString(PyExc_OverflowError, "timestamp too large to convert to C _PyTime_t"); } #if !defined(MS_WINDOWS) && !defined(__APPLE__) static int _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts) { _PyTime_t t; t = (_PyTime_t)ts->tv_sec * SEC_TO_NS; if (t / SEC_TO_NS != ts->tv_sec) { _PyTime_overflow(); return -1; } t += ts->tv_nsec; *tp = t; return 0; } #endif int _PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) { if (PyFloat_Check(obj)) { double d, err; /* convert to a number of nanoseconds */ d = PyFloat_AsDouble(obj); d *= 1e9; /* FIXME: use sign */ if (round == _PyTime_ROUND_UP) d = ceil(d); else d = floor(d); *t = (_PyTime_t)d; err = d - (double)*t; if (fabs(err) >= 1.0) { _PyTime_overflow(); return -1; } return 0; } else { #ifdef HAVE_LONG_LONG PY_LONG_LONG sec; sec = PyLong_AsLongLong(obj); assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t)); #else long sec; sec = PyLong_AsLong(obj); assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t)); #endif if (sec == -1 && PyErr_Occurred()) { if (PyErr_ExceptionMatches(PyExc_OverflowError)) _PyTime_overflow(); return -1; } *t = sec * SEC_TO_NS; if (*t / SEC_TO_NS != sec) { _PyTime_overflow(); return -1; } return 0; } } static _PyTime_t _PyTime_Multiply(_PyTime_t t, unsigned int multiply, _PyTime_round_t round) { _PyTime_t k; if (multiply < SEC_TO_NS) { k = SEC_TO_NS / multiply; if (round == _PyTime_ROUND_UP) return (t + k - 1) / k; else return t / k; } else { k = multiply / SEC_TO_NS; return t * k; } } _PyTime_t _PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round) { return _PyTime_Multiply(t, 1000, round); } int _PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) { _PyTime_t secs, ns; secs = t / SEC_TO_NS; ns = t % SEC_TO_NS; #ifdef MS_WINDOWS /* On Windows, timeval.tv_sec is a long (32 bit), whereas time_t can be 64-bit. */ assert(sizeof(tv->tv_sec) == sizeof(long)); #if SIZEOF_TIME_T > SIZEOF_LONG if (secs > LONG_MAX) { _PyTime_overflow(); return -1; } #endif tv->tv_sec = (long)secs; #else /* On OpenBSD 5.4, timeval.tv_sec is a long. Example: long is 64-bit, whereas time_t is 32-bit. */ tv->tv_sec = secs; if ((_PyTime_t)tv->tv_sec != secs) { _PyTime_overflow(); return -1; } #endif if (round == _PyTime_ROUND_UP) tv->tv_usec = (int)((ns + US_TO_NS - 1) / US_TO_NS); else tv->tv_usec = (int)(ns / US_TO_NS); return 0; } static int pymonotonic_new(_PyTime_t *tp, _Py_clock_info_t *info, int raise) { #ifdef Py_DEBUG static int last_set = 0; static _PyTime_t last = 0; #endif #if defined(MS_WINDOWS) static ULONGLONG (*GetTickCount64) (void) = NULL; static ULONGLONG (CALLBACK *Py_GetTickCount64)(void); static int has_gettickcount64 = -1; ULONGLONG result; assert(info == NULL || raise); if (has_gettickcount64 == -1) { /* GetTickCount64() was added to Windows Vista */ has_gettickcount64 = (winver.dwMajorVersion >= 6); if (has_gettickcount64) { HINSTANCE hKernel32; hKernel32 = GetModuleHandleW(L"KERNEL32"); *(FARPROC*)&Py_GetTickCount64 = GetProcAddress(hKernel32, "GetTickCount64"); assert(Py_GetTickCount64 != NULL); } } if (has_gettickcount64) { result = Py_GetTickCount64(); } else { static DWORD last_ticks = 0; static DWORD n_overflow = 0; DWORD ticks; ticks = GetTickCount(); if (ticks < last_ticks) n_overflow++; last_ticks = ticks; result = (ULONGLONG)n_overflow << 32; result += ticks; } *tp = result * MS_TO_NS; if (*tp / MS_TO_NS != result) { if (raise) { _PyTime_overflow(); return -1; } /* Hello, time traveler! */ assert(0); } if (info) { DWORD timeAdjustment, timeIncrement; BOOL isTimeAdjustmentDisabled, ok; if (has_gettickcount64) info->implementation = "GetTickCount64()"; else info->implementation = "GetTickCount()"; info->monotonic = 1; ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, &isTimeAdjustmentDisabled); if (!ok) { PyErr_SetFromWindowsErr(0); return -1; } info->resolution = timeIncrement * 1e-7; info->adjustable = 0; } #elif defined(__APPLE__) static mach_timebase_info_data_t timebase; uint64_t time; if (timebase.denom == 0) { /* According to the Technical Q&A QA1398, mach_timebase_info() cannot fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ (void)mach_timebase_info(&timebase); } time = mach_absolute_time(); /* apply timebase factor */ time *= timebase.numer; time /= timebase.denom; *tp = time; if (info) { info->implementation = "mach_absolute_time()"; info->resolution = (double)timebase.numer / timebase.denom * 1e-9; info->monotonic = 1; info->adjustable = 0; } #else struct timespec ts; #ifdef CLOCK_HIGHRES const clockid_t clk_id = CLOCK_HIGHRES; const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; #else const clockid_t clk_id = CLOCK_MONOTONIC; const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; #endif assert(info == NULL || raise); if (clock_gettime(clk_id, &ts) != 0) { if (raise) { PyErr_SetFromErrno(PyExc_OSError); return -1; } return -1; } if (info) { struct timespec res; info->monotonic = 1; info->implementation = implementation; info->adjustable = 0; if (clock_getres(clk_id, &res) != 0) { PyErr_SetFromErrno(PyExc_OSError); return -1; } info->resolution = res.tv_sec + res.tv_nsec * 1e-9; } if (_PyTime_FromTimespec(tp, &ts) < 0) return -1; #endif #ifdef Py_DEBUG /* monotonic clock cannot go backward */ assert(!last_set || last <= *tp); last = *tp; last_set = 1; #endif return 0; } _PyTime_t _PyTime_GetMonotonicClock(void) { _PyTime_t t; if (pymonotonic_new(&t, NULL, 0) < 0) { /* cannot happen, _PyTime_Init() checks that pymonotonic_new() works */ assert(0); t = 0; } return t; } int _PyTime_Init(void) { _PyTime_timeval tv; _PyTime_t t; #ifdef MS_WINDOWS winver.dwOSVersionInfoSize = sizeof(winver); if (!GetVersionEx((OSVERSIONINFO*)&winver)) { PyErr_SetFromWindowsErr(0); return -1; } #endif /* ensure that the system clock works */ if (_PyTime_gettimeofday_info(&tv, NULL) < 0) return -1; /* ensure that the operating system provides a monotonic clock */ if (_PyTime_monotonic_info(&tv, NULL) < 0) return -1; /* ensure that the operating system provides a monotonic clock */ if (pymonotonic_new(&t, NULL, 1) < 0) return -1; return 0; }