#include "Python.h" #include "pycore_code.h" #include "pycore_dict.h" #include "pycore_moduleobject.h" #include "opcode.h" #include "structmember.h" // struct PyMemberDef, T_OFFSET_EX /* We layout the quickened data as a bi-directional array: * Instructions upwards, cache entries downwards. * first_instr is aligned to a SpecializedCacheEntry. * The nth instruction is located at first_instr[n] * The nth cache is located at ((SpecializedCacheEntry *)first_instr)[-1-n] * The first (index 0) cache entry is reserved for the count, to enable finding * the first instruction from the base pointer. * The cache_count argument must include space for the count. * We use the SpecializedCacheOrInstruction union to refer to the data * to avoid type punning. Layout of quickened data, each line 8 bytes for M cache entries and N instructions: <---- co->co_quickened ... <--- co->co_first_instr ... */ Py_ssize_t _Py_QuickenedCount = 0; #if SPECIALIZATION_STATS SpecializationStats _specialization_stats = { 0 }; #define PRINT_STAT(name) fprintf(stderr, #name " : %" PRIu64" \n", _specialization_stats.name); void _Py_PrintSpecializationStats(void) { PRINT_STAT(specialization_success); PRINT_STAT(specialization_failure); PRINT_STAT(loadattr_hit); PRINT_STAT(loadattr_deferred); PRINT_STAT(loadattr_miss); PRINT_STAT(loadattr_deopt); } #endif static SpecializedCacheOrInstruction * allocate(int cache_count, int instruction_count) { assert(sizeof(SpecializedCacheOrInstruction) == 2*sizeof(int32_t)); assert(sizeof(SpecializedCacheEntry) == 2*sizeof(int32_t)); assert(cache_count > 0); assert(instruction_count > 0); int count = cache_count + (instruction_count + INSTRUCTIONS_PER_ENTRY -1)/INSTRUCTIONS_PER_ENTRY; SpecializedCacheOrInstruction *array = (SpecializedCacheOrInstruction *) PyMem_Malloc(sizeof(SpecializedCacheOrInstruction) * count); if (array == NULL) { PyErr_NoMemory(); return NULL; } _Py_QuickenedCount++; array[0].entry.zero.cache_count = cache_count; return array; } static int get_cache_count(SpecializedCacheOrInstruction *quickened) { return quickened[0].entry.zero.cache_count; } /* Map from opcode to adaptive opcode. Values of zero are ignored. */ static uint8_t adaptive_opcodes[256] = { [LOAD_ATTR] = LOAD_ATTR_ADAPTIVE, }; /* The number of cache entries required for a "family" of instructions. */ static uint8_t cache_requirements[256] = { [LOAD_ATTR] = 2, }; /* Return the oparg for the cache_offset and instruction index. * * If no cache is needed then return the original oparg. * If a cache is needed, but cannot be accessed because * oparg would be too large, then return -1. * * Also updates the cache_offset, as it may need to be incremented by * more than the cache requirements, if many instructions do not need caches. * * See pycore_code.h for details of how the cache offset, * instruction index and oparg are related */ static int oparg_from_instruction_and_update_offset(int index, int opcode, int original_oparg, int *cache_offset) { /* The instruction pointer in the interpreter points to the next * instruction, so we compute the offset using nexti (index + 1) */ int nexti = index + 1; uint8_t need = cache_requirements[opcode]; if (need == 0) { return original_oparg; } assert(adaptive_opcodes[opcode] != 0); int oparg = oparg_from_offset_and_nexti(*cache_offset, nexti); assert(*cache_offset == offset_from_oparg_and_nexti(oparg, nexti)); /* Some cache space is wasted here as the minimum possible offset is (nexti>>1) */ if (oparg < 0) { oparg = 0; *cache_offset = offset_from_oparg_and_nexti(oparg, nexti); } else if (oparg > 255) { return -1; } *cache_offset += need; return oparg; } static int entries_needed(_Py_CODEUNIT *code, int len) { int cache_offset = 0; int previous_opcode = -1; for (int i = 0; i < len; i++) { uint8_t opcode = _Py_OPCODE(code[i]); if (previous_opcode != EXTENDED_ARG) { oparg_from_instruction_and_update_offset(i, opcode, 0, &cache_offset); } previous_opcode = opcode; } return cache_offset + 1; // One extra for the count entry } static inline _Py_CODEUNIT * first_instruction(SpecializedCacheOrInstruction *quickened) { return &quickened[get_cache_count(quickened)].code[0]; } /** Insert adaptive instructions and superinstructions. * * Skip instruction preceded by EXTENDED_ARG for adaptive * instructions as those are both very rare and tricky * to handle. */ static void optimize(SpecializedCacheOrInstruction *quickened, int len) { _Py_CODEUNIT *instructions = first_instruction(quickened); int cache_offset = 0; int previous_opcode = -1; for(int i = 0; i < len; i++) { int opcode = _Py_OPCODE(instructions[i]); int oparg = _Py_OPARG(instructions[i]); uint8_t adaptive_opcode = adaptive_opcodes[opcode]; if (adaptive_opcode && previous_opcode != EXTENDED_ARG) { int new_oparg = oparg_from_instruction_and_update_offset( i, opcode, oparg, &cache_offset ); if (new_oparg < 0) { /* Not possible to allocate a cache for this instruction */ previous_opcode = opcode; continue; } instructions[i] = _Py_MAKECODEUNIT(adaptive_opcode, new_oparg); previous_opcode = adaptive_opcode; int entries_needed = cache_requirements[opcode]; if (entries_needed) { /* Initialize the adpative cache entry */ int cache0_offset = cache_offset-entries_needed; SpecializedCacheEntry *cache = _GetSpecializedCacheEntry(instructions, cache0_offset); cache->adaptive.original_oparg = oparg; cache->adaptive.counter = 0; } } else { /* Super instructions don't use the cache, * so no need to update the offset. */ switch (opcode) { case JUMP_ABSOLUTE: instructions[i] = _Py_MAKECODEUNIT(JUMP_ABSOLUTE_QUICK, oparg); break; /* Insert superinstructions here E.g. case LOAD_FAST: if (previous_opcode == LOAD_FAST) instructions[i-1] = _Py_MAKECODEUNIT(LOAD_FAST__LOAD_FAST, oparg); */ } previous_opcode = opcode; } } assert(cache_offset+1 == get_cache_count(quickened)); } int _Py_Quicken(PyCodeObject *code) { if (code->co_quickened) { return 0; } Py_ssize_t size = PyBytes_GET_SIZE(code->co_code); int instr_count = (int)(size/sizeof(_Py_CODEUNIT)); if (instr_count > MAX_SIZE_TO_QUICKEN) { code->co_warmup = QUICKENING_WARMUP_COLDEST; return 0; } int entry_count = entries_needed(code->co_firstinstr, instr_count); SpecializedCacheOrInstruction *quickened = allocate(entry_count, instr_count); if (quickened == NULL) { return -1; } _Py_CODEUNIT *new_instructions = first_instruction(quickened); memcpy(new_instructions, code->co_firstinstr, size); optimize(quickened, instr_count); code->co_quickened = quickened; code->co_firstinstr = new_instructions; return 0; } static int specialize_module_load_attr( PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, _PyAdaptiveEntry *cache0, _PyLoadAttrCache *cache1) { PyModuleObject *m = (PyModuleObject *)owner; PyObject *value = NULL; PyObject *getattr; _Py_IDENTIFIER(__getattr__); PyDictObject *dict = (PyDictObject *)m->md_dict; if (dict == NULL) { return -1; } if (dict->ma_keys->dk_kind != DICT_KEYS_UNICODE) { return -1; } getattr = _PyUnicode_FromId(&PyId___getattr__); /* borrowed */ if (getattr == NULL) { PyErr_Clear(); return -1; } Py_ssize_t index = _PyDict_GetItemHint(dict, getattr, -1, &value); assert(index != DKIX_ERROR); if (index != DKIX_EMPTY) { return -1; } index = _PyDict_GetItemHint(dict, name, -1, &value); assert (index != DKIX_ERROR); if (index != (uint16_t)index) { return -1; } uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict); if (keys_version == 0) { return -1; } cache1->dk_version_or_hint = keys_version; cache0->index = (uint16_t)index; *instr = _Py_MAKECODEUNIT(LOAD_ATTR_MODULE, _Py_OPARG(*instr)); return 0; } int _Py_Specialize_LoadAttr(PyObject *owner, _Py_CODEUNIT *instr, PyObject *name, SpecializedCacheEntry *cache) { _PyAdaptiveEntry *cache0 = &cache->adaptive; _PyLoadAttrCache *cache1 = &cache[-1].load_attr; if (PyModule_CheckExact(owner)) { int err = specialize_module_load_attr(owner, instr, name, cache0, cache1); if (err) { goto fail; } goto success; } PyTypeObject *type = Py_TYPE(owner); if (type->tp_getattro != PyObject_GenericGetAttr) { goto fail; } if (type->tp_dict == NULL) { if (PyType_Ready(type) < 0) { return -1; } } PyObject *descr = _PyType_Lookup(type, name); if (descr != NULL) { // We found an attribute with a data-like descriptor. PyTypeObject *dtype = Py_TYPE(descr); if (dtype != &PyMemberDescr_Type) { goto fail; } // It's a slot PyMemberDescrObject *member = (PyMemberDescrObject *)descr; struct PyMemberDef *dmem = member->d_member; if (dmem->type != T_OBJECT_EX) { // It's a slot of a different type. We don't handle those. goto fail; } Py_ssize_t offset = dmem->offset; if (offset != (uint16_t)offset) { goto fail; } assert(offset > 0); cache0->index = (uint16_t)offset; cache1->tp_version = type->tp_version_tag; *instr = _Py_MAKECODEUNIT(LOAD_ATTR_SLOT, _Py_OPARG(*instr)); goto success; } // No desciptor if (type->tp_dictoffset <= 0) { // No dictionary, or computed offset dictionary goto fail; } PyObject **dictptr = (PyObject **) ((char *)owner + type->tp_dictoffset); if (*dictptr == NULL || !PyDict_CheckExact(*dictptr)) { goto fail; } // We found an instance with a __dict__. PyDictObject *dict = (PyDictObject *)*dictptr; if ((type->tp_flags & Py_TPFLAGS_HEAPTYPE) && dict->ma_keys == ((PyHeapTypeObject*)type)->ht_cached_keys ) { // Keys are shared assert(PyUnicode_CheckExact(name)); Py_hash_t hash = PyObject_Hash(name); if (hash == -1) { return -1; } PyObject *value; Py_ssize_t index = _Py_dict_lookup(dict, name, hash, &value); assert (index != DKIX_ERROR); if (index != (uint16_t)index) { goto fail; } uint32_t keys_version = _PyDictKeys_GetVersionForCurrentState(dict); if (keys_version == 0) { goto fail; } cache1->dk_version_or_hint = keys_version; cache1->tp_version = type->tp_version_tag; cache0->index = (uint16_t)index; *instr = _Py_MAKECODEUNIT(LOAD_ATTR_SPLIT_KEYS, _Py_OPARG(*instr)); goto success; } else { PyObject *value = NULL; Py_ssize_t hint = _PyDict_GetItemHint(dict, name, -1, &value); if (hint != (uint32_t)hint) { goto fail; } cache1->dk_version_or_hint = (uint32_t)hint; cache1->tp_version = type->tp_version_tag; *instr = _Py_MAKECODEUNIT(LOAD_ATTR_WITH_HINT, _Py_OPARG(*instr)); goto success; } fail: STAT_INC(specialization_failure); assert(!PyErr_Occurred()); cache_backoff(cache0); return 0; success: STAT_INC(specialization_success); assert(!PyErr_Occurred()); cache0->counter = saturating_start(); return 0; }