# Python test set -- part 3, built-in operations. print('3. Operations') print('XXX Mostly not yet implemented') print('3.1 Dictionary lookups fail if __cmp__() raises an exception') class BadDictKey: def __hash__(self): return hash(self.__class__) def __eq__(self, other): if isinstance(other, self.__class__): print("raising error") raise RuntimeError, "gotcha" return other d = {} x1 = BadDictKey() x2 = BadDictKey() d[x1] = 1 for stmt in ['d[x2] = 2', 'z = d[x2]', 'x2 in d', 'd.get(x2)', 'd.setdefault(x2, 42)', 'd.pop(x2)', 'd.update({x2: 2})']: try: exec(stmt) except RuntimeError: print("%s: caught the RuntimeError outside" % (stmt,)) else: print("%s: No exception passed through!" % (stmt,)) # old CPython behavior # Dict resizing bug, found by Jack Jansen in 2.2 CVS development. # This version got an assert failure in debug build, infinite loop in # release build. Unfortunately, provoking this kind of stuff requires # a mix of inserts and deletes hitting exactly the right hash codes in # exactly the right order, and I can't think of a randomized approach # that would be *likely* to hit a failing case in reasonable time. d = {} for i in range(5): d[i] = i for i in range(5): del d[i] for i in range(5, 9): # i==8 was the problem d[i] = i # Another dict resizing bug (SF bug #1456209). # This caused Segmentation faults or Illegal instructions. class X(object): def __hash__(self): return 5 def __eq__(self, other): if resizing: d.clear() return False d = {} resizing = False d[X()] = 1 d[X()] = 2 d[X()] = 3 d[X()] = 4 d[X()] = 5 # now trigger a resize resizing = True d[9] = 6 print('resize bugs not triggered.')