/* * ossaudiodev -- Python interface to the OSS (Open Sound System) API. * This is the standard audio API for Linux and some * flavours of BSD [XXX which ones?]; it is also available * for a wide range of commercial Unices. * * Originally written by Peter Bosch, March 2000, as linuxaudiodev. * * Renamed to ossaudiodev and rearranged/revised/hacked up * by Greg Ward , November 2002. * * (c) 2000 Peter Bosch. All Rights Reserved. * (c) 2002 Gregory P. Ward. All Rights Reserved. * (c) 2002 Python Software Foundation. All Rights Reserved. * * XXX need a license statement * * $Id$ */ #include "Python.h" #include "structmember.h" #ifdef HAVE_FCNTL_H #include #else #define O_RDONLY 00 #define O_WRONLY 01 #endif #include #if defined(linux) #include typedef unsigned long uint32_t; #elif defined(__FreeBSD__) #include #ifndef SNDCTL_DSP_CHANNELS #define SNDCTL_DSP_CHANNELS SOUND_PCM_WRITE_CHANNELS #endif #endif typedef struct { PyObject_HEAD; int x_fd; /* The open file */ int x_mode; /* file mode */ int x_icount; /* Input count */ int x_ocount; /* Output count */ uint32_t x_afmts; /* Audio formats supported by hardware*/ } lad_t; /* XXX several format defined in soundcard.h are not supported, including _NE (native endian) options and S32 options */ static struct { int a_bps; uint32_t a_fmt; char *a_name; } audio_types[] = { { 8, AFMT_MU_LAW, "logarithmic mu-law 8-bit audio" }, { 8, AFMT_A_LAW, "logarithmic A-law 8-bit audio" }, { 8, AFMT_U8, "linear unsigned 8-bit audio" }, { 8, AFMT_S8, "linear signed 8-bit audio" }, { 16, AFMT_U16_BE, "linear unsigned 16-bit big-endian audio" }, { 16, AFMT_U16_LE, "linear unsigned 16-bit little-endian audio" }, { 16, AFMT_S16_BE, "linear signed 16-bit big-endian audio" }, { 16, AFMT_S16_LE, "linear signed 16-bit little-endian audio" }, { 16, AFMT_S16_NE, "linear signed 16-bit native-endian audio" }, }; static int n_audio_types = sizeof(audio_types) / sizeof(audio_types[0]); static PyTypeObject Ladtype; static PyObject *OSSAudioError; static lad_t * newladobject(PyObject *arg) { lad_t *xp; int fd, afmts, imode; char *basedev = NULL; char *mode = NULL; /* Two ways to call linuxaudiodev.open(): open(device, mode) (for consistency with builtin open()) open(mode) (for backwards compatibility) because the *first* argument is optional, parsing args is a wee bit tricky. */ if (!PyArg_ParseTuple(arg, "s|s:open", &basedev, &mode)) return NULL; if (mode == NULL) { /* only one arg supplied */ mode = basedev; basedev = NULL; } if (strcmp(mode, "r") == 0) imode = O_RDONLY; else if (strcmp(mode, "w") == 0) imode = O_WRONLY; else if (strcmp(mode, "rw") == 0) imode = O_RDWR; else { PyErr_SetString(OSSAudioError, "mode must be 'r', 'w', or 'rw'"); return NULL; } /* Open the correct device. The base device name comes from the * AUDIODEV environment variable first, then /dev/dsp. The * control device tacks "ctl" onto the base device name. * * Note that the only difference between /dev/audio and /dev/dsp * is that the former uses logarithmic mu-law encoding and the * latter uses 8-bit unsigned encoding. */ if (basedev == NULL) { /* called with one arg */ basedev = getenv("AUDIODEV"); if (basedev == NULL) /* $AUDIODEV not set */ basedev = "/dev/dsp"; } if ((fd = open(basedev, imode)) == -1) { PyErr_SetFromErrnoWithFilename(PyExc_IOError, basedev); return NULL; } if (ioctl(fd, SNDCTL_DSP_GETFMTS, &afmts) == -1) { PyErr_SetFromErrnoWithFilename(PyExc_IOError, basedev); return NULL; } /* Create and initialize the object */ if ((xp = PyObject_New(lad_t, &Ladtype)) == NULL) { close(fd); return NULL; } xp->x_fd = fd; xp->x_mode = imode; xp->x_icount = xp->x_ocount = 0; xp->x_afmts = afmts; return xp; } static void lad_dealloc(lad_t *xp) { /* if already closed, don't reclose it */ if (xp->x_fd != -1) close(xp->x_fd); PyObject_Del(xp); } /* Methods to wrap the OSS ioctls. The calling convention is pretty simple: nonblock() -> ioctl(fd, SNDCTL_DSP_NONBLOCK) fmt = setfmt(fmt) -> ioctl(fd, SNDCTL_DSP_SETFMT, &fmt) etc. */ /* _do_ioctl_1() is a private helper function used for the OSS ioctls -- SNDCTL_DSP_{SETFMT,CHANNELS,SPEED} -- that that are called from C like this: ioctl(fd, SNDCTL_DSP_cmd, &arg) where arg is the value to set, and on return the driver sets arg to the value that was actually set. Mapping this to Python is obvious: arg = dsp.xxx(arg) */ static PyObject * _do_ioctl_1(lad_t *self, PyObject *args, char *fname, int cmd) { char argfmt[13] = "i:"; int arg; assert(strlen(fname) <= 10); strcat(argfmt, fname); if (!PyArg_ParseTuple(args, argfmt, &arg)) return NULL; if (ioctl(self->x_fd, cmd, &arg) == -1) return PyErr_SetFromErrno(PyExc_IOError); return PyInt_FromLong(arg); } /* _do_ioctl_0() is a private helper for the no-argument ioctls: SNDCTL_DSP_{SYNC,RESET,POST}. */ static PyObject * _do_ioctl_0(lad_t *self, PyObject *args, char *fname, int cmd) { char argfmt[12] = ":"; assert(strlen(fname) <= 10); strcat(argfmt, fname); if (!PyArg_ParseTuple(args, argfmt)) return NULL; if (ioctl(self->x_fd, cmd, 0) == -1) return PyErr_SetFromErrno(PyExc_IOError); Py_INCREF(Py_None); return Py_None; } static PyObject * lad_nonblock(lad_t *self, PyObject *args) { /* Hmmm: it doesn't appear to be possible to return to blocking mode once we're in non-blocking mode! */ if (!PyArg_ParseTuple(args, ":nonblock")) return NULL; if (ioctl(self->x_fd, SNDCTL_DSP_NONBLOCK, NULL) == -1) return PyErr_SetFromErrno(PyExc_IOError); Py_INCREF(Py_None); return Py_None; } static PyObject * lad_setfmt(lad_t *self, PyObject *args) { return _do_ioctl_1(self, args, "setfmt", SNDCTL_DSP_SETFMT); } static PyObject * lad_getfmts(lad_t *self, PyObject *args) { int mask; if (!PyArg_ParseTuple(args, ":getfmts")) return NULL; if (ioctl(self->x_fd, SNDCTL_DSP_GETFMTS, &mask) == -1) return PyErr_SetFromErrno(PyExc_IOError); return PyInt_FromLong(mask); } static PyObject * lad_channels(lad_t *self, PyObject *args) { return _do_ioctl_1(self, args, "channels", SNDCTL_DSP_CHANNELS); } static PyObject * lad_speed(lad_t *self, PyObject *args) { return _do_ioctl_1(self, args, "speed", SNDCTL_DSP_SPEED); } static PyObject * lad_sync(lad_t *self, PyObject *args) { return _do_ioctl_0(self, args, "sync", SNDCTL_DSP_SYNC); } static PyObject * lad_reset(lad_t *self, PyObject *args) { return _do_ioctl_0(self, args, "reset", SNDCTL_DSP_RESET); } static PyObject * lad_post(lad_t *self, PyObject *args) { return _do_ioctl_0(self, args, "post", SNDCTL_DSP_POST); } /* Regular file methods: read(), write(), close(), etc. as well as one convenience method, writeall(). */ static PyObject * lad_read(lad_t *self, PyObject *args) { int size, count; char *cp; PyObject *rv; if (!PyArg_ParseTuple(args, "i:read", &size)) return NULL; rv = PyString_FromStringAndSize(NULL, size); if (rv == NULL) return NULL; cp = PyString_AS_STRING(rv); if ((count = read(self->x_fd, cp, size)) < 0) { PyErr_SetFromErrno(PyExc_IOError); Py_DECREF(rv); return NULL; } self->x_icount += count; _PyString_Resize(&rv, count); return rv; } static PyObject * lad_write(lad_t *self, PyObject *args) { char *cp; int rv, size; if (!PyArg_ParseTuple(args, "s#:write", &cp, &size)) { return NULL; } if ((rv = write(self->x_fd, cp, size)) == -1) { return PyErr_SetFromErrno(PyExc_IOError); } else { self->x_ocount += rv; } return PyInt_FromLong(rv); } static PyObject * lad_writeall(lad_t *self, PyObject *args) { char *cp; int rv, size; fd_set write_set_fds; int select_rv; /* NB. writeall() is only useful in non-blocking mode: according to Guenter Geiger on the linux-audio-dev list (http://eca.cx/lad/2002/11/0380.html), OSS guarantees that write() in blocking mode consumes the whole buffer. In blocking mode, the behaviour of write() and writeall() from Python is indistinguishable. */ if (!PyArg_ParseTuple(args, "s#:write", &cp, &size)) return NULL; /* use select to wait for audio device to be available */ FD_ZERO(&write_set_fds); FD_SET(self->x_fd, &write_set_fds); while (size > 0) { select_rv = select(self->x_fd+1, NULL, &write_set_fds, NULL, NULL); assert(select_rv != 0); /* no timeout, can't expire */ if (select_rv == -1) return PyErr_SetFromErrno(PyExc_IOError); rv = write(self->x_fd, cp, size); if (rv == -1) { if (errno == EAGAIN) { /* buffer is full, try again */ errno = 0; continue; } else /* it's a real error */ return PyErr_SetFromErrno(PyExc_IOError); } else { /* wrote rv bytes */ self->x_ocount += rv; size -= rv; cp += rv; } } Py_INCREF(Py_None); return Py_None; } static PyObject * lad_close(lad_t *self, PyObject *args) { if (!PyArg_ParseTuple(args, ":close")) return NULL; if (self->x_fd >= 0) { close(self->x_fd); self->x_fd = -1; } Py_INCREF(Py_None); return Py_None; } static PyObject * lad_fileno(lad_t *self, PyObject *args) { if (!PyArg_ParseTuple(args, ":fileno")) return NULL; return PyInt_FromLong(self->x_fd); } /* Convenience methods: these generally wrap a couple of ioctls into one common task. */ static PyObject * lad_setparameters(lad_t *self, PyObject *args) { int rate, ssize, nchannels, n, fmt, emulate=0; if (!PyArg_ParseTuple(args, "iiii|i:setparameters", &rate, &ssize, &nchannels, &fmt, &emulate)) return NULL; if (rate < 0) { PyErr_Format(PyExc_ValueError, "expected rate >= 0, not %d", rate); return NULL; } if (ssize < 0) { PyErr_Format(PyExc_ValueError, "expected sample size >= 0, not %d", ssize); return NULL; } if (nchannels != 1 && nchannels != 2) { PyErr_Format(PyExc_ValueError, "nchannels must be 1 or 2, not %d", nchannels); return NULL; } for (n = 0; n < n_audio_types; n++) if (fmt == audio_types[n].a_fmt) break; if (n == n_audio_types) { PyErr_Format(PyExc_ValueError, "unknown audio encoding: %d", fmt); return NULL; } if (audio_types[n].a_bps != ssize) { PyErr_Format(PyExc_ValueError, "for %s, expected sample size %d, not %d", audio_types[n].a_name, audio_types[n].a_bps, ssize); return NULL; } if (emulate == 0) { if ((self->x_afmts & audio_types[n].a_fmt) == 0) { PyErr_Format(PyExc_ValueError, "%s format not supported by device", audio_types[n].a_name); return NULL; } } if (ioctl(self->x_fd, SNDCTL_DSP_SETFMT, &audio_types[n].a_fmt) == -1) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } if (ioctl(self->x_fd, SNDCTL_DSP_CHANNELS, &nchannels) == -1) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } if (ioctl(self->x_fd, SNDCTL_DSP_SPEED, &rate) == -1) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } Py_INCREF(Py_None); return Py_None; } static int _ssize(lad_t *self, int *nchannels, int *ssize) { int fmt; fmt = 0; if (ioctl(self->x_fd, SNDCTL_DSP_SETFMT, &fmt) < 0) return -errno; switch (fmt) { case AFMT_MU_LAW: case AFMT_A_LAW: case AFMT_U8: case AFMT_S8: *ssize = sizeof(char); break; case AFMT_S16_LE: case AFMT_S16_BE: case AFMT_U16_LE: case AFMT_U16_BE: *ssize = sizeof(short); break; case AFMT_MPEG: case AFMT_IMA_ADPCM: default: return -EOPNOTSUPP; } *nchannels = 0; if (ioctl(self->x_fd, SNDCTL_DSP_CHANNELS, nchannels) < 0) return -errno; return 0; } /* bufsize returns the size of the hardware audio buffer in number of samples */ static PyObject * lad_bufsize(lad_t *self, PyObject *args) { audio_buf_info ai; int nchannels, ssize; if (!PyArg_ParseTuple(args, ":bufsize")) return NULL; if (_ssize(self, &nchannels, &ssize) < 0) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } if (ioctl(self->x_fd, SNDCTL_DSP_GETOSPACE, &ai) < 0) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } return PyInt_FromLong((ai.fragstotal * ai.fragsize) / (nchannels * ssize)); } /* obufcount returns the number of samples that are available in the hardware for playing */ static PyObject * lad_obufcount(lad_t *self, PyObject *args) { audio_buf_info ai; int nchannels, ssize; if (!PyArg_ParseTuple(args, ":obufcount")) return NULL; if (_ssize(self, &nchannels, &ssize) < 0) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } if (ioctl(self->x_fd, SNDCTL_DSP_GETOSPACE, &ai) < 0) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } return PyInt_FromLong((ai.fragstotal * ai.fragsize - ai.bytes) / (ssize * nchannels)); } /* obufcount returns the number of samples that can be played without blocking */ static PyObject * lad_obuffree(lad_t *self, PyObject *args) { audio_buf_info ai; int nchannels, ssize; if (!PyArg_ParseTuple(args, ":obuffree")) return NULL; if (_ssize(self, &nchannels, &ssize) < 0) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } if (ioctl(self->x_fd, SNDCTL_DSP_GETOSPACE, &ai) < 0) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } return PyInt_FromLong(ai.bytes / (ssize * nchannels)); } static PyObject * lad_getptr(lad_t *self, PyObject *args) { count_info info; int req; if (!PyArg_ParseTuple(args, ":getptr")) return NULL; if (self->x_mode == O_RDONLY) req = SNDCTL_DSP_GETIPTR; else req = SNDCTL_DSP_GETOPTR; if (ioctl(self->x_fd, req, &info) == -1) { PyErr_SetFromErrno(PyExc_IOError); return NULL; } return Py_BuildValue("iii", info.bytes, info.blocks, info.ptr); } static PyMethodDef lad_methods[] = { /* Regular file methods */ { "read", (PyCFunction)lad_read, METH_VARARGS }, { "write", (PyCFunction)lad_write, METH_VARARGS }, { "writeall", (PyCFunction)lad_writeall, METH_VARARGS }, { "close", (PyCFunction)lad_close, METH_VARARGS }, { "fileno", (PyCFunction)lad_fileno, METH_VARARGS }, /* Simple ioctl wrappers */ { "nonblock", (PyCFunction)lad_nonblock, METH_VARARGS }, { "setfmt", (PyCFunction)lad_setfmt, METH_VARARGS }, { "getfmts", (PyCFunction)lad_getfmts, METH_VARARGS }, { "channels", (PyCFunction)lad_channels, METH_VARARGS }, { "speed", (PyCFunction)lad_speed, METH_VARARGS }, { "sync", (PyCFunction)lad_sync, METH_VARARGS }, { "reset", (PyCFunction)lad_reset, METH_VARARGS }, { "post", (PyCFunction)lad_post, METH_VARARGS }, /* Convenience methods -- wrap a couple of ioctls together */ { "setparameters", (PyCFunction)lad_setparameters, METH_VARARGS }, { "bufsize", (PyCFunction)lad_bufsize, METH_VARARGS }, { "obufcount", (PyCFunction)lad_obufcount, METH_VARARGS }, { "obuffree", (PyCFunction)lad_obuffree, METH_VARARGS }, { "getptr", (PyCFunction)lad_getptr, METH_VARARGS }, /* Aliases for backwards compatibility */ { "flush", (PyCFunction)lad_sync, METH_VARARGS }, { NULL, NULL} /* sentinel */ }; static PyObject * lad_getattr(lad_t *xp, char *name) { return Py_FindMethod(lad_methods, (PyObject *)xp, name); } static PyTypeObject Ladtype = { PyObject_HEAD_INIT(&PyType_Type) 0, /*ob_size*/ "linuxaudiodev.linux_audio_device", /*tp_name*/ sizeof(lad_t), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)lad_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ (getattrfunc)lad_getattr, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ }; static PyObject * ladopen(PyObject *self, PyObject *args) { return (PyObject *)newladobject(args); } static PyMethodDef linuxaudiodev_methods[] = { { "open", ladopen, METH_VARARGS }, { 0, 0 }, }; #define _EXPORT_INT(mod, name) \ if (PyModule_AddIntConstant(mod, #name, (long) (name)) == -1) return; void initlinuxaudiodev(void) { PyObject *m; m = Py_InitModule("linuxaudiodev", linuxaudiodev_methods); OSSAudioError = PyErr_NewException("ossaudiodev.error", NULL, NULL); if (OSSAudioError) PyModule_AddObject(m, "error", OSSAudioError); /* Expose the audio format numbers -- essential! */ _EXPORT_INT(m, AFMT_QUERY); _EXPORT_INT(m, AFMT_MU_LAW); _EXPORT_INT(m, AFMT_A_LAW); _EXPORT_INT(m, AFMT_IMA_ADPCM); _EXPORT_INT(m, AFMT_U8); _EXPORT_INT(m, AFMT_S16_LE); _EXPORT_INT(m, AFMT_S16_BE); _EXPORT_INT(m, AFMT_S8); _EXPORT_INT(m, AFMT_U16_LE); _EXPORT_INT(m, AFMT_U16_BE); _EXPORT_INT(m, AFMT_MPEG); _EXPORT_INT(m, AFMT_AC3); _EXPORT_INT(m, AFMT_S16_NE); /* Expose all the ioctl numbers for masochists who like to do this stuff directly. */ _EXPORT_INT(m, SNDCTL_COPR_HALT); _EXPORT_INT(m, SNDCTL_COPR_LOAD); _EXPORT_INT(m, SNDCTL_COPR_RCODE); _EXPORT_INT(m, SNDCTL_COPR_RCVMSG); _EXPORT_INT(m, SNDCTL_COPR_RDATA); _EXPORT_INT(m, SNDCTL_COPR_RESET); _EXPORT_INT(m, SNDCTL_COPR_RUN); _EXPORT_INT(m, SNDCTL_COPR_SENDMSG); _EXPORT_INT(m, SNDCTL_COPR_WCODE); _EXPORT_INT(m, SNDCTL_COPR_WDATA); _EXPORT_INT(m, SNDCTL_DSP_BIND_CHANNEL); _EXPORT_INT(m, SNDCTL_DSP_CHANNELS); _EXPORT_INT(m, SNDCTL_DSP_GETBLKSIZE); _EXPORT_INT(m, SNDCTL_DSP_GETCAPS); _EXPORT_INT(m, SNDCTL_DSP_GETCHANNELMASK); _EXPORT_INT(m, SNDCTL_DSP_GETFMTS); _EXPORT_INT(m, SNDCTL_DSP_GETIPTR); _EXPORT_INT(m, SNDCTL_DSP_GETISPACE); _EXPORT_INT(m, SNDCTL_DSP_GETODELAY); _EXPORT_INT(m, SNDCTL_DSP_GETOPTR); _EXPORT_INT(m, SNDCTL_DSP_GETOSPACE); _EXPORT_INT(m, SNDCTL_DSP_GETSPDIF); _EXPORT_INT(m, SNDCTL_DSP_GETTRIGGER); _EXPORT_INT(m, SNDCTL_DSP_MAPINBUF); _EXPORT_INT(m, SNDCTL_DSP_MAPOUTBUF); _EXPORT_INT(m, SNDCTL_DSP_NONBLOCK); _EXPORT_INT(m, SNDCTL_DSP_POST); _EXPORT_INT(m, SNDCTL_DSP_PROFILE); _EXPORT_INT(m, SNDCTL_DSP_RESET); _EXPORT_INT(m, SNDCTL_DSP_SAMPLESIZE); _EXPORT_INT(m, SNDCTL_DSP_SETDUPLEX); _EXPORT_INT(m, SNDCTL_DSP_SETFMT); _EXPORT_INT(m, SNDCTL_DSP_SETFRAGMENT); _EXPORT_INT(m, SNDCTL_DSP_SETSPDIF); _EXPORT_INT(m, SNDCTL_DSP_SETSYNCRO); _EXPORT_INT(m, SNDCTL_DSP_SETTRIGGER); _EXPORT_INT(m, SNDCTL_DSP_SPEED); _EXPORT_INT(m, SNDCTL_DSP_STEREO); _EXPORT_INT(m, SNDCTL_DSP_SUBDIVIDE); _EXPORT_INT(m, SNDCTL_DSP_SYNC); _EXPORT_INT(m, SNDCTL_FM_4OP_ENABLE); _EXPORT_INT(m, SNDCTL_FM_LOAD_INSTR); _EXPORT_INT(m, SNDCTL_MIDI_INFO); _EXPORT_INT(m, SNDCTL_MIDI_MPUCMD); _EXPORT_INT(m, SNDCTL_MIDI_MPUMODE); _EXPORT_INT(m, SNDCTL_MIDI_PRETIME); _EXPORT_INT(m, SNDCTL_SEQ_CTRLRATE); _EXPORT_INT(m, SNDCTL_SEQ_GETINCOUNT); _EXPORT_INT(m, SNDCTL_SEQ_GETOUTCOUNT); _EXPORT_INT(m, SNDCTL_SEQ_GETTIME); _EXPORT_INT(m, SNDCTL_SEQ_NRMIDIS); _EXPORT_INT(m, SNDCTL_SEQ_NRSYNTHS); _EXPORT_INT(m, SNDCTL_SEQ_OUTOFBAND); _EXPORT_INT(m, SNDCTL_SEQ_PANIC); _EXPORT_INT(m, SNDCTL_SEQ_PERCMODE); _EXPORT_INT(m, SNDCTL_SEQ_RESET); _EXPORT_INT(m, SNDCTL_SEQ_RESETSAMPLES); _EXPORT_INT(m, SNDCTL_SEQ_SYNC); _EXPORT_INT(m, SNDCTL_SEQ_TESTMIDI); _EXPORT_INT(m, SNDCTL_SEQ_THRESHOLD); _EXPORT_INT(m, SNDCTL_SYNTH_CONTROL); _EXPORT_INT(m, SNDCTL_SYNTH_ID); _EXPORT_INT(m, SNDCTL_SYNTH_INFO); _EXPORT_INT(m, SNDCTL_SYNTH_MEMAVL); _EXPORT_INT(m, SNDCTL_SYNTH_REMOVESAMPLE); _EXPORT_INT(m, SNDCTL_TMR_CONTINUE); _EXPORT_INT(m, SNDCTL_TMR_METRONOME); _EXPORT_INT(m, SNDCTL_TMR_SELECT); _EXPORT_INT(m, SNDCTL_TMR_SOURCE); _EXPORT_INT(m, SNDCTL_TMR_START); _EXPORT_INT(m, SNDCTL_TMR_STOP); _EXPORT_INT(m, SNDCTL_TMR_TEMPO); _EXPORT_INT(m, SNDCTL_TMR_TIMEBASE); }