The code for Tier 2 is now only compiled when configured
with `--enable-experimental-jit[=yes|interpreter]`.
We drop support for `PYTHON_UOPS` and -`Xuops`,
but you can disable the interpreter or JIT
at runtime by setting `PYTHON_JIT=0`.
You can also build it without enabling it by default
using `--enable-experimental-jit=yes-off`;
enable with `PYTHON_JIT=1`.
On Windows, the `build.bat` script supports
`--experimental-jit`, `--experimental-jit-off`,
`--experimental-interpreter`.
In the C code, `_Py_JIT` is defined as before
when the JIT is enabled; the new variable
`_Py_TIER2` is defined when the JIT *or* the
interpreter is enabled. It is actually a bitmask:
1: JIT; 2: default-off; 4: interpreter.
Deferred reference counting is not fully implemented yet. As a temporary
measure, we immortalize objects that would use deferred reference
counting to avoid multi-threaded scaling bottlenecks.
This is only performed in the free-threaded build once the first
non-main thread is started. Additionally, some tests, including refleak
tests, suppress this behavior.
It's not safe to raise an exception in `PyObject_ClearWeakRefs()` if one
is not already set, since it may be called by `_Py_Dealloc()`, which
requires that the active exception does not change.
Additionally, make sure we clear the weakrefs even when tuple allocation
fails.
Fix data races in the method cache in free-threaded builds
These are technically data races, but I think they're benign (to
the extent that that is actually possible). We update cache entries
non-atomically but read them atomically from another thread, and there's
nothing that establishes a happens-before relationship between the
reads and writes that I can see.
Fix mimalloc allocator for huge memory allocation (around
8,589,934,592 GiB) on s390x.
Abort allocation early in mimalloc if the number of slices doesn't
fit into uint32_t, to prevent a integer overflow (cast 64-bit
size_t to uint32_t).
We want code objects to use deferred reference counting in the
free-threaded build. This requires them to be tracked by the GC, so we
set `Py_TPFLAGS_HAVE_GC` in the free-threaded build, but not the default
build.
Guido pointed out to me that some details about the per-interpreter state for the builtin types aren't especially clear. I'm addressing that by:
* adding a comment explaining that state
* adding some asserts to point out the relationship between each index and the interp/global runtime state
This change gives a significant speedup, as the METH_FASTCALL calling
convention is now used. The following bytes and bytearray methods are adapted:
- count()
- find()
- index()
- rfind()
- rindex()
Co-authored-by: Inada Naoki <songofacandy@gmail.com>
Fall back to tp_call() for cases when arguments are passed by name.
Co-authored-by: Donghee Na <donghee.na@python.org>
Co-authored-by: Victor Stinner <vstinner@python.org>
This keeps track of the per-thread total reference count operations in
PyThreadState in the free-threaded builds. The count is merged into the
interpreter's total when the thread exits.
Most mutable data is protected by a striped lock that is keyed on the
referenced object's address. The weakref's hash is protected using the
weakref's per-object lock.
Note that this only affects free-threaded builds. Apart from some minor
refactoring, the added code is all either gated by `ifdef`s or is a no-op
(e.g. `Py_BEGIN_CRITICAL_SECTION`).