* Make functools types immutable
* Multibyte codec types are now immutable
* pyexpat.xmlparser is now immutable
* array.arrayiterator is now immutable
* _thread types are now immutable
* _csv types are now immutable
* _queue.SimpleQueue is now immutable
* mmap.mmap is now immutable
* unicodedata.UCD is now immutable
* sqlite3 types are now immutable
* _lsprof.Profiler is now immutable
* _overlapped.Overlapped is now immutable
* _operator types are now immutable
* winapi__overlapped.Overlapped is now immutable
* _lzma types are now immutable
* _bz2 types are now immutable
* _dbm.dbm and _gdbm.gdbm are now immutable
Add pycore_moduleobject.h internal header file with static inline
functions to access module members:
* _PyModule_GetDict()
* _PyModule_GetDef()
* _PyModule_GetState()
These functions don't check at runtime if their argument has a valid
type and can be inlined even if Python is not built with LTO.
_PyType_GetModuleByDef() uses _PyModule_GetDef().
Replace PyModule_GetState() with _PyModule_GetState() in the
extension modules, considered as performance sensitive:
* _abc
* _functools
* _operator
* _pickle
* _queue
* _random
* _sre
* _struct
* _thread
* _winapi
* array
* posix
The following extensions are now built with the Py_BUILD_CORE_MODULE
macro defined, to be able to use the internal pycore_moduleobject.h
header: _abc, array, _operator, _queue, _sre, _struct.
Several built-in and standard library types now ensure that their internal result tuples are always tracked by the garbage collector:
- collections.OrderedDict.items
- dict.items
- enumerate
- functools.reduce
- itertools.combinations
- itertools.combinations_with_replacement
- itertools.permutations
- itertools.product
- itertools.zip_longest
- zip
Previously, they could have become untracked by a prior garbage collection.
No longer use deprecated aliases to functions:
* Replace PyObject_MALLOC() with PyObject_Malloc()
* Replace PyObject_REALLOC() with PyObject_Realloc()
* Replace PyObject_FREE() with PyObject_Free()
* Replace PyObject_Del() with PyObject_Free()
* Replace PyObject_DEL() with PyObject_Free()
Use _PyLong_GetZero() and _PyLong_GetOne() in Modules/ directory.
_cursesmodule.c and zoneinfo.c are now built with
Py_BUILD_CORE_MODULE macro defined.
Changes on 7dd549eb08 made _functools compatible with
PEP-489 and we could have multiple modules instances loaded.
But, right now there is no way to make `kwd_mark` global into
a per module instance variable. kwd_mark is used on lru_cache_new
which does not have a reference to a PyModule*, necessary to use
PyModule_GetState.
PEP-573 will solve this problem and will allow us to move the global
state to per-module data and properly clear the state when unloading
a module instance.
This change temporarily disable cleaning of kwd_mark to avoid NULL
pointer dereference if we clear kwd_mark and other module instances
still alive use it.
The bulk of this patch was generated automatically with:
for name in \
PyObject_Vectorcall \
Py_TPFLAGS_HAVE_VECTORCALL \
PyObject_VectorcallMethod \
PyVectorcall_Function \
PyObject_CallOneArg \
PyObject_CallMethodNoArgs \
PyObject_CallMethodOneArg \
;
do
echo $name
git grep -lwz _$name | xargs -0 sed -i "s/\b_$name\b/$name/g"
done
old=_PyObject_FastCallDict
new=PyObject_VectorcallDict
git grep -lwz $old | xargs -0 sed -i "s/\b$old\b/$new/g"
and then cleaned up:
- Revert changes to in docs & news
- Revert changes to backcompat defines in headers
- Nudge misaligned comments
* Add _PyObject_VectorcallTstate() function: similar to
_PyObject_Vectorcall(), but with tstate parameter
* Add tstate parameter to _PyObject_MakeTpCall()
Fix invalid function cast warnings with gcc 8
for method conventions different from METH_NOARGS, METH_O and
METH_VARARGS excluding Argument Clinic generated code.
* _PyTuple_ITEMS() gives access to the tuple->ob_item field and cast the
first argument to PyTupleObject*. This internal macro is only usable if
Py_BUILD_CORE is defined.
* Replace &PyTuple_GET_ITEM(ob, 0) with _PyTuple_ITEMS(ob).
* Replace PyTuple_GET_ITEM(op, 1) with &_PyTuple_ITEMS(ob)[1].
* group the (stateful) runtime globals into various topical structs
* consolidate the topical structs under a single top-level _PyRuntimeState struct
* add a check-c-globals.py script that helps identify runtime globals
Other globals are excluded (see globals.txt and check-c-globals.py).