When WITH_PYMALLOC is defined, define PYMALLOC_DEBUG to enable the debug
allocator. This can be done independent of build type (release or debug).
A debug build automatically defines PYMALLOC_DEBUG when pymalloc is
enabled. It's a detected error to define PYMALLOC_DEBUG when pymalloc
isn't enabled.
Two debugging entry points defined only under PYMALLOC_DEBUG:
+ _PyMalloc_DebugCheckAddress(const void *p) can be used (e.g., from gdb)
to sanity-check a memory block obtained from pymalloc. It sprays
info to stderr (see next) and dies via Py_FatalError if the block is
detectably damaged.
+ _PyMalloc_DebugDumpAddress(const void *p) can be used to spray info
about a debug memory block to stderr.
A tiny start at implementing "API family" checks isn't good for
anything yet.
_PyMalloc_DebugRealloc() has been optimized to do little when the new
size is <= old size. However, if the new size is larger, it really
can't call the underlying realloc() routine without either violating its
contract, or knowing something non-trivial about how the underlying
realloc() works. A memcpy is always done in this case.
This was a disaster for (and only) one of the std tests: test_bufio
creates single text file lines up to a million characters long. On
Windows, fileobject.c's get_line() uses the horridly funky
getline_via_fgets(), which keeps growing and growing a string object
hoping to find a newline. It grew the string object 1000 bytes each
time, so for a million-character string it took approximately forever
(I gave up after a few minutes).
So, also:
fileobject.c, getline_via_fgets(): When a single line is outrageously
long, grow the string object at a mildly exponential rate, instead of
just 1000 bytes at a time.
That's enough so that a debug-build test_bufio finishes in about 5 seconds
on my Win98SE box. I'm curious to try this on Win2K, because it has very
different memory behavior than Win9X, and test_bufio always took a factor
of 10 longer to complete on Win2K. It *could* be that the endless
reallocs were simply killing it on Win2K even in the release build.
Windows some modules are considered (by me, and I don't care what anyone
else thinks about this <wink>) to be part of "the core" despite that they
happen to be compiled into separate DLLs (the "to DLL or not to DLL?"
question on Windows is nearly arbitrary). Making the pymalloc entry
points available to them allows the Windows build to complete without
incident when WITH_PYMALLOC is #define'd.
Note that this isn't unprecedented. Other "private API" functions we
export include _PySequence_IterSearch, _PyEval_SliceIndex, _PyCodec_Lookup,
_Py_ZeroStruct, _Py_TrueStruct, _PyLong_New and _PyModule_Clear.
platform realloc(p, 0) returns NULL, so MALLOC_ZERO_RETURNS_NULL can
be correctly undefined yet realloc(p, 0) can return NULL anyway.
Prevent realloc(p, 0) doing free(p) and returning NULL via a different
hack. Would probably be better to get rid of MALLOC_ZERO_RETURNS_NULL
entirely.
Bugfix candidate.