Rename namespace package __loader__ class to be public.
Make the old name, i.e. _NamespaceLoader, an alias for the public name, for backward compatibility.
Currently frozen modules do not have __file__ set. In their spec, origin is set to "frozen" and they are marked as not having a location. (Similarly, for frozen packages __path__ is set to an empty list.) However, for frozen stdlib modules we are able to extrapolate __file__ as long as we can determine the stdlib directory at runtime. (We now do so since gh-28586.) Having __file__ set is helpful for a number of reasons. Likewise, having a non-empty __path__ means we can import submodules of a frozen package from the filesystem (e.g. we could partially freeze the encodings module).
This change sets __file__ (and adds to __path__) for frozen stdlib modules. It uses sys._stdlibdir (from gh-28586) and the frozen module alias information (from gh-28655). All that work is done in FrozenImporter (in Lib/importlib/_bootstrap.py).
Also, if a frozen module is imported before importlib is bootstrapped (during interpreter initialization) then we fix up that module and its spec during the importlib bootstrapping step (i.e. imporlib._bootstrap._setup()) to match what gets set by FrozenImporter, including setting the file info (if the stdlib dir is known). To facilitate this, modules imported using PyImport_ImportFrozenModule() have __origname__ set using the frozen module alias info. __origname__ is popped off during importlib bootstrap.
(To be clear, even with this change the new code to set __file__ during fixups in imporlib._bootstrap._setup() doesn't actually get triggered yet. This is because sys._stdlibdir hasn't been set yet in interpreter initialization at the point importlib is bootstrapped. However, we do fix up such modules at that point to otherwise match the result of importing through FrozenImporter, just not the __file__ and __path__ parts. Doing so will require changes in the order in which things happen during interpreter initialization. That can be addressed separately. Once it is, the file-related fixup code from this PR will kick in.)
Here are things this change does not do:
* set __file__ for non-stdlib modules (no way of knowing the parent dir)
* set __file__ if the stdlib dir is not known (nor assume the expense of finding it)
* relatedly, set __file__ if the stdlib is in a zip file
* verify that the filename set to __file__ actually exists (too expensive)
* update __path__ for frozen packages that alias a non-package (since there is no package dir)
Other things this change skips, but we may do later:
* set __file__ on modules imported using PyImport_ImportFrozenModule()
* set co_filename when we unmarshal the frozen code object while importing the module (e.g. in FrozenImporter.exec_module()) -- this would allow tracebacks to show source lines
* implement FrozenImporter.get_filename() and FrozenImporter.get_source()
https://bugs.python.org/issue21736
In the list of generated frozen modules at the top of Tools/scripts/freeze_modules.py, you will find that some of the modules have a different name than the module (or .py file) that is actually frozen. Let's call each case an "alias". Aliases do not come into play until we get to the (generated) list of modules in Python/frozen.c. (The tool for freezing modules, Programs/_freeze_module, is only concerned with the source file, not the module it will be used for.)
Knowledge of which frozen modules are aliases (and the identity of the original module) normally isn't important. However, this information is valuable when we go to set __file__ on frozen stdlib modules. This change updates Tools/scripts/freeze_modules.py to map aliases to the original module name (or None if not a stdlib module) in Python/frozen.c. We also add a helper function in Python/import.c to look up a frozen module's alias and add the result of that function to the frozen info returned from find_frozen().
https://bugs.python.org/issue45020
Before this change we end up duplicating effort and throwing away data in FrozenImporter.find_spec(). Now we do the work once in find_spec() and the only thing we do in FrozenImporter.exec_module() is turn the raw frozen data into a code object and then exec it.
We've added _imp.find_frozen(), add an arg to _imp.get_frozen_object(), and updated FrozenImporter. We've also moved some code around to reduce duplication, get a little more consistency in outcomes, and be more efficient.
Note that this change is mostly necessary if we want to set __file__ on frozen stdlib modules. (See https://bugs.python.org/issue21736.)
https://bugs.python.org/issue45324
Implements a two steps check in `importlib._bootstrap._find_and_load()` to avoid locking when the module has been already imported and it's ready.
---
Using `importlib.__import__()`, after this, does show a big difference:
Before:
```
$ ./python -c 'import timeit; print(timeit.timeit("__import__(\"timeit\")", setup="from importlib import __import__"))'
15.92248619502061
```
After:
```
$ ./python -c 'import timeit; print(timeit.timeit("__import__(\"timeit\")", setup="from importlib import __import__"))'
1.206068897008663
```
---
Use @staticmethod on methods using @classmethod but don't use their
cls parameter on the following classes:
* BuiltinImporter
* FrozenImporter
* WindowsRegistryFinder
* PathFinder
Leave methods using @_requires_builtin or @_requires_frozen unchanged,
since this decorator requires the wrapped method to have an extra parameter
(cls or self).
Simplify the importlib external bootstrap code:
importlib._bootstrap_external now uses regular imports to import
builtin modules. When it is imported, the builtin __import__()
function is already fully working and so can be used to import
builtin modules like sys.
* bpo-39336: Allow setattr to fail on modules which aren't assignable
When attaching a child module to a package if the object in sys.modules raises an AttributeError (e.g. because it is immutable) it causes the whole import to fail. This now allows immutable packages to exist and an ImportWarning is reported and the AttributeError exception is ignored.
Imports now raise `TypeError` instead of `ValueError` for relative import failures. This makes things consistent between `builtins.__import__` and `importlib.__import__` as well as using a more natural import for the failure.
https://bugs.python.org/issue37444
Automerge-Triggered-By: @brettcannon
* bpo-35321: Set the spec origin to frozen in frozen modules
This fix correctly sets the spec origin to
"frozen" for the _frozen_importlib module. Note that the
origin was already correctly set in _frozen_importlib_external.
* 📜🤖 Added by blurb_it.
Modules imported last are now cleared first at interpreter shutdown.
A newly imported module is moved to the end of sys.modules, behind
modules on which it depends.
Use sys.modules.get() in the "with _ModuleLockManager(name):" block
to protect the dictionary key with the module lock and use an atomic
get to prevent race condition.
Remove also _bootstrap._POPULATE since it was unused
(_bootstrap_external now has its own _POPULATE object), add a new
_SENTINEL object instead.
* Rewrite importlib _get_module_lock(): it is now responsible to hold
the imp lock directly.
* _find_and_load() now holds the module lock to check if name is in
sys.modules to prevent a race condition
PEP 432 specifies a number of large changes to interpreter startup code, including exposing a cleaner C-API. The major changes depend on a number of smaller changes. This patch includes all those smaller changes.
Issue #26637: The importlib module now emits an ImportError rather than a
TypeError if __import__() is tried during the Python shutdown process but
sys.path is already cleared (set to None).
In a previous change, __spec__.parent was prioritized over
__package__. That is a backwards-compatibility break, but we do
eventually want __spec__ to be the ground truth for module details. So
this change reverts the change in semantics and instead raises an
ImportWarning when __package__ != __spec__.parent to give people time
to adjust to using spec objects.
not defined for a relative import.
This is the start of work to try and clean up import semantics to rely
more on a module's spec than on the myriad attributes that get set on
a module. Thanks to Rose Ames for the patch.
Known limitations of the current implementation:
- documentation changes are incomplete
- there's a reference leak I haven't tracked down yet
The leak is most visible by running:
./python -m test -R3:3 test_importlib
However, you can also see it by running:
./python -X showrefcount
Importing the array or _testmultiphase modules, and
then deleting them from both sys.modules and the local
namespace shows significant increases in the total
number of active references each cycle. By contrast,
with _testcapi (which continues to use single-phase
initialisation) the global refcounts stabilise after
a couple of cycles.
The concept of .pyo files no longer exists. Now .pyc files have an
optional `opt-` tag which specifies if any extra optimizations beyond
the peepholer were applied.