We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
Cast PY_TIMEOUT_MAX to double, not to _PyTime_t.
Fix the clang warning:
Modules/_threadmodule.c:1648:26: warning: implicit conversion from
'_PyTime_t' (aka 'long') to 'double' changes value from
9223372036854775 to 9223372036854776
[-Wimplicit-const-int-float-conversion]
double timeout_max = (_PyTime_t)PY_TIMEOUT_MAX * 1e-6;
^~~~~~~~~~~~~~~~~~~~~~~~~ ~
ctypes.CFUNCTYPE() and ctypes.WINFUNCTYPE() now fail to create the
type if its "_argtypes_" member contains too many arguments.
Previously, the error was only raised when calling a function.
Change also how CFUNCTYPE() and WINFUNCTYPE() handle KeyError to
prevent creating a chain of exceptions if ctypes.CFuncPtr raises an
error.
Convert the PyType_SUPPORTS_WEAKREFS() macro to a regular function.
It no longer access the PyTypeObject.tp_weaklistoffset member
directly.
Add _PyType_SUPPORTS_WEAKREFS() static inline functions, used
internally by Python for best performance.
Add a new _PyType_GetSubclasses() function to get type's subclasses.
_PyType_GetSubclasses(type) returns a list which holds strong
refererences to subclasses. It is safer than iterating on
type->tp_subclasses which yields weak references and can be modified
in the loop.
_PyType_GetSubclasses(type) now holds a reference to the tp_subclasses
dict while creating the list of subclasses.
set_collection_flag_recursive() of _abc.c now uses
_PyType_GetSubclasses().
The signal module now creates its struct_siginfo type as a heap type
using PyStructSequence_NewType(), rather than using a static type.
Add 'siginfo_type' member to the global signal_state_t structure.
The _curses module now creates its ncurses_version type as a heap
type using PyStructSequence_NewType(), rather than using a static
type.
* Move _PyStructSequence_FiniType() definition to pycore_structseq.h.
* test.pythoninfo: log curses.ncurses_version.
The time module now creates its struct_time type as a heap
type using PyStructSequence_NewType(), rather than using a static
type.
* Add a module state to the time module: add traverse, clear and free
functions.
* Use PyModule_AddType().
* Remove the 'initialized' variable.
Py_EndInterpreter() now explicitly untracks all objects currently
tracked by the GC. Previously, if an object was used later by another
interpreter, calling PyObject_GC_UnTrack() on the object crashed if
the previous or the next object of the PyGC_Head structure became a
dangling pointer.
Previously, the main interpreter was allocated on the heap during runtime initialization. Here we instead embed it into _PyRuntimeState, which means it is statically allocated as part of the _PyRuntime global. The same goes for the initial thread state (of each interpreter, including the main one). Consequently there are fewer allocations during runtime/interpreter init, fewer possible failures, and better memory locality.
FYI, this also helps efforts to consolidate globals, which in turns helps work on subinterpreter isolation.
https://bugs.python.org/issue45953