This change adds an `eval_breaker` field to `PyThreadState`. The primary
motivation is for performance in free-threaded builds: with thread-local eval
breakers, we can stop a specific thread (e.g., for an async exception) without
interrupting other threads.
The source of truth for the global instrumentation version is stored in the
`instrumentation_version` field in PyInterpreterState. Threads usually read the
version from their local `eval_breaker`, where it continues to be colocated
with the eval breaker bits.
Add an option (--enable-experimental-jit for configure-based builds
or --experimental-jit for PCbuild-based ones) to build an
*experimental* just-in-time compiler, based on copy-and-patch (https://fredrikbk.com/publications/copy-and-patch.pdf).
See Tools/jit/README.md for more information on how to install the required build-time tooling.
It was raised in two cases:
* in the import statement when looking up __import__
* in pickling some builtin type when looking up built-ins iter, getattr, etc.
Previously arbitrary errors could be cleared during formatting error
messages for ImportError or AttributeError for modules. Now all
unexpected errors are reported.
This makes the Tier 2 interpreter a little faster.
I calculated by about 3%,
though I hesitate to claim an exact number.
This starts by doubling the trace size limit (to 512),
making it more likely that loops fit in a trace.
The rest of the approach is to only load
`oparg` and `operand` in cases that use them.
The code generator know when these are used.
For `oparg`, it will conditionally emit
```
oparg = CURRENT_OPARG();
```
at the top of the case block.
(The `oparg` variable may be referenced multiple times
by the instructions code block, so it must be in a variable.)
For `operand`, it will use `CURRENT_OPERAND()` directly
instead of referencing the `operand` variable,
which no longer exists.
(There is only one place where this will be used.)
This uses the new mechanism whereby certain uops
are replaced by others during translation,
using the `_PyUop_Replacements` table.
We further special-case the `_FOR_ITER_TIER_TWO` uop
to update the deoptimization target to point
just past the corresponding `END_FOR` opcode.
Two tiny code cleanups are also part of this PR.
* Replace jumps with deopts in tier 2
* Fewer special cases of uop names
* Add target field to uop IR
* Remove more redundant SET_IP and _CHECK_VALIDITY micro-ops
* Extend whitelist of non-escaping API functions.
In PGO mode, this function caused a compiler error in MSVC.
It turns out that optimizing for space only save the day, and is even faster.
However, without PGO, this is neither necessary nor slower.
Replace most of calls of _PyErr_WriteUnraisableMsg() and some
calls of PyErr_WriteUnraisable(NULL) with PyErr_FormatUnraisable().
Co-authored-by: Victor Stinner <vstinner@python.org>
- There is no longer a separate Python/executor.c file.
- Conventions in Python/bytecodes.c are slightly different -- don't use `goto error`,
you must use `GOTO_ERROR(error)` (same for others like `unused_local_error`).
- The `TIER_ONE` and `TIER_TWO` symbols are only valid in the generated (.c.h) files.
- In Lib/test/support/__init__.py, `Py_C_RECURSION_LIMIT` is imported from `_testcapi`.
- On Windows, in debug mode, stack allocation grows from 8MiB to 12MiB.
- **Beware!** This changes the env vars to enable uops and their debugging
to `PYTHON_UOPS` and `PYTHON_LLTRACE`.
Remove <ctype.h> in C files which don't use it; only sre.c and
_decimal.c still use it.
Remove _PY_PORT_CTYPE_UTF8_ISSUE code from pyport.h:
* Code added by commit b5047fd019
in 2004 for MacOSX and FreeBSD.
* Test removed by commit 52ddaefb6b
in 2007, since Python str type now uses locale independent
functions like Py_ISALPHA() and Py_TOLOWER() and the Unicode
database.
Modules/_sre/sre.c replaces _PY_PORT_CTYPE_UTF8_ISSUE with new
functions: sre_isalnum(), sre_tolower(), sre_toupper().
Remove unused includes:
* _localemodule.c: remove <stdio.h>.
* getargs.c: remove <float.h>.
* dynload_win.c: remove <direct.h>, it no longer calls _getcwd()
since commit fb1f68ed7c (in 2001).
This finishes the work begun in gh-107760. When, while projecting a superblock, we encounter a call to a short, simple function, the superblock will now enter the function using `_PUSH_FRAME`, continue through it, and leave it using `_POP_FRAME`, and then continue through the original code. Multiple frame pushes and pops are even possible. It is also possible to stop appending to the superblock in the middle of a called function, when running out of space or encountering an unsupported bytecode.
* Split `CALL_PY_EXACT_ARGS` into uops
This is only the first step for doing `CALL` in Tier 2.
The next step involves tracing into the called code object and back.
After that we'll have to do the remaining `CALL` specialization.
Finally we'll have to deal with `KW_NAMES`.
Note: this moves setting `frame->return_offset` directly in front of
`DISPATCH_INLINED()`, to make it easier to move it into `_PUSH_FRAME`.
- The `dump_stack()` method could call a `__repr__` method implemented in Python,
causing (infinite) recursion.
I rewrote it to only print out the values for some fundamental types (`int`, `str`, etc.);
for everything else it just prints `<type_name @ 0xdeadbeef>`.
- The lltrace-like feature for uops wrote to `stderr`, while the one in `ceval.c` writes to `stdout`;
I changed the uops to write to stdout as well.