* The majority of the monitoring code is in instrumentation.c
* The new instrumentation bytecodes are in bytecodes.c
* legacy_tracing.c adapts the new API to the old sys.setrace and sys.setprofile APIs
* Rename local variables, names and consts, from the interpeter loop. Will allow non-code objects in frames for better introspection of C builtins and extensions.
* Remove unused dummy variables.
This change is almost entirely moving code around and hiding import state behind internal API. We introduce no changes to behavior, nor to non-internal API. (Since there was already going to be a lot of churn, I took this as an opportunity to re-organize import.c into topically-grouped sections of code.) The motivation is to simplify a number of upcoming changes.
Specific changes:
* move existing import-related code to import.c, wherever possible
* add internal API for interacting with import state (both global and per-interpreter)
* use only API outside of import.c (to limit churn there when changing the location, etc.)
* consolidate the import-related state of PyInterpreterState into a single struct field (this changes layout slightly)
* add macros for import state in import.c (to simplify changing the location)
* group code in import.c into sections
*remove _PyState_AddModule()
https://github.com/python/cpython/issues/101758
* Make sure that the current exception is always normalized.
* Remove redundant type and traceback fields for the current exception.
* Add new API functions: PyErr_GetRaisedException, PyErr_SetRaisedException
* Add new API functions: PyException_GetArgs, PyException_SetArgs
* Adds EXIT_INTERPRETER instruction to exit PyEval_EvalDefault()
* Simplifies RETURN_VALUE, YIELD_VALUE and RETURN_GENERATOR instructions as they no longer need to check for entry frames.
The switch cases (really TARGET(opcode) macros) have been moved from ceval.c to generated_cases.c.h. That file is generated from instruction definitions in bytecodes.c (which impersonates a C file so the C code it contains can be edited without custom support in e.g. VS Code).
The code generator lives in Tools/cases_generator (it has a README.md explaining how it works). The DSL used to describe the instructions is a work in progress, described in https://github.com/faster-cpython/ideas/blob/main/3.12/interpreter_definition.md.
This is surely a work-in-progress. An easy next step could be auto-generating super-instructions.
**IMPORTANT: Merge Conflicts**
If you get a merge conflict for instruction implementations in ceval.c, your best bet is to port your changes to bytecodes.c. That file looks almost the same as the original cases, except instead of `TARGET(NAME)` it uses `inst(NAME)`, and the trailing `DISPATCH()` call is omitted (the code generator adds it automatically).
This reduces confusion between jumps at the bytecode level
(e.g. JUMPTO(), JUMPBY(), and various JUMP_*() opcodes)
and jumps in the C code (which are 'goto' statements).
Change FOR_ITER to have the same stack effect regardless of whether it branches or not.
Performance is unchanged as FOR_ITER (and specialized forms jump over the cleanup code).
Make sys.setprofile() and sys.settrace() functions reentrant. They
can no long fail with: RuntimeError("Cannot install a trace function
while another trace function is being installed").
Make _PyEval_SetTrace() and _PyEval_SetProfile() functions reentrant,
rather than detecting and rejecting reentrant calls. Only delete the
reference to function arguments once the new function is fully set,
when a reentrant call is safe. Call also _PySys_Audit() earlier.
The `}` marked with `/* End instructions */` is the end of the switch.
There is another pair of `{}` around the switch, which is vestigial
from ancient times when it was `for (;;) { switch (opcode) { ... } }`.
All `DISPATCH` macro calls should be inside that pair.
Remove the sys.getdxp() function and the Tools/scripts/analyze_dxp.py
script. DXP stands for "dynamic execution pairs". They were related
to DYNAMIC_EXECUTION_PROFILE and DXPAIRS macros which have been
removed in Python 3.11. Python can now be built with "./configure
--enable-pystats" to gather statistics on Python opcodes.