This PR adds the ability to enable the GIL if it was disabled at
interpreter startup, and modifies the multi-phase module initialization
path to enable the GIL when loading a module, unless that module's spec
includes a slot indicating it can run safely without the GIL.
PEP 703 called the constant for the slot `Py_mod_gil_not_used`; I went
with `Py_MOD_GIL_NOT_USED` for consistency with gh-104148.
A warning will be issued up to once per interpreter for the first
GIL-using module that is loaded. If `-v` is given, a shorter message
will be printed to stderr every time a GIL-using module is loaded
(including the first one that issues a warning).
Previously arbitrary errors could be cleared during formatting error
messages for ImportError or AttributeError for modules. Now all
unexpected errors are reported.
Replace most of calls of _PyErr_WriteUnraisableMsg() and some
calls of PyErr_WriteUnraisable(NULL) with PyErr_FormatUnraisable().
Co-authored-by: Victor Stinner <vstinner@python.org>
Replace PyDict_GetItemWithError() with PyDict_GetItemRef() which
returns a strong reference.
Cleanup also the function: move variable definition to their first
assignation, rename variable names to use name longer than 1
character.
Remove the following functions from the C API, move them to the internal C
API: add a new pycore_modsupport.h internal header file:
* PyModule_CreateInitialized()
* _PyArg_NoKwnames()
* _Py_VaBuildStack()
No longer export these functions.
finalize_modules_clear_weaklist() now holds a strong reference to the
module longer than before: replace PyWeakref_GET_OBJECT() with
_PyWeakref_GET_REF().
Here we are doing no more than adding the value for Py_mod_multiple_interpreters and using it for stdlib modules. We will start checking for it in gh-104206 (once PyInterpreterState.ceval.own_gil is added in gh-104204).
This change is almost entirely moving code around and hiding import state behind internal API. We introduce no changes to behavior, nor to non-internal API. (Since there was already going to be a lot of churn, I took this as an opportunity to re-organize import.c into topically-grouped sections of code.) The motivation is to simplify a number of upcoming changes.
Specific changes:
* move existing import-related code to import.c, wherever possible
* add internal API for interacting with import state (both global and per-interpreter)
* use only API outside of import.c (to limit churn there when changing the location, etc.)
* consolidate the import-related state of PyInterpreterState into a single struct field (this changes layout slightly)
* add macros for import state in import.c (to simplify changing the location)
* group code in import.c into sections
*remove _PyState_AddModule()
https://github.com/python/cpython/issues/101758
We're no longer using _Py_IDENTIFIER() (or _Py_static_string()) in any core CPython code. It is still used in a number of non-builtin stdlib modules.
The replacement is: PyUnicodeObject (not pointer) fields under _PyRuntimeState, statically initialized as part of _PyRuntime. A new _Py_GET_GLOBAL_IDENTIFIER() macro facilitates lookup of the fields (along with _Py_GET_GLOBAL_STRING() for non-identifier strings).
https://bugs.python.org/issue46541#msg411799 explains the rationale for this change.
The core of the change is in:
* (new) Include/internal/pycore_global_strings.h - the declarations for the global strings, along with the macros
* Include/internal/pycore_runtime_init.h - added the static initializers for the global strings
* Include/internal/pycore_global_objects.h - where the struct in pycore_global_strings.h is hooked into _PyRuntimeState
* Tools/scripts/generate_global_objects.py - added generation of the global string declarations and static initializers
I've also added a --check flag to generate_global_objects.py (along with make check-global-objects) to check for unused global strings. That check is added to the PR CI config.
The remainder of this change updates the core code to use _Py_GET_GLOBAL_IDENTIFIER() instead of _Py_IDENTIFIER() and the related _Py*Id functions (likewise for _Py_GET_GLOBAL_STRING() instead of _Py_static_string()). This includes adding a few functions where there wasn't already an alternative to _Py*Id(), replacing the _Py_Identifier * parameter with PyObject *.
The following are not changed (yet):
* stop using _Py_IDENTIFIER() in the stdlib modules
* (maybe) get rid of _Py_IDENTIFIER(), etc. entirely -- this may not be doable as at least one package on PyPI using this (private) API
* (maybe) intern the strings during runtime init
https://bugs.python.org/issue46541
* Move _PyObject_CallNoArgs() to pycore_call.h (internal C API).
* _ssl, _sqlite and _testcapi extensions now call the public
PyObject_CallNoArgs() function, rather than _PyObject_CallNoArgs().
* _lsprof extension is now built with Py_BUILD_CORE_MODULE macro
defined to get access to internal _PyObject_CallNoArgs().
Fix typo in the private _PyObject_CallNoArg() function name: rename
it to _PyObject_CallNoArgs() to be consistent with the public
function PyObject_CallNoArgs().
PyModuleDef_Init() no longer tries to make PyModule_Type type: it's
already done by _PyTypes_Init() at Python startup. Replace
PyType_Ready() call with an assertion.
While working on another issue, I noticed two minor nits in the C implementation of the module object. Both are related to getting a module's name.
First, the C function module_dir() (module.__dir__) starts by ensuring the module dict is valid. If the module dict is invalid, it wants to format an exception using the name of the module, which it gets from PyModule_GetName(). However, PyModule_GetName() gets the name of the module from the dict. So getting the name in this circumstance will never succeed.
When module_dir() wants to format the error but can't get the name, it knows that PyModule_GetName() must have already raised an exception. So it leaves that exception alone and returns an error. The end result is that the exception raised here is kind of useless and misleading: dir(module) on a module with no __dict__ raises SystemError("nameless module"). I changed the code to actually raise the exception it wanted to raise, just without a real module name: TypeError("<module>.__dict__ is not a dictionary"). This seems more useful, and would do a better job putting the programmer who encountered this on the right track of figuring out what was going on.
Second, the C API function PyModule_GetNameObject() checks to see if the module has a dict. If m->md_dict is not NULL, it calls _PyDict_GetItemIdWithError(). However, it's possible for m->md_dict to be None. And if you call _PyDict_GetItemIdWithError(Py_None, ...) it will *crash*.
Unfortunately, this crash was due to my own bug in the other branch. Fixing my code made the crash go away. I assert that this is still possible at the API level.
The fix is easy: add a PyDict_Check() to PyModule_GetNameObject().
Unfortunately, I don't know how to add a unit test for this. Having changed module_dir() above, I can't find any other interfaces callable from Python that eventually call PyModule_GetNameObject(). So I don't know how to trick the runtime into reproducing this error.
Since both these changes are minor--each entails only a small edit to only one line--I didn't bother with a news item.
Change class and module objects to lazy-create empty annotations dicts on demand. The annotations dicts are stored in the object's `__dict__` for backwards compatibility.
Add pycore_moduleobject.h internal header file with static inline
functions to access module members:
* _PyModule_GetDict()
* _PyModule_GetDef()
* _PyModule_GetState()
These functions don't check at runtime if their argument has a valid
type and can be inlined even if Python is not built with LTO.
_PyType_GetModuleByDef() uses _PyModule_GetDef().
Replace PyModule_GetState() with _PyModule_GetState() in the
extension modules, considered as performance sensitive:
* _abc
* _functools
* _operator
* _pickle
* _queue
* _random
* _sre
* _struct
* _thread
* _winapi
* array
* posix
The following extensions are now built with the Py_BUILD_CORE_MODULE
macro defined, to be able to use the internal pycore_moduleobject.h
header: _abc, array, _operator, _queue, _sre, _struct.
The Py_FatalError() function and the faulthandler module now dump the
list of extension modules on a fatal error.
Add _Py_DumpExtensionModules() and _PyModule_IsExtension() internal
functions.
No longer use deprecated aliases to functions:
* Replace PyMem_MALLOC() with PyMem_Malloc()
* Replace PyMem_REALLOC() with PyMem_Realloc()
* Replace PyMem_FREE() with PyMem_Free()
* Replace PyMem_Del() with PyMem_Free()
* Replace PyMem_DEL() with PyMem_Free()
Modify also the PyMem_DEL() macro to use directly PyMem_Free().
These functions are considered not safe because they suppress all internal errors
and can return wrong result. PyDict_GetItemString and _PyDict_GetItemId can
also silence current exception in rare cases.
Remove no longer used _PyDict_GetItemId.
Add _PyDict_ContainsId and rename _PyDict_Contains into
_PyDict_Contains_KnownHash.
Rename _PyInterpreterState_GET_UNSAFE() to _PyInterpreterState_GET()
for consistency with _PyThreadState_GET() and to have a shorter name
(help to fit into 80 columns).
Add also "assert(tstate != NULL);" to the function.