longer to run than normal. A profiler run showed that this was due to
PyFrame_New() taking up an unreasonable amount of time. A little
thinking showed that this was due to the while loop clearing the space
available for the stack. The solution is to only clear the local
variables (and cells and free variables), not the space available for
the stack, since anything beyond the stack top is considered to be
garbage anyway. Also, use memset() instead of a while loop counting
backwards. This should be a time savings for normal code too! (By a
probably unmeasurable amount. :-)
using sort() with comparison functions (it made reference to the non-
existent "builtin-in function sort()").
BTW, I changed list.sort's docstring to contain the word "stable" -- the
easiest way to tell whether a particular Python version's sort *is* stable
is to look for "stable" in the docstring. I'm not sure whether to
advertise this <wink>.
in the stability tests.
Bizarre: this takes 11x longer to run if and only if test_longexp is
run before it, on my box. The bigger REPS is in test_longexp, the
slower this gets. What happens on your box? It's not gc on my box
(which is good, because gc isn't a plausible candidate here).
The slowdown is massive in the parts of test_sort that implicitly
invoke a new-style class's __lt__ or __cmp__ methods. If I boost
REPS large enough in test_longexp, even the test_sort tests on an array
of size 64 visibly c-r-a-w-l. The relative slowdown is even worse in
a debug build. And if I reduce REPS in test_longexp, the slowdown in
test_sort goes away.
test_longexp does do horrid things to Win98's management of user
address space, but I thought I had made that a whole lot better a month
or so ago (by overallocating aggressively in the parser).
If the long is large enough, the return value will be a negative int.
In this case, calling the function a second time won't return the
original value passed in.
imports of test modules now import from the test package. Other
related oddities are also fixed (like DeprecationWarning filters that
weren't specifying the full import part, etc.). Also did a general
code cleanup to remove all "from test.test_support import *"'s. Other
from...import *'s weren't changed.
The "Matching vs. Searching" Info node is unreachable from the Info
program (but is fine in Emacs's Info mode). This patch seems to fix
it. This is the only occurrence where the info reader fails, so
probably it could be addressed in the python docs as a workaround.
Forwarded the report to the info maintainer.
See there for a description.
Added test case.
Bugfix candidate for 2.2.x, not sure about previous versions:
probably low priority, because virtually no one runs debug builds.
doubleclicks a .py, .pyw or .pyc file. It runs the file by invoking the
relevant interpreter (either the command line Python in a terminal window
or a Python.app for GUI-based scripts). Interpreter to use and the options
to pass are settable through preferences.
If PythonLauncher wasn't running it does its thing for one script and exits.
If it was manually started before a dialog is presented where the user
can set the options to use, etc.
To be done:
- option-drag/doubleclick should always open the interactive dialog
- Terminal-window isn't done yet
- Should be reimplemented in Python, but pyobjc isn't part of the core.
- Various menu entries should be disabled.
This patch fixes make install for Cygwin. Specifically,
it reverts to the previous behavior:
o install libpython$(VERSION)$(SO) in $(BINDIR)
o install $(LDLIBRARY) in $(LIBPL)
It also begins to remove Cygwin's dependency on
$(DLLLIBRARY) which I hope to take advantage of
when I attempt to make Cygwin as similar as possible
to the other Unix platforms (in other patches).
I tested this patch under Red Hat Linux 7.1 without
any ill effects.
BTW, I'm not the happiest using the following
test for Cygwin:
test "$(SO)" = .dll
I'm willing to update the patch to use:
case "$(MACHDEP)" in cygwin*
instead, but IMO that will look uglier.
PyErr_SetExcFromWindowsErr(), PyErr_SetExcFromWindowsErrWithFilename().
Similar to PyErr_SetFromWindowsErrWithFilename() and
PyErr_SetFromWindowsErr(), but they allow to specify
the exception type to raise. Available on Windows.
See SF patch #576458.