on file.__methods__. Since the docs say "This module will become obsolete
in a future release", this is just a quick hack to stop it from blowing
up. If you care about this module, test it! It doesn't make much sense
on Windows.
descriptors for each attribute. The getattr() implementation is
similar to PyObject_GenericGetAttr(), but delegates to im_self instead
of looking in __dict__; I couldn't do this as a wrapper around
PyObject_GenericGetAttr().
XXX A problem here is that this is a case of *delegation*. dir()
doesn't see exactly the same attributes that are actually defined;
e.g. if the delegate is a Python function object, it supports
attributes like func_code etc., but these are not visible to dir(); on
the other hand, dynamic function attributes (stored in the function's
__dict__) *are* visible to dir(). Maybe we need a mechanism to tell
dir() about the delegation mechanism? I vaguely recall seeing a
request in the newsgroup for a more formal definition of attribute
delegation too. Sigh, time for a new PEP.
to raise TypeError. In practice, a disallowed attribute assignment
can raise either TypeError or AttributeError (and it's unclear which
is better). So allow either. (Yes, this is in anticipation of a
code change that switches the exception raised. :-)
- Add a utility function, cantset(), which verifies that setting a
particular attribute to a given value is disallowed, and also that
deleting that same attribute is disallowed. Use this in the
test_func_*() tests.
- Add a new set of tests that test conformance of various instance
method attributes. (Also in anticipation of code that changes their
implementation.)
compile() becomes replacement for builtin compile()
compileFile() generates a .pyc from a .py
both are exported in __init__
compiler.parse() gets optional second argument to specify compilation
mode, e.g. single, eval, exec
Add AbstractCompileMode as parent class and Module, Expression, and
Interactive as concrete subclasses. Each corresponds to a compilation
mode.
THe AbstractCompileMode instances in turn delegate to CodeGeneration
subclasses specialized for their particular functions --
ModuleCodeGenerator, ExpressionCodeGeneration,
InteractiveCodeGenerator.
The argument properties are ordered from easiest to hardest. The
harder the arg, the more complicated that code that must be generated
to return it from getChildren() and/or getChildNodes(). The old
calculation routine was bogus, because it always set hardest_arg to
the hardness of the last argument. Now use max() to always set it to
the hardness of the hardest argument.
Remove the only test in the syntax module. It ends up that the
transformer must handle this error case.
In the transformer, check for a list compression in com_assign_list()
by looking for a list_for node where a comma is expected.
In pycodegen.compile() re-raise the SyntaxError rather than catching
it and exiting
Renamed the 'readonly' field to 'flags' and defined some new flag
bits: READ_RESTRICTED and WRITE_RESTRICTED, as well as a shortcut
RESTRICTED that means both.
Invoke compiler.syntax.check() after building AST. If a SyntaxError
occurs, print the error and exit without generating a .pyc file.
Refactor code to use compiler.misc.set_filename() rather than passing
filename argument around to each CodeGenerator instance.
Once upon a time, I put together a little function
that tries to find the canonical filename for a given
pathname on POSIX. I've finally gotten around to
turning it into a proper patch with documentation.
On non-POSIX, I made it an alias for 'abspath', as
that's the behavior on POSIX when no symlinks are
encountered in the path.
Example:
>>> os.path.realpath('/usr/bin/X11/X')
'/usr/X11R6/bin/X'
supplied values are the most "normal" or "common" values found for
recent 32 bit machines. This now seems to work to build Python 2.2
for the ARM processor used on the iPAQ.
and are lists, and then just the string elements (if any)).
There are good and bad reasons for this. The good reason is to support
dir() "like before" on objects of extension types that haven't migrated
to the class introspection API yet. The bad reason is that Python's own
method objects are such a type, and this is the quickest way to get their
im_self etc attrs to "show up" via dir(). It looks much messier to move
them to the new scheme, as their current getattr implementation presents
a view of their attrs that's a untion of their own attrs plus their
im_func's attrs. In particular, methodobject.__dict__ actually returns
methodobject.im_func.__dict__, and if that's important to preserve it
doesn't seem to fit the class introspection model at all.
introspection incompatibility, but in fact it's just that calltips
always gave up on a docstring that started with a newline (but
didn't realize they were giving up <wink>).
Both int and long multiplication are changed to be more careful in
their assumptions about when one of the arguments is a sequence: the
assumption that at least one of the arguments must be an int (or long,
respectively) is still held, but the assumption that these don't smell
like sequences is no longer true: a subtype of int or long may well
have a sequence-repeat thingie!
Remove the option to have nested scopes or old LGB scopes. This has a
large impact on the code base, by removing the need for two variants
of each CodeGenerator.
Add a get_module() method to CodeGenerator objects, used to get the
future features for the current module.
Set CO_GENERATOR, CO_GENERATOR_ALLOWED, and CO_FUTURE_DIVISION flags
as appropriate.
Attempt to fix the value of nlocals in newCodeObject(), assuming that
nlocals is 0 if CO_NEWLOCALS is not defined.
NotImplemented when the lookup fails, and use this for binary
operators. Also lookup_maybe() which doesn't raise an exception when
the lookup fails (still returning NULL).