I've finished the last task for the PCbuild9 directory today. I don't think there is much left to do. Now you can all play around with the shiny new VS 2008 and try the PGO builds. I was able to get a speed improvement of about 10% on py3k.
Have fun! :)
using a custom, nearly-identical macro. This probably changes how some of
these functions are compiled, which may result in fractionally slower (or
faster) execution. Considering the nature of traversal, visiting much of the
address space in unpredictable patterns, I'd argue the code readability and
maintainability is well worth it ;P
In C++, it's an error to pass a string literal to a char* function
without a const_cast(). Rather than require every C++ extension
module to put a cast around string literals, fix the API to state the
const-ness.
I focused on parts of the API where people usually pass literals:
PyArg_ParseTuple() and friends, Py_BuildValue(), PyMethodDef, the type
slots, etc. Predictably, there were a large set of functions that
needed to be fixed as a result of these changes. The most pervasive
change was to make the keyword args list passed to
PyArg_ParseTupleAndKewords() to be a const char *kwlist[].
One cast was required as a result of the changes: A type object
mallocs the memory for its tp_doc slot and later frees it.
PyTypeObject says that tp_doc is const char *; but if the type was
created by type_new(), we know it is safe to cast to char *.
__module__ is the string name of the module the function was defined
in, just like __module__ of classes. In some cases, particularly for
C functions, the __module__ may be None.
Change PyCFunction_New() from a function to a macro, but keep an
unused copy of the function around so that we don't change the binary
API.
Change pickle's save_global() to use whichmodule() if __module__ is
None, but add the __module__ logic to whichmodule() since it might be
used outside of pickle.
Refactor code in PyCFunction_Call giving a modest (tiny) speed boost,
a slight improvement in semantics (now detects invalid flag combinations),
and (arguably) improved clarity (making it blindingly clear which flag
combinations are allowed). All this comes at a cost of a few lines of
code duplication.
* Folded test for METH_KEYWORDS into the switch/case.
* Deferred testing for an empty dictionary until when and where needed.
* Make a similar deferral for filling the "size" variable.
* Inverted the dictionary test so that the common case falls though
instead of making a jump.
descriptor, as used for the tp_methods slot of a type. These new flag
bits are both optional, and mutually exclusive. Most methods will not
use either. These flags are used to create special method types which
exist in the same namespace as normal methods without having to use
tedious construction code to insert the new special method objects in
the type's tp_dict after PyType_Ready() has been called.
If METH_CLASS is specified, the method will represent a class method
like that returned by the classmethod() built-in.
If METH_STATIC is specified, the method will represent a static method
like that returned by the staticmethod() built-in.
These flags may not be used in the PyMethodDef table for modules since
these special method types are not meaningful in that case; a
ValueError will be raised if these flags are found in that context.
no backwards compatibility to worry about, so I just pushed the
'closure' struct member to the back -- it's never used in the current
code base (I may eliminate it, but that's more work because the getter
and setter signatures would have to change.)
As examples, I added actual docstrings to the getset attributes of a
few types: file.closed, xxsubtype.spamdict.state.
The descr changes moved the dispatch for calling objects from
call_object() in ceval.c to PyObject_Call() in abstract.c.
call_object() and the many functions it used in ceval.c were no longer
used, but were not removed.
Rename meth_call() as PyCFunction_Call() so that it can be called by
the CALL_FUNCTION opcode in ceval.c.
Also, fix error message that referred to PyEval_EvalCodeEx() by its
old name eval_code2(). (I'll probably refer to it by its old name,
too.)
The common technique for printing out a pointer has been to cast to a long
and use the "%lx" printf modifier. This is incorrect on Win64 where casting
to a long truncates the pointer. The "%p" formatter should be used instead.
The problem as stated by Tim:
> Unfortunately, the C committee refused to define what %p conversion "looks
> like" -- they explicitly allowed it to be implementation-defined. Older
> versions of Microsoft C even stuck a colon in the middle of the address (in
> the days of segment+offset addressing)!
The result is that the hex value of a pointer will maybe/maybe not have a 0x
prepended to it.
Notes on the patch:
There are two main classes of changes:
- in the various repr() functions that print out pointers
- debugging printf's in the various thread_*.h files (these are why the
patch is large)
Closes SourceForge patch #100505.
errors in some of the hash algorithms. For exmaple, in float_hash and
complex_hash a certain part of the value is not included in the hash
calculation. See Tim's, Guido's, and my discussion of this on
python-dev in May under the title "fix float_hash and complex_hash for
64-bit *nix"
(2) The hash algorithms that use pointers (e.g. func_hash, code_hash)
are universally not correct on Win64 (they assume that sizeof(long) ==
sizeof(void*))
As well, this patch significantly cleans up the hash code. It adds the
two function _Py_HashDouble and _PyHash_VoidPtr that the various
hashing routine are changed to use.
These help maintain the hash function invariant: (a==b) =>
(hash(a)==hash(b))) I have added Lib/test/test_hash.py and
Lib/test/output/test_hash to test this for some cases.
For more comments, read the patches@python.org archives.
For documentation read the comments in mymalloc.h and objimpl.h.
(This is not exactly what Vladimir posted to the patches list; I've
made a few changes, and Vladimir sent me a fix in private email for a
problem that only occurs in debug mode. I'm also holding back on his
change to main.c, which seems unnecessary to me.)
* Added "access *: ...", made access work for class methods.
* Introduced subclass check: make sure that when calling
ClassName.methodname(instance, ...), the instance is an instance of
ClassName or of a subclass thereof (this might break some old code!)
* Stubs for faster implementation of local variables (not yet finished)
* Added function name to code object. Print it for code and function
objects. THIS MAKES THE .PYC FILE FORMAT INCOMPATIBLE (the version
number has changed accordingly)
* Print address of self for built-in methods
* New internal functions getattro and setattro (getattr/setattr with
string object arg)
* Replaced "dictobject" with more powerful "mappingobject"
* New per-type functio tp_hash to implement arbitrary object hashing,
and hashobject() to interface to it
* Added built-in functions hash(v) and hasattr(v, 'name')
* classobject: made some functions static that accidentally weren't;
added __hash__ special instance method to implement hash()
* Added proper comparison for built-in methods and functions
* flmodule.c: added some missing functions; changed readonly flags of
some data members based upon FORMS documentation.
* listobject.c: fixed int/long arg lint bug (bites PC compilers).
* several: removed redundant print methods (repr is good enough).
* posixmodule.c: added (still experimental) process group functions.