This PR sets up tagged pointers for CPython.
The general idea is to create a separate struct _PyStackRef for everything on the evaluation stack to store the bits. This forces the C compiler to warn us if we try to cast things or pull things out of the struct directly.
Only for free threading: We tag the low bit if something is deferred - that means we skip incref and decref operations on it. This behavior may change in the future if Mark's plans to defer all objects in the interpreter loop pans out.
This implies a strict stack reference discipline is required. ALL incref and decref operations on stackrefs must use the stackref variants. It is unsafe to untag something then do normal incref/decref ops on it.
The new incref and decref variants are called dup and close. They mimic a "handle" API operating on these stackrefs.
Please read Include/internal/pycore_stackref.h for more information!
---------
Co-authored-by: Mark Shannon <9448417+markshannon@users.noreply.github.com>
* Add CALL_PY_GENERAL, CALL_BOUND_METHOD_GENERAL and call CALL_NON_PY_GENERAL specializations.
* Remove CALL_PY_WITH_DEFAULTS specialization
* Use CALL_NON_PY_GENERAL in more cases when otherwise failing to specialize
The code for Tier 2 is now only compiled when configured
with `--enable-experimental-jit[=yes|interpreter]`.
We drop support for `PYTHON_UOPS` and -`Xuops`,
but you can disable the interpreter or JIT
at runtime by setting `PYTHON_JIT=0`.
You can also build it without enabling it by default
using `--enable-experimental-jit=yes-off`;
enable with `PYTHON_JIT=1`.
On Windows, the `build.bat` script supports
`--experimental-jit`, `--experimental-jit-off`,
`--experimental-interpreter`.
In the C code, `_Py_JIT` is defined as before
when the JIT is enabled; the new variable
`_Py_TIER2` is defined when the JIT *or* the
interpreter is enabled. It is actually a bitmask:
1: JIT; 2: default-off; 4: interpreter.
Makes sys.settrace, sys.setprofile, and monitoring generally thread-safe.
Mostly uses a stop-the-world approach and synchronization around the code object's _co_instrumentation_version. There may be a little bit of extra synchronization around the monitoring data that's required to be TSAN clean.
We were under-counting calls in `_PyEvalFramePushAndInit`
because the `CALL_STAT_INC` macro was redefined to a no-op
for the Tier 2 interpreter. The fix is not to `#undef` it at all.
This results in ~37% more "Frames pushed" reported
under "Call stats".
Introduce a unified 16-bit backoff counter type (``_Py_BackoffCounter``),
shared between the Tier 1 adaptive specializer and the Tier 2 optimizer. The
API used for adaptive specialization counters is changed but the behavior is
(supposed to be) identical.
The behavior of the Tier 2 counters is changed:
- There are no longer dynamic thresholds (we never varied these).
- All counters now use the same exponential backoff.
- The counter for ``JUMP_BACKWARD`` starts counting down from 16.
- The ``temperature`` in side exits starts counting down from 64.
* Rename `_testinternalcapi.get_{uop,counter}_optimizer` to `new_*_optimizer`
* Use `_PyUOpName()` instead of` _PyOpcode_uop_name[]`
* Add `target` to executor iterator items -- `list(ex)` now returns `(opcode, oparg, target, operand)` quadruples
* Add executor methods `get_opcode()` and `get_oparg()` to get `vmdata.opcode`, `vmdata.oparg`
* Define a helper for printing uops, and unify various places where they are printed
* Add a hack to summarize_stats.py to fix legacy uop names (e.g. `POP_TOP` -> `_POP_TOP`)
* Define helpers in `test_opt.py` for accessing the set or list of opnames of an executor
This change adds an `eval_breaker` field to `PyThreadState`. The primary
motivation is for performance in free-threaded builds: with thread-local eval
breakers, we can stop a specific thread (e.g., for an async exception) without
interrupting other threads.
The source of truth for the global instrumentation version is stored in the
`instrumentation_version` field in PyInterpreterState. Threads usually read the
version from their local `eval_breaker`, where it continues to be colocated
with the eval breaker bits.
Add an option (--enable-experimental-jit for configure-based builds
or --experimental-jit for PCbuild-based ones) to build an
*experimental* just-in-time compiler, based on copy-and-patch (https://fredrikbk.com/publications/copy-and-patch.pdf).
See Tools/jit/README.md for more information on how to install the required build-time tooling.
It was raised in two cases:
* in the import statement when looking up __import__
* in pickling some builtin type when looking up built-ins iter, getattr, etc.
Previously arbitrary errors could be cleared during formatting error
messages for ImportError or AttributeError for modules. Now all
unexpected errors are reported.