(see https://github.com/python/cpython/issues/98608)
This change does the following:
1. change the argument to a new `_PyInterpreterConfig` struct
2. rename the function to `_Py_NewInterpreterFromConfig()`, inspired by `Py_InitializeFromConfig()` (takes a `_PyInterpreterConfig` instead of `isolated_subinterpreter`)
3. split up the boolean `isolated_subinterpreter` into the corresponding multiple granular settings
* allow_fork
* allow_subprocess
* allow_threads
4. add `PyInterpreterState.feature_flags` to store those settings
5. add a function for checking if a feature is enabled on an opaque `PyInterpreterState *`
6. drop `PyConfig._isolated_interpreter`
The existing default (see `Py_NewInterpeter()` and `Py_Initialize*()`) allows fork, subprocess, and threads and the optional "isolated" interpreter (see the `_xxsubinterpreters` module) disables all three. None of that changes here; the defaults are preserved.
Note that the given `_PyInterpreterConfig` will not be used outside `_Py_NewInterpreterFromConfig()`, nor preserved. This contrasts with how `PyConfig` is currently preserved, used, and even modified outside `Py_InitializeFromConfig()`. I'd rather just avoid that mess from the start for `_PyInterpreterConfig`. We can preserve it later if we find an actual need.
This change allows us to follow up with a number of improvements (e.g. stop disallowing subprocess and support disallowing exec instead).
(Note that this PR adds "private" symbols. We'll probably make them public, and add docs, in a separate change.)
This was added for bpo-40514 (gh-84694) to test out a per-interpreter GIL. However, it has since proven unnecessary to keep the experiment in the repo. (It can be done as a branch in a fork like normal.) So here we are removing:
* the configure option
* the macro
* the code enabled by the macro
Previously, the main interpreter was allocated on the heap during runtime initialization. Here we instead embed it into _PyRuntimeState, which means it is statically allocated as part of the _PyRuntime global. The same goes for the initial thread state (of each interpreter, including the main one). Consequently there are fewer allocations during runtime/interpreter init, fewer possible failures, and better memory locality.
FYI, this also helps efforts to consolidate globals, which in turns helps work on subinterpreter isolation.
https://bugs.python.org/issue45953
* Do not PUSH/POP traceback or type to the stack as part of exc_info
* Remove exc_traceback and exc_type from _PyErr_StackItem
* Add to what's new, because this change breaks things like Cython
Previously, basic initialization of PyInterprterState happened in PyInterpreterState_New() (along with allocation and adding the new interpreter to the runtime state). This prevented us from initializing interpreter states that were allocated separately (e.g. statically or in a free list). We've addressed that here by factoring out a separate function just for initialization. We've done the same for PyThreadState. _PyRuntimeState was sorted out when we added it since _PyRuntime is statically allocated. However, here we update the existing init code to line up with the functions for PyInterpreterState and PyThreadState.
https://bugs.python.org/issue46008
PyInterpreterState_Main() is a plain function exposed in the public C-API. For internal usage we can take the more efficient approach in this PR.
https://bugs.python.org/issue46008
This simplifies new_threadstate(). We also rename _PyThreadState_Init() to _PyThreadState_SetCurrent() to reflect what it actually does.
https://bugs.python.org/issue46008
Doing so allows us to stop assigning various fields to `NULL` and 0. It also more closely matches the behavior of a static initializer.
Automerge-Triggered-By: GH:ericsnowcurrently
This parallels _PyRuntimeState.interpreters. Doing this helps make it more clear what part of PyInterpreterState relates to its threads.
https://bugs.python.org/issue46008
This falls into the category of keep-allocation-and-initialization separate. It also allows us to use _PyEval_InitState() safely in functions that return void.
https://bugs.python.org/issue46008
* Make internal APIs that take PyFrameConstructor take a PyFunctionObject instead.
* Add reference to function to frame, borrow references to builtins and globals.
* Add COPY_FREE_VARS instruction to allow specialization of calls to inner functions.
Unlike the other locks reinitialized by _PyRuntimeState_ReInitThreads,
the "interpreters.main->id_mutex" is not freed by _PyRuntimeState_Fini
and should not force the default raw allocator.
Add PyThreadState_EnterTracing() and PyThreadState_LeaveTracing()
functions to the limited C API to suspend and resume tracing and
profiling.
Add an unit test on the PyThreadState C API to _testcapi.
Add also internal _PyThreadState_DisableTracing() and
_PyThreadState_ResetTracing().
Redefining the PyThreadState_GET() macro in pycore_pystate.h is
useless since it doesn't affect files not including it. Either use
_PyThreadState_GET() directly, or don't use pycore_pystate.h internal
C API. For example, the _testcapi extension don't use the internal C
API, but use the public PyThreadState_Get() function instead.
Replace PyThreadState_Get() with _PyThreadState_GET(). The
_PyThreadState_GET() macro is more efficient than PyThreadState_Get()
and PyThreadState_GET() function calls which call fail with a fatal
Python error.
posixmodule.c and _ctypes extension now include <windows.h> before
pycore header files (like pycore_call.h).
_PyTraceback_Add() now uses _PyErr_Fetch()/_PyErr_Restore() instead
of PyErr_Fetch()/PyErr_Restore().
The _decimal and _xxsubinterpreters extensions are now built with the
Py_BUILD_CORE_MODULE macro defined to get access to the internal C
API.
Places the locals between the specials and stack. This is the more "natural" layout for a C struct, makes the code simpler and gives a slight speedup (~1%)
* Convert "specials" array to InterpreterFrame struct, adding f_lasti, f_state and other non-debug FrameObject fields to it.
* Refactor, calls pushing the call to the interpreter upward toward _PyEval_Vector.
* Compute f_back when on thread stack, only filling in value when frame object outlives stack invocation.
* Move ownership of InterpreterFrame in generator from frame object to generator object.
* Do not create frame objects for Python calls.
* Do not create frame objects for generators.
* Remove 'zombie' frames. We won't need them once we are allocating fixed-size frames.
* Add co_nlocalplus field to code object to avoid recomputing size of locals + frees + cells.
* Move locals, cells and freevars out of frame object into separate memory buffer.
* Use per-threadstate allocated memory chunks for local variables.
* Move globals and builtins from frame object to per-thread stack.
* Move (slow) locals frame object to per-thread stack.
* Move internal frame functions to internal header.
* Add Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING, add to all relevant standard builtin classes.
* Set relevant flags on collections.abc.Sequence and Mapping.
* Use flags in MATCH_SEQUENCE and MATCH_MAPPING opcodes.
* Inherit Py_TPFLAGS_SEQUENCE and Py_TPFLAGS_MAPPING.
* Add NEWS
* Remove interpreter-state map_abc and seq_abc fields.