The linked list of objects was a global variable, which broke isolation between interpreters, causing crashes. To solve this, we've moved the linked list to each interpreter.
Remove the following private functions of the C API:
* _PyCodecInfo_GetIncrementalDecoder()
* _PyCodecInfo_GetIncrementalEncoder()
* _PyCodec_DecodeText()
* _PyCodec_EncodeText()
* _PyCodec_Forget()
* _PyCodec_Lookup()
* _PyCodec_LookupTextEncoding()
Move these functions to a new pycore_codecs.h internal header file.
These functions are no longer exported.
Remove the following private functions from the public C API:
* _Py_CheckFunctionResult()
* _PyObject_CallMethod()
* _PyObject_CallMethodId()
* _PyObject_CallMethodIdNoArgs()
* _PyObject_CallMethodIdObjArgs()
* _PyObject_CallMethodIdOneArg()
* _PyObject_MakeTpCall()
* _PyObject_VectorcallMethodId()
* _PyStack_AsDict()
Move these functions to the internal C API (pycore_call.h).
No longer export the following functions:
* _PyObject_Call()
* _PyObject_CallMethod()
* _PyObject_CallMethodId()
* _PyObject_CallMethodIdObjArgs()
* _PyObject_Call_Prepend()
* _PyObject_FastCallDictTstate()
* _PyStack_AsDict()
The following functions are still exported for stdlib shared
extensions:
* _Py_CheckFunctionResult()
* _PyObject_MakeTpCall()
Mark the following internal functions as extern:
* _PyStack_UnpackDict()
* _PyStack_UnpackDict_Free()
* _PyStack_UnpackDict_FreeNoDecRef()
Added a new, experimental, tracing optimizer and interpreter (a.k.a. "tier 2"). This currently pessimizes, so don't use yet -- this is infrastructure so we can experiment with optimizing passes. To enable it, pass ``-Xuops`` or set ``PYTHONUOPS=1``. To get debug output, set ``PYTHONUOPSDEBUG=N`` where ``N`` is a debug level (0-4, where 0 is no debug output and 4 is excessively verbose).
All of this code is likely to change dramatically before the 3.13 feature freeze. But this is a first step.
finalize_modules_clear_weaklist() now holds a strong reference to the
module longer than before: replace PyWeakref_GET_OBJECT() with
_PyWeakref_GET_REF().
* Add table describing possible executable classes for out-of-process debuggers.
* Remove shim code object creation code as it is no longer needed.
* Make lltrace a bit more robust w.r.t. non-standard frames.
For a while now, pending calls only run in the main thread (in the main interpreter). This PR changes things to allow any thread run a pending call, unless the pending call was explicitly added for the main thread to run.
This avoids the problematic race in drop_gil() by skipping the FORCE_SWITCHING code there for finalizing threads.
(The idea for this approach came out of discussions with @markshannon.)
Remove the following old functions to configure the Python
initialization, deprecated in Python 3.11:
* PySys_AddWarnOptionUnicode()
* PySys_AddWarnOption()
* PySys_AddXOption()
* PySys_HasWarnOptions()
* PySys_SetArgvEx()
* PySys_SetArgv()
* PySys_SetPath()
* Py_SetPath()
* Py_SetProgramName()
* Py_SetPythonHome()
* Py_SetStandardStreamEncoding()
* _Py_SetProgramFullPath()
Most of these functions are kept in the stable ABI, except:
* Py_SetStandardStreamEncoding()
* _Py_SetProgramFullPath()
Update Doc/extending/embedding.rst and Doc/extending/extending.rst to
use the new PyConfig API.
_testembed.c:
* check_stdio_details() now sets stdio_encoding and stdio_errors
of PyConfig.
* Add definitions of functions removed from the API but kept in the
stable ABI.
* test_init_from_config() and test_init_read_set() now use
PyConfig_SetString() instead of PyConfig_SetBytesString().
Remove _Py_ClearStandardStreamEncoding() internal function.
This implements PEP 695, Type Parameter Syntax. It adds support for:
- Generic functions (def func[T](): ...)
- Generic classes (class X[T](): ...)
- Type aliases (type X = ...)
- New scoping when the new syntax is used within a class body
- Compiler and interpreter changes to support the new syntax and scoping rules
Co-authored-by: Marc Mueller <30130371+cdce8p@users.noreply.github.com>
Co-authored-by: Eric Traut <eric@traut.com>
Co-authored-by: Larry Hastings <larry@hastings.org>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
We also add PyInterpreterState.ceval.own_gil to record if the interpreter actually has its own GIL.
Note that for now we don't actually respect own_gil; all interpreters still share the one GIL. However, PyInterpreterState.ceval.own_gil does reflect PyInterpreterConfig.own_gil. That lie is a temporary one that we will fix when the GIL really becomes per-interpreter.
This function no longer makes sense, since its runtime parameter is
no longer used. Use directly _PyThreadState_GET() and
_PyInterpreterState_GET() instead.
We also expose PyInterpreterConfig. This is part of the PEP 684 (per-interpreter GIL) implementation. We will add docs as soon as we can.
FYI, I'm adding the new config field for per-interpreter GIL in gh-99114.
This is strictly about moving the "obmalloc" runtime state from
`_PyRuntimeState` to `PyInterpreterState`. Doing so improves isolation
between interpreters, specifically most of the memory (incl. objects)
allocated for each interpreter's use. This is important for a
per-interpreter GIL, but such isolation is valuable even without it.
FWIW, a per-interpreter obmalloc is the proverbial
canary-in-the-coalmine when it comes to the isolation of objects between
interpreters. Any object that leaks (unintentionally) to another
interpreter is highly likely to cause a crash (on debug builds at
least). That's a useful thing to know, relative to interpreter
isolation.
This is the implementation of PEP683
Motivation:
The PR introduces the ability to immortalize instances in CPython which bypasses reference counting. Tagging objects as immortal allows up to skip certain operations when we know that the object will be around for the entire execution of the runtime.
Note that this by itself will bring a performance regression to the runtime due to the extra reference count checks. However, this brings the ability of having truly immutable objects that are useful in other contexts such as immutable data sharing between sub-interpreters.
The function is like Py_AtExit() but for a single interpreter. This is a companion to the atexit module's register() function, taking a C callback instead of a Python one.
We also update the _xxinterpchannels module to use _Py_AtExit(), which is the motivating case. (This is inspired by pain points felt while working on gh-101660.)
This reverts commit 87be8d9.
This approach to keeping the interned strings safe is turning out to be too complex for my taste (due to obmalloc isolation). For now I'm going with the simpler solution, making the dict per-interpreter. We can revisit that later if we want a sharing solution.
This is effectively two changes. The first (the bulk of the change) is where we add _Py_AddToGlobalDict() (and _PyRuntime.cached_objects.main_tstate, etc.). The second (much smaller) change is where we update PyUnicode_InternInPlace() to use _Py_AddToGlobalDict() instead of calling PyDict_SetDefault() directly.
Basically, _Py_AddToGlobalDict() is a wrapper around PyDict_SetDefault() that should be used whenever we need to add a value to a runtime-global dict object (in the few cases where we are leaving the container global rather than moving it to PyInterpreterState, e.g. the interned strings dict). _Py_AddToGlobalDict() does all the necessary work to make sure the target global dict is shared safely between isolated interpreters. This is especially important as we move the obmalloc state to each interpreter (gh-101660), as well as, potentially, the GIL (PEP 684).
https://github.com/python/cpython/issues/100227
Aside from sys and builtins, _io is the only core builtin module that hasn't been ported to multi-phase init. We may do so later (e.g. gh-101948), but in the meantime we must at least take care of the module's static types properly. (This came up while working on gh-101660.)
https://github.com/python/cpython/issues/94673
The error-handling code in new_interpreter() has been broken for a while. We hadn't noticed because those code mostly doesn't fail. (I noticed while working on gh-101660.) The problem is that we try to clear/delete the newly-created thread/interpreter using itself, which just failed. The solution is to switch back to the calling thread state first.
https://github.com/python/cpython/issues/98608
Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
Prior to this change, errors in _Py_NewInterpreterFromConfig() were always fatal. Instead, callers should be able to handle such errors and keep going. That's what this change supports. (This was an oversight in the original implementation of _Py_NewInterpreterFromConfig().) Note that the existing [fatal] behavior of the public Py_NewInterpreter() is preserved.
https://github.com/python/cpython/issues/98608
The essentially eliminates the global variable, with the associated benefits. This is also a precursor to isolating this bit of state to PyInterpreterState.
Folks that currently read _Py_RefTotal directly would have to start using _Py_GetGlobalRefTotal() instead.
https://github.com/python/cpython/issues/102304
Add `MS_WINDOWS_DESKTOP`, `MS_WINDOWS_APPS`, `MS_WINDOWS_SYSTEM` and `MS_WINDOWS_GAMES` preprocessor definitions to allow switching off functionality missing from particular API partitions ("partitions" are used in Windows to identify overlapping subsets of APIs).
CPython only officially supports `MS_WINDOWS_DESKTOP` and `MS_WINDOWS_SYSTEM` (APPS is included by normal desktop builds, but APPS without DESKTOP is not covered). Other configurations are a convenience for people building their own runtimes.
`MS_WINDOWS_GAMES` is for the Xbox subset of the Windows API, which is also available on client OS, but is restricted compared to `MS_WINDOWS_DESKTOP`. These restrictions may change over time, as they relate to the build headers rather than the OS support, and so we assume that Xbox builds will use the latest available version of the GDK.
Enforcing (optionally) the restriction set by PEP 489 makes sense. Furthermore, this sets the stage for a potential restriction related to a per-interpreter GIL.
This change includes the following:
* add tests for extension module subinterpreter compatibility
* add _PyInterpreterConfig.check_multi_interp_extensions
* add Py_RTFLAGS_MULTI_INTERP_EXTENSIONS
* add _PyImport_CheckSubinterpIncompatibleExtensionAllowed()
* fail iff the module does not implement multi-phase init and the current interpreter is configured to check
https://github.com/python/cpython/issues/98627
This change is almost entirely moving code around and hiding import state behind internal API. We introduce no changes to behavior, nor to non-internal API. (Since there was already going to be a lot of churn, I took this as an opportunity to re-organize import.c into topically-grouped sections of code.) The motivation is to simplify a number of upcoming changes.
Specific changes:
* move existing import-related code to import.c, wherever possible
* add internal API for interacting with import state (both global and per-interpreter)
* use only API outside of import.c (to limit churn there when changing the location, etc.)
* consolidate the import-related state of PyInterpreterState into a single struct field (this changes layout slightly)
* add macros for import state in import.c (to simplify changing the location)
* group code in import.c into sections
*remove _PyState_AddModule()
https://github.com/python/cpython/issues/101758
A PyThreadState can be in one of many states in its lifecycle, represented by some status value. Those statuses haven't been particularly clear, so we're addressing that here. Specifically:
* made the distinct lifecycle statuses clear on PyThreadState
* identified expectations of how various lifecycle-related functions relate to status
* noted the various places where those expectations don't match the actual behavior
At some point we'll need to address the mismatches.
(This change also includes some cleanup.)
https://github.com/python/cpython/issues/59956
The objective of this change is to help make the GILState-related code easier to understand. This mostly involves moving code around and some semantically equivalent refactors. However, there are a also a small number of slight changes in structure and behavior:
* tstate_current is moved out of _PyRuntimeState.gilstate
* autoTSSkey is moved out of _PyRuntimeState.gilstate
* autoTSSkey is initialized earlier
* autoTSSkey is re-initialized (after fork) earlier
https://github.com/python/cpython/issues/59956
Fix a number of compile errors with GCC-12 on macOS:
1. In pylifecycle.c the compile rejects _Pragma within a declaration
2. posixmodule.c was missing a number of ..._RUNTIME macros for non-clang on macOS
3. _ctypes assumed that __builtin_available is always present on macOS