Every PyThreadState instance is now actually a _PyThreadStateImpl.
It is safe to cast from `PyThreadState*` to `_PyThreadStateImpl*` and back.
The _PyThreadStateImpl will contain fields that we do not want to expose
in the public C API.
This moves several general internal APIs out of _xxsubinterpretersmodule.c and into the new Python/crossinterp.c (and the corresponding internal headers).
Specifically:
* _Py_excinfo, etc.: the initial implementation for non-object exception snapshots (in pycore_pyerrors.h and Python/errors.c)
* _PyXI_exception_info, etc.: helpers for passing an exception beween interpreters (wraps _Py_excinfo)
* _PyXI_namespace, etc.: helpers for copying a dict of attrs between interpreters
* _PyXI_Enter(), _PyXI_Exit(): functions that abstract out the transitions between one interpreter and a second that will do some work temporarily
Again, these were all abstracted out of _xxsubinterpretersmodule.c as generalizations. I plan on proposing these as public API at some point.
This is partly to clear this stuff out of pystate.c, but also in preparation for moving some code out of _xxsubinterpretersmodule.c. This change also moves this stuff to the internal API (new: Include/internal/pycore_crossinterp.h). @vstinner did this previously and I undid it. Now I'm re-doing it. :/
We do the following:
* add a per-interpreter XID registry (PyInterpreterState.xidregistry)
* put heap types there (keep static types in _PyRuntimeState.xidregistry)
* clear the registries during interpreter/runtime finalization
* avoid duplicate entries in the registry (when _PyCrossInterpreterData_RegisterClass() is called more than once for a type)
* use Py_TYPE() instead of PyObject_Type() in _PyCrossInterpreterData_Lookup()
The per-interpreter registry helps preserve isolation between interpreters. This is important when heap types are registered, which is something we haven't been doing yet but I will likely do soon.
The existence of background threads running on a subinterpreter was preventing interpreters from getting properly destroyed, as well as impacting the ability to run the interpreter again. It also affected how we wait for non-daemon threads to finish.
We add PyInterpreterState.threads.main, with some internal C-API functions.
pycore_create_interpreter() now returns a status, rather than
calling Py_FatalError().
* PyInterpreterState_New() now calls Py_ExitStatusException() instead
of calling Py_FatalError() directly.
* Replace Py_FatalError() with PyStatus in init_interpreter() and
_PyObject_InitState().
* _PyErr_SetFromPyStatus() now raises RuntimeError, instead of
ValueError. It can now call PyErr_NoMemory(), raise MemoryError,
if it detects _PyStatus_NO_MEMORY() error message.
No longer export these 5 internal C API functions:
* _PyArena_AddPyObject()
* _PyArena_Free()
* _PyArena_Malloc()
* _PyArena_New()
* _Py_FatalRefcountErrorFunc()
Change comment style to "// comment" and add comment explaining why
other functions have to be exported.
* Add missing includes.
* Remove unused includes.
* Update old include/symbol names to newer names.
* Mention at least one included symbol.
* Sort includes.
* Update Tools/cases_generator/generate_cases.py used to generated
pycore_opcode_metadata.h.
* Update Parser/asdl_c.py used to generate pycore_ast.h.
* Cleanup also includes in _testcapimodule.c and _testinternalcapi.c.
The _xxsubinterpreters module should not rely on internal API. Some of the functions it uses were recently moved there however. Here we move them back (and expose them properly).
No longer export these 2 internal C API functions:
* _PyEval_SignalAsyncExc()
* _PyEval_SignalReceived()
Add also comments explaining why some internal functions have to be
exported, and update existing comments.
Rename private C API constants:
* Rename PY_MONITORING_UNGROUPED_EVENTS to _PY_MONITORING_UNGROUPED_EVENTS
* Rename PY_MONITORING_EVENTS to _PY_MONITORING_EVENTS
Remove private _PyThreadState and _PyInterpreterState C API
functions: move them to the internal C API (pycore_pystate.h and
pycore_interp.h). Don't export most of these functions anymore, but
still export functions used by tests.
Remove _PyThreadState_Prealloc() and _PyThreadState_Init() from the C
API, but keep it in the stable API.
* Add table describing possible executable classes for out-of-process debuggers.
* Remove shim code object creation code as it is no longer needed.
* Make lltrace a bit more robust w.r.t. non-standard frames.
This is the culmination of PEP 684 (and of my 8-year long multi-core Python project)!
Each subinterpreter may now be created with its own GIL (via Py_NewInterpreterFromConfig()). If not so configured then the interpreter will share with the main interpreter--the status quo since subinterpreters were added decades ago. The main interpreter always has its own GIL and subinterpreters from Py_NewInterpreter() will always share with the main interpreter.
This is strictly about moving the "obmalloc" runtime state from
`_PyRuntimeState` to `PyInterpreterState`. Doing so improves isolation
between interpreters, specifically most of the memory (incl. objects)
allocated for each interpreter's use. This is important for a
per-interpreter GIL, but such isolation is valuable even without it.
FWIW, a per-interpreter obmalloc is the proverbial
canary-in-the-coalmine when it comes to the isolation of objects between
interpreters. Any object that leaks (unintentionally) to another
interpreter is highly likely to cause a crash (on debug builds at
least). That's a useful thing to know, relative to interpreter
isolation.
* The majority of the monitoring code is in instrumentation.c
* The new instrumentation bytecodes are in bytecodes.c
* legacy_tracing.c adapts the new API to the old sys.setrace and sys.setprofile APIs
The function is like Py_AtExit() but for a single interpreter. This is a companion to the atexit module's register() function, taking a C callback instead of a Python one.
We also update the _xxinterpchannels module to use _Py_AtExit(), which is the motivating case. (This is inspired by pain points felt while working on gh-101660.)
Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
It doesn't make sense to use multi-phase init for these modules. Using a per-interpreter "m_copy" (instead of PyModuleDef.m_base.m_copy) makes this work okay. (This came up while working on gh-101660.)
Note that we might instead end up disallowing re-load for sys/builtins since they are so special.
https://github.com/python/cpython/issues/102660
This change is almost entirely moving code around and hiding import state behind internal API. We introduce no changes to behavior, nor to non-internal API. (Since there was already going to be a lot of churn, I took this as an opportunity to re-organize import.c into topically-grouped sections of code.) The motivation is to simplify a number of upcoming changes.
Specific changes:
* move existing import-related code to import.c, wherever possible
* add internal API for interacting with import state (both global and per-interpreter)
* use only API outside of import.c (to limit churn there when changing the location, etc.)
* consolidate the import-related state of PyInterpreterState into a single struct field (this changes layout slightly)
* add macros for import state in import.c (to simplify changing the location)
* group code in import.c into sections
*remove _PyState_AddModule()
https://github.com/python/cpython/issues/101758
* Add API to allow extensions to set callback function on creation and destruction of PyCodeObject
Co-authored-by: Ye11ow-Flash <janshah@cs.stonybrook.edu>