The presence of this macro indicates that a particular instruction
may be considered for conversion to a register-based format
(see https://github.com/faster-cpython/ideas/issues/485).
An invariant (currently unchecked) is that `DEOPT_IF()` may only
occur *before* `DECREF_INPUTS()`, and `ERROR_IF()` may only occur
*after* it. One reason not to check this is that there are a few
places where we insert *two* `DECREF_INPUTS()` calls, in different
branches of the code. The invariant checking would have to be able
to do some flow control analysis to understand this.
Note that many instructions, especially specialized ones,
can't be converted to use this macro straightforwardly.
This is because the generator currently only generates plain
`Py_DECREF(variable)` statements, and cannot generate
things like `_Py_DECREF_SPECIALIZED()` let alone deal with
`_PyList_AppendTakeRef()`.
We can't move it to _PyRuntimeState because the symbol is exposed in the stable ABI. We'll have to sort that out before a per-interpreter GIL, but it shouldn't be too hard.
https://github.com/python/cpython/issues/81057
Stack effects can now have a type, e.g. `inst(X, (left, right -- jump/uint64_t)) { ... }`.
Instructions converted to the non-legacy format:
* COMPARE_OP
* COMPARE_OP_FLOAT_JUMP
* COMPARE_OP_INT_JUMP
* COMPARE_OP_STR_JUMP
* STORE_ATTR
* DELETE_ATTR
* STORE_GLOBAL
* STORE_ATTR_INSTANCE_VALUE
* STORE_ATTR_WITH_HINT
* STORE_ATTR_SLOT, and complete the store_attr family
* Complete the store_subscr family: STORE_SUBSCR{,DICT,LIST_INT}
(STORE_SUBSCR was alread half converted,
but wasn't using cache effects yet.)
* DELETE_SUBSCR
* PRINT_EXPR
* INTERPRETER_EXIT (a bit weird, ends in return)
* RETURN_VALUE
* GET_AITER (had to restructure it some)
The original had mysterious `SET_TOP(NULL)` before `goto error`.
I assume those just account for `obj` having been decref'ed,
so I got rid of them in favor of the cleanup implied by `ERROR_IF()`.
* LIST_APPEND (a bit unhappy with it)
* SET_ADD (also a bit unhappy with it)
Various other improvements/refactorings as well.
Newly supported interpreter definition syntax:
- `op(NAME, (input_stack_effects -- output_stack_effects)) { ... }`
- `macro(NAME) = OP1 + OP2;`
Also some other random improvements:
- Convert `WITH_EXCEPT_START` to use stack effects
- Fix lexer to balk at unrecognized characters, e.g. `@`
- Fix moved output names; support object pointers in cache
- Introduce `error()` method to print errors
- Introduce read_uint16(p) as equivalent to `*p`
Co-authored-by: Brandt Bucher <brandtbucher@gmail.com>
This is part of the effort to consolidate global variables, to make them easier to manage (and make it easier to later move some of them to PyInterpreterState).
https://github.com/python/cpython/issues/81057
We actually don't move PyImport_Inittab. Instead, we make a copy that we keep on _PyRuntimeState and use only that after Py_Initialize(). We also prevent folks from modifying PyImport_Inittab (the best we can) after that point.
https://github.com/python/cpython/issues/81057
The global allocators were stored in 3 static global variables: _PyMem_Raw, _PyMem, and _PyObject. State for the "small block" allocator was stored in another 13. That makes a total of 16 global variables. We are moving all 16 to the _PyRuntimeState struct as part of the work for gh-81057. (If PEP 684 is accepted then we will follow up by moving them all to PyInterpreterState.)
https://github.com/python/cpython/issues/81057
As we consolidate global variables, we find some objects that are almost suitable to add to _PyRuntimeState.global_objects, but have some small/sneaky bit of per-interpreter state (e.g. a weakref list). We're adding PyInterpreterState.static_objects so we can move such objects there. (We'll removed the _not_used field once we've added others.)
https://github.com/python/cpython/issues/81057
Up until now we had a single generated initializer macro for all the statically declared global objects in _PyRuntimeState, including several one-offs (e.g. the empty tuple). The one-offs don't need to be generated, but were because we had one big initializer. Having separate initializers for set of generated global objects allows us to generate only the ones we need to. This allows us to add initializers for one-off global objects without having to generate them.
https://github.com/python/cpython/issues/81057