We make use of the same mechanism that we use for the static builtin types. This required a few tweaks.
The relevant code could use some cleanup but I opted to avoid the significant churn in this change. I'll tackle that separately.
This change is the final piece needed to make _datetime support multiple interpreters. I've updated the module slot accordingly.
Remove the delegation of `int` to the `__trunc__` special method: `int` will now only delegate to `__int__` and `__index__` (in that order). `__trunc__` continues to exist, but its sole purpose is to support `math.trunc`.
---------
Co-authored-by: Bénédikt Tran <10796600+picnixz@users.noreply.github.com>
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Implement `shutil._rmtree_safe_fd()` using a list as a stack to avoid emitting recursion errors on deeply nested trees.
`shutil._rmtree_unsafe()` was fixed in a150679f90.
Support non-dict globals in LOAD_FROM_DICT_OR_GLOBALS
The implementation basically copies LOAD_GLOBAL. Possibly it could be deduplicated,
but that seems like it may get hairy since the two operations have different operands.
This is important to fix in 3.14 for PEP 649, but it's a bug in earlier versions too,
and we should backport to 3.13 and 3.12 if possible.
Release the GIL before calling `_Py_qsbr_unregister`.
The deadlock could occur when the GIL was enabled at runtime. The
`_Py_qsbr_unregister` call might block while holding the GIL because the
thread state was not active, but the GIL was still held.
Make sure that `gilstate_counter` is not zero in when calling
`PyThreadState_Clear()`. A destructor called from `PyThreadState_Clear()` may
call back into `PyGILState_Ensure()` and `PyGILState_Release()`. If
`gilstate_counter` is zero, it will try to create a new thread state before
the current active thread state is destroyed, leading to an assertion failure
or crash.
When using the ** operator or pow() with Fraction as the base
and an exponent that is not rational, a float, or a complex, the
fraction is no longer converted to a float.
Some of standard Tcl types were renamed, removed, or no longer
registered in Tcl 8.7/9.0. This change fixes automatic conversion of Tcl
values to Python values to avoid returning a Tcl_Obj where the primary
Python types (int, bool, str, bytes) were returned in older Tcl.
* Passing a string as the "real" keyword argument is now an error;
it should only be passed as a single positional argument.
* Passing a complex number as the "real" or "imag" argument is now deprecated;
it should only be passed as a single positional argument.
Make `shutil._rmtree_unsafe()` call `os.walk()`, which is implemented
without recursion.
`shutil._rmtree_safe_fd()` is not affected and can still raise a recursion
error.
Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com>
The deadlock only affected the free-threaded build and only occurred
when the GIL was enabled at runtime. The `Py_DECREF(old_name)` call
might temporarily release the GIL while holding the type seqlock.
Another thread may spin trying to acquire the seqlock while holding the
GIL.
The deadlock occurred roughly 1 in ~1,000 runs of `pool_in_threads.py`
from `test_multiprocessing_pool_circular_import`.
If one calls pow(fractions.Fraction, x, module) with modulo not None, the error message now says that the types are incompatible rather than saying pow only takes 2 arguments. Implemented by having fractions.Fraction __pow__ accept optional modulo argument and return NotImplemented if not None. pow() then raises with appropriate message.
---------
Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
* gh-118673: Remove shebang and executable bits from stdlib modules.
* Removed shebangs and exe bits on turtledemo scripts.
The setting was inappropriate for '__main__' and inconsistent across the other modules. The scripts can still be executed directly by invoking with the desired interpreter.
Co-authored-by: Hugo van Kemenade <1324225+hugovk@users.noreply.github.com>
Co-authored-by: Erlend E. Aasland <erlend.aasland@protonmail.com>
Co-authored-by: Victor Stinner <vstinner@python.org>
Structure layout, and especially bitfields, sometimes resulted in clearly
wrong behaviour like overlapping fields. This fixes
Co-authored-by: Gregory P. Smith <gps@python.org>
Co-authored-by: Petr Viktorin <encukou@gmail.com>
* gh-119118: Fix performance regression in tokenize module
- Cache line object to avoid creating a Unicode object
for all of the tokens in the same line.
- Speed up byte offset to column offset conversion by using the
smallest buffer possible to measure the difference.
Co-authored-by: Pablo Galindo <pablogsal@gmail.com>
pathlib now treats "`.`" as a valid file extension (suffix). This brings
it in line with `os.path.splitext()`.
In the (private) pathlib ABCs, we add a new `ParserBase.splitext()` method
that splits a path into a `(root, ext)` pair, like `os.path.splitext()`.
This method is called by `PurePathBase.stem`, `suffix`, etc. In a future
version of pathlib, we might make these base classes public, and so users
will be able to define their own `splitext()` method to control file
extension splitting.
In `pathlib.PurePath` we add optimised `stem`, `suffix` and `suffixes`
properties that don't use `splitext()`, which avoids computing the path
base name twice.
The assertion was added in gh-118532 but was based on the invalid assumption that PyState_FindModule() would only be called with an already-initialized module def. I've added a test to make sure we don't make that assumption again.
``_fancy_replace()`` is no longer recursive. and a single call does a worst-case linear number of ratio() computations instead of quadratic. This renders toothless a universe of pathological cases. Some inputs may produce different output, but that's rare, and I didn't find a case where the final diff appeared to be of materially worse quality. To the contrary, by refusing to even consider synching on lines "far apart", there was more easy-to-digest locality in the output.
Add socket.VMADDR_CID_LOCAL constant.
Fix ThreadedVSOCKSocketStreamTest: if get_cid() returns the host
address or the "any" address, use the local communication address
(loopback): VMADDR_CID_LOCAL.
On Linux 6.9, apparently, the /dev/vsock device is now available but
get_cid() returns VMADDR_CID_ANY (-1).
ensurepip forks a subprocess to run pip itself, but that subprocess only inherits a -I isolated mode flag (see _run_pip() in Lib/ensurepip/__init__.py), not the "-E -s" flags that the installer has been using. This means that parts of ensurepip don't actually run in an isolated environment and can make incorrect decisions based on packages installed in the user site-packages.
Add `Py_BEGIN_CRITICAL_SECTION_SEQUENCE_FAST` and
`Py_END_CRITICAL_SECTION_SEQUENCE_FAST` macros and update `str.join` to use
them. Also add a regression test that would crash reliably without this
patch.
_PyArg_Parser holds static global data generated for modules by Argument Clinic. The _PyArg_Parser.kwtuple field is a tuple object, even though it's stored within a static global. In some cases the tuple is statically allocated and thus it's okay that it gets shared by multiple interpreters. However, in other cases the tuple is set lazily, allocated from the heap using the active interprepreter at the point the tuple is needed.
This is a problem once that interpreter is destroyed since _PyArg_Parser.kwtuple becomes at dangling pointer, leading to crashes. It isn't a problem if the tuple is allocated under the main interpreter, since its lifetime is bound to the lifetime of the runtime. The solution here is to temporarily switch to the main interpreter. The alternative would be to always statically allocate the tuple.
This change also fixes a bug where only the most recent parser was added to the global linked list.
Fix regression introduced in gh-100884: AttributeError when re-fold a long
address list.
Also fix more cases of incorrect encoding of the address separator in the
address list missed in gh-100884.
* bpo-15987: Implement ast.compare
Add a compare() function that compares two ASTs for structural equality. There are two set of attributes on AST node objects, fields and attributes. The fields are always compared, since they represent the actual structure of the code. The attributes can be optionally be included in the comparison. Attributes capture things like line numbers of column offsets, so comparing them involves test whether the layout of the program text is the same. Since whitespace seems inessential for comparing ASTs, the default is to compare fields but not attributes.
ASTs are just Python objects that can be modified in arbitrary ways. The API for ASTs is under-specified in the presence of user modifications to objects. The comparison respects modifications to fields and attributes, and to _fields and _attributes attributes. A user could create obviously malformed objects, and the code will probably fail with an AttributeError when that happens. (For example, adding "spam" to _fields but not adding a "spam" attribute to the object.)
Co-authored-by: Jeremy Hylton <jeremy@alum.mit.edu>
The PEP 649 implementation will require a way to load NotImplementedError
from the bytecode. @markshannon suggested implementing this by converting
LOAD_ASSERTION_ERROR into a more general mechanism for loading constants.
This PR adds this new opcode. I will work on the rest of the implementation
of the PEP separately.
Co-authored-by: Irit Katriel <1055913+iritkatriel@users.noreply.github.com>
regrtest test runner: Add XML support to the refleak checker
(-R option).
* run_unittest() now stores XML elements as string, rather than
objects, in support.junit_xml_list.
* runtest_refleak() now saves/restores XML strings before/after
checking for reference leaks. Save XML into a temporary file.
* Fix for email.generator.Generator with whitespace between encoded words.
email.generator.Generator currently does not handle whitespace between
encoded words correctly when the encoded words span multiple lines. The
current generator will create an encoded word for each line. If the end
of the line happens to correspond with the end real word in the
plaintext, the generator will place an unencoded space at the start of
the subsequent lines to represent the whitespace between the plaintext
words.
A compliant decoder will strip all the whitespace from between two
encoded words which leads to missing spaces in the round-tripped
output.
The fix for this is to make sure that whitespace between two encoded
words ends up inside of one or the other of the encoded words. This
fix places the space inside of the second encoded word.
A second problem happens with continuation lines. A continuation line that
starts with whitespace and is followed by a non-encoded word is fine because
the newline between such continuation lines is defined as condensing to
a single space character. When the continuation line starts with whitespace
followed by an encoded word, however, the RFCs specify that the word is run
together with the encoded word on the previous line. This is because normal
words are filded on syntactic breaks by encoded words are not.
The solution to this is to add the whitespace to the start of the encoded word
on the continuation line.
Test cases are from #92081
* Rename a variable so it's not confused with the final variable.
Code from https://github.com/pulkin, in PR
https://github.com/python/cpython/pull/119131
Greatly speeds `Differ` when there are many identically scoring pairs, by splitting the recursion near the inputs' midpoints instead of degenerating (as now) into just peeling off the first two lines.
Co-authored-by: Tim Peters <tim.peters@gmail.com>
Asymptotically faster (O(n log n)) str->int for very large strings, leveraging the faster multiplication scheme in the C-coded `_decimal` when available. This is used instead of the current Karatsuba-limited method starting at 2 million digits.
Lots of opportunity remains for fine-tuning. Good targets include changing BYTELIM, and possibly changing the internal output base (from 256 to a higher number of bytes).
Doing this was substantial work, and many of the new lines are actually comments giving correctness proofs. The obvious approaches sticking to integers were too slow to be useful, so this is doing variable-precision decimal floating-point arithmetic. Much faster, but worst-possible rounding errors have to be wholly accounted for, using as little precision as possible.
Special thanks to Serhiy Storchaka for asking many good questions in his code reviews!
Co-authored-by: Jelle Zijlstra <jelle.zijlstra@gmail.com>
Co-authored-by: sstandre <43125375+sstandre@users.noreply.github.com>
Co-authored-by: Pieter Eendebak <pieter.eendebak@gmail.com>
Co-authored-by: Nice Zombies <nineteendo19d0@gmail.com>