When I added the relevant condition to type_ready_set_bases() in gh-103912, I had missed that the function also sets tp_base and ob_type (if necessary). That led to problems for third-party static types.
We fix that here, by making those extra operations distinct and by adjusting the condition to be more specific.
In gh-103912 we added tp_bases and tp_mro to each PyInterpreterState.types.builtins entry. However, doing so ignored the fact that both PyTypeObject fields are public API, and not documented as internal (as opposed to tp_subclasses). We address that here by reverting back to shared objects, making them immortal in the process.
This implements PEP 695, Type Parameter Syntax. It adds support for:
- Generic functions (def func[T](): ...)
- Generic classes (class X[T](): ...)
- Type aliases (type X = ...)
- New scoping when the new syntax is used within a class body
- Compiler and interpreter changes to support the new syntax and scoping rules
Co-authored-by: Marc Mueller <30130371+cdce8p@users.noreply.github.com>
Co-authored-by: Eric Traut <eric@traut.com>
Co-authored-by: Larry Hastings <larry@hastings.org>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
his involves moving tp_dict, tp_bases, and tp_mro to PyInterpreterState, in the same way we did for tp_subclasses. Those three fields are effectively const for builtin static types (unlike tp_subclasses). In theory we only need to make their values immortal, along with their contents. However, that isn't such a simple proposition. (See gh-103823.) In the meantime the simplest solution is to move the fields into the interpreter.
One alternative is to statically allocate the values, but that's its own can of worms.
Core static types will continue to use the global value. All other types
will use the per-interpreter value. They all share the same range, where
the global types use values < 2^16 and each interpreter uses values
higher than that.
This speeds up `super()` (by around 85%, for a simple one-level
`super().meth()` microbenchmark) by avoiding allocation of a new
single-use `super()` object on each use.
This is the implementation of PEP683
Motivation:
The PR introduces the ability to immortalize instances in CPython which bypasses reference counting. Tagging objects as immortal allows up to skip certain operations when we know that the object will be around for the entire execution of the runtime.
Note that this by itself will bring a performance regression to the runtime due to the extra reference count checks. However, this brings the ability of having truly immutable objects that are useful in other contexts such as immutable data sharing between sub-interpreters.
* Eliminate all remaining uses of Py_SIZE and Py_SET_SIZE on PyLongObject, adding asserts.
* Change layout of size/sign bits in longobject to support future addition of immortal ints and tagged medium ints.
* Add functions to hide some internals of long object, and for setting sign and digit count.
* Replace uses of IS_MEDIUM_VALUE macro with _PyLong_IsCompact().
Moving it valuable with a per-interpreter GIL. However, it is also useful without one, since it allows us to identify refleaks within a single interpreter or where references are escaping an interpreter. This becomes more important as we move the obmalloc state to PyInterpreterState.
https://github.com/python/cpython/issues/102304
When __getattr__ is defined, python with try to find an attribute using _PyObject_GenericGetAttrWithDict
find nothing is reasonable so we don't need an exception, it will hurt performance.
Found some duplicate `to`s in the documentation and some code comments and fixed them.
[Misc/NEWS.d/3.12.0a1.rst](ed55c69ebd/Misc/NEWS.d/3.12.0a1.rst) also contains two duplicate `to`s, but I wasn't sure if it's ok to touch that file. Looks auto generated. I'm happy to amend the PR if requested. :)
Automerge-Triggered-By: GH:AlexWaygood
* Change _PyDict_KeysSize() and shared_keys_usable_size() return type
from signed (Py_ssize_t) to unsigned (size_t) type.
* new_values() argument type is now unsigned (size_t).
* init_inline_values() now uses size_t rather than int for the 'i'
iterator variable.
* type.__sizeof__() implementation now uses unsigned (size_t) type.