This PR is part of PEP 657 and augments the compiler to emit ending
line numbers as well as starting and ending columns from the AST
into compiled code objects. This allows bytecodes to be correlated
to the exact source code ranges that generated them.
This information is made available through the following public APIs:
* The `co_positions` method on code objects.
* The C API function `PyCode_Addr2Location`.
Co-authored-by: Batuhan Taskaya <isidentical@gmail.com>
Co-authored-by: Ammar Askar <ammar@ammaraskar.com>
Currently, if an arg value escapes (into the closure for an inner function) we end up allocating two indices in the fast locals even though only one gets used. Additionally, using the lower index would be better in some cases, such as with no-arg `super()`. To address this, we update the compiler to fix the offsets so each variable only gets one "fast local". As a consequence, now some cell offsets are interspersed with the locals (only when an arg escapes to an inner function).
https://bugs.python.org/issue43693
This was reverted in GH-26596 (commit 6d518bb) due to some bad memory accesses.
* Add the MAKE_CELL opcode. (gh-26396)
The memory accesses have been fixed.
https://bugs.python.org/issue43693
This moves logic out of the frame initialization code and into the compiler and eval loop. Doing so simplifies the runtime code and allows us to optimize it better.
https://bugs.python.org/issue43693
These were reverted in gh-26530 (commit 17c4edc) due to refleaks.
* 2c1e258 - Compute deref offsets in compiler (gh-25152)
* b2bf2bc - Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)
This change fixes the refleaks.
https://bugs.python.org/issue43693
* Revert "bpo-43693: Compute deref offsets in compiler (gh-25152)"
This reverts commit b2bf2bc1ec.
* Revert "bpo-43693: Add new internal code objects fields: co_fastlocalnames and co_fastlocalkinds. (gh-26388)"
This reverts commit 2c1e2583fd.
These two commits are breaking the refleak buildbots.
Merges locals and cells into a single array.
Saves a pointer in the interpreter and means that we don't need the LOAD_CLOSURE opcode any more
https://bugs.python.org/issue43693
A number of places in the code base (notably ceval.c and frameobject.c) rely on mapping variable names to indices in the frame "locals plus" array (AKA fast locals), and thus opargs. Currently the compiler indirectly encodes that information on the code object as the tuples co_varnames, co_cellvars, and co_freevars. At runtime the dependent code must calculate the proper mapping from those, which isn't ideal and impacts performance-sensitive sections. This is something we can easily address in the compiler instead.
This change addresses the situation by replacing internal use of co_varnames, etc. with a single combined tuple of names in locals-plus order, along with a minimal array mapping each to its kind (local vs. cell vs. free). These two new PyCodeObject fields, co_fastlocalnames and co_fastllocalkinds, are not exposed to Python code for now, but co_varnames, etc. are still available with the same values as before (though computed lazily).
Aside from the (mild) performance impact, there are a number of other benefits:
* there's now a clear, direct relationship between locals-plus and variables
* code that relies on the locals-plus-to-name mapping is simpler
* marshaled code objects are smaller and serialize/de-serialize faster
Also note that we can take this approach further by expanding the possible values in co_fastlocalkinds to include specific argument types (e.g. positional-only, kwargs). Doing so would allow further speed-ups in _PyEval_MakeFrameVector(), which is where args get unpacked into the locals-plus array. It would also allow us to shrink marshaled code objects even further.
https://bugs.python.org/issue43693
"Zero cost" exception handling.
* Uses a lookup table to determine how to handle exceptions.
* Removes SETUP_FINALLY and POP_TOP block instructions, eliminating (most of) the runtime overhead of try statements.
* Reduces the size of the frame object by about 60%.
* Add length parameter to PyLineTable_InitAddressRange and doen't use sentinel values at end of table. Makes the line number table more robust.
* Update PyCodeAddressRange to match PEP 626.
* Handle check for sending None to starting generator and coroutine into bytecode.
* Document new bytecode and make it fail gracefully if mis-compiled.
* Use instruction offset, rather than bytecode offset. Streamlines interpreter dispatch a bit, and removes most EXTENDED_ARGs for jumps.
* Change some uses of PyCode_Addr2Line to PyFrame_GetLineNumber
* Unify behavior in ResourceReaderDefaultsTests and align with the behavior found in importlib_resources.
* Equip NamespaceLoader with a NamespaceReader.
* Apply changes from importlib_resources 5.0.4
Reduce memory footprint and improve performance of loading modules having many func annotations.
>>> sys.getsizeof({"a":"int","b":"int","return":"int"})
232
>>> sys.getsizeof(("a","int","b","int","return","int"))
88
The tuple is converted into dict on the fly when `func.__annotations__` is accessed first.
Co-authored-by: Serhiy Storchaka <storchaka@gmail.com>
Co-authored-by: Inada Naoki <songofacandy@gmail.com>
Use @staticmethod on methods using @classmethod but don't use their
cls parameter on the following classes:
* BuiltinImporter
* FrozenImporter
* WindowsRegistryFinder
* PathFinder
Leave methods using @_requires_builtin or @_requires_frozen unchanged,
since this decorator requires the wrapped method to have an extra parameter
(cls or self).
Simplify the importlib external bootstrap code:
importlib._bootstrap_external now uses regular imports to import
builtin modules. When it is imported, the builtin __import__()
function is already fully working and so can be used to import
builtin modules like sys.
* Provide native .files support on SourceFileLoader.
* Add native importlib.resources.files() support to zipimporter. Remove fallback support.
* make regen-all
* 📜🤖 Added by blurb_it.
* Move 'files' into the ResourceReader so it can carry the relevant module name context.
* Create 'importlib.readers' module and add FileReader to it.
* Add zip reader and rely on it for a TraversableResources object on zipimporter.
* Remove TraversableAdapter, no longer needed.
* Update blurb.
* Replace backslashes with forward slashes.
* Incorporate changes from importlib_metadata 2.0, finalizing the interface for extension via get_resource_reader.
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
Remove two unused imports: _thread and _weakref. Avoid creating a new
winreg builtin module if it's already available in sys.modules.
The winreg module is now stored as "winreg" rather than "_winreg".
* Hard reset + cherry piciking the changes.
* 📜🤖 Added by blurb_it.
* Added @vstinner News
* Update Misc/NEWS.d/next/Library/2020-02-11-13-01-38.bpo-38691.oND8Sk.rst
Co-Authored-By: Victor Stinner <vstinner@python.org>
* Hard reset to master
* Hard reset to master + latest changes
Co-authored-by: blurb-it[bot] <43283697+blurb-it[bot]@users.noreply.github.com>
Co-authored-by: Victor Stinner <vstinner@python.org>
* Add DICT_UPDATE and DICT_MERGE bytecodes. Use them for ** unpacking.
* Remove BUILD_MAP_UNPACK and BUILD_MAP_UNPACK_WITH_CALL, as they are now unused.
* Update magic number for ** unpacking opcodes.
* Update dis.rst to incorporate new bytecodes.
* Add blurb entry.
* Add three new bytecodes: LIST_TO_TUPLE, LIST_EXTEND, SET_UPDATE. Use them to implement star unpacking expressions.
* Remove four bytecodes BUILD_LIST_UNPACK, BUILD_TUPLE_UNPACK, BUILD_SET_UNPACK and BUILD_TUPLE_UNPACK_WITH_CALL opcodes as they are now unused.
* Update magic number and dis.rst for new bytecodes.
Break up COMPARE_OP into four logically distinct opcodes:
* COMPARE_OP for rich comparisons
* IS_OP for 'is' and 'is not' tests
* CONTAINS_OP for 'in' and 'is not' tests
* JUMP_IF_NOT_EXC_MATCH for checking exceptions in 'try-except' statements.
Remove BEGIN_FINALLY, END_FINALLY, CALL_FINALLY and POP_FINALLY bytecodes. Implement finally blocks by code duplication.
Reimplement frame.lineno setter using line numbers rather than bytecode offsets.
This commit contains the implementation of PEP570: Python positional-only parameters.
* Update Grammar/Grammar with new typedarglist and varargslist
* Regenerate grammar files
* Update and regenerate AST related files
* Update code object
* Update marshal.c
* Update compiler and symtable
* Regenerate importlib files
* Update callable objects
* Implement positional-only args logic in ceval.c
* Regenerate frozen data
* Update standard library to account for positional-only args
* Add test file for positional-only args
* Update other test files to account for positional-only args
* Add News entry
* Update inspect module and related tests
Since `SourceFileLoader.set_data()` catches exceptions raised by `_write_atomic()` and logs an informative message consequently, always logging successful outcome in 'SourceLoader.get_code()' seems redundant.
https://bugs.python.org/issue35024
In some development setups it is inconvenient or impossible to write bytecode
caches to the code tree, but the bytecode caches are still useful. The
PYTHONPYCACHEPREFIX environment variable allows specifying an alternate
location for cached bytecode files, within which a directory tree mirroring the code
tree will be created. This cache tree is then used (for both reading and writing)
instead of the local `__pycache__` subdirectory within each source directory.
Exposed at runtime as sys.pycache_prefix (defaulting to None), and can
be set from the CLI as "-X pycache_prefix=path".
Patch by Carl Meyer.
* Added new opcode END_ASYNC_FOR.
* Setting global StopAsyncIteration no longer breaks "async for" loops.
* Jumping into an "async for" loop is now disabled.
* Jumping out of an "async for" loop no longer corrupts the stack.
* Simplify the compiler.
Python now supports checking bytecode cache up-to-dateness with a hash of the
source contents rather than volatile source metadata. See the PEP for details.
While a fairly straightforward idea, quite a lot of code had to be modified due
to the pervasiveness of pyc implementation details in the codebase. Changes in
this commit include:
- The core changes to importlib to understand how to read, validate, and
regenerate hash-based pycs.
- Support for generating hash-based pycs in py_compile and compileall.
- Modifications to our siphash implementation to support passing a custom
key. We then expose it to importlib through _imp.
- Updates to all places in the interpreter, standard library, and tests that
manually generate or parse pyc files to grok the new format.
- Support in the interpreter command line code for long options like
--check-hash-based-pycs.
- Tests and documentation for all of the above.
Special thanks to INADA Naoki for pushing the patch through
the last mile, Serhiy Storchaka for reviewing the code, and to
Victor Stinner for suggesting the idea (originally implemented
in the PyPy project).
Handling zero-argument super() in __init_subclass__ and
__set_name__ involved moving __class__ initialisation to
type.__new__. This requires cooperation from custom
metaclasses to ensure that the new __classcell__ entry
is passed along appropriately.
The initial implementation of that change resulted in abruptly
broken zero-argument super() support in metaclasses that didn't
adhere to the new requirements (such as Django's metaclass for
Model definitions).
The updated approach adopted here instead emits a deprecation
warning for those cases, and makes them work the same way they
did in Python 3.5.
This patch also improves the related class machinery documentation
to cover these details and to include more reader-friendly
cross-references and index entries.
The __class__ cell used by zero-argument super() is now initialized
from type.__new__ rather than __build_class__, so class methods
relying on that will now work correctly when called from metaclass
methods during class creation.
Patch by Martin Teichmann.
Issue #27213: Rework CALL_FUNCTION* opcodes to produce shorter and more
efficient bytecode:
* CALL_FUNCTION now only accepts position arguments
* CALL_FUNCTION_KW accepts position arguments and keyword arguments, but keys
of keyword arguments are packed into a constant tuple.
* CALL_FUNCTION_EX is the most generic, it expects a tuple and a dict for
positional and keyword arguments.
CALL_FUNCTION_VAR and CALL_FUNCTION_VAR_KW opcodes have been removed.
2 tests of test_traceback are currently broken: skip test, the issue #28050 was
created to track the issue.
Patch by Demur Rumed, design by Serhiy Storchaka, reviewed by Serhiy Storchaka
and Victor Stinner.
Windows.
Originally only b'PYTHONCASEOK' was being checked for in os.environ,
but that won't work under Windows where all environment variables are
strings (on OS X they are bytes).
Thanks to Eryk Sun for the bug report.
Issue #26538: libregrtest: Fix setup_tests() to keep module.__path__ type
(_NamespacePath), don't convert to a list.
Add _NamespacePath.__setitem__() method to importlib._bootstrap_external.
Issue #26107: The format of the co_lnotab attribute of code objects changes to
support negative line number delta.
Changes:
* assemble_lnotab(): if line number delta is less than -128 or greater than
127, emit multiple (offset_delta, lineno_delta) in co_lnotab
* update functions decoding co_lnotab to use signed 8-bit integers
- dis.findlinestarts()
- PyCode_Addr2Line()
- _PyCode_CheckLineNumber()
- frame_setlineno()
* update lnotab_notes.txt
* increase importlib MAGIC_NUMBER to 3361
* document the change in What's New in Python 3.6
* cleanup also PyCode_Optimize() to use better variable names
Summary of changes:
1. Coroutines now have a distinct, separate from generators
type at the C level: PyGen_Type, and a new typedef PyCoroObject.
PyCoroObject shares the initial segment of struct layout with
PyGenObject, making it possible to reuse existing generators
machinery. The new type is exposed as 'types.CoroutineType'.
As a consequence of having a new type, CO_GENERATOR flag is
no longer applied to coroutines.
2. Having a separate type for coroutines made it possible to add
an __await__ method to the type. Although it is not used by the
interpreter (see details on that below), it makes coroutines
naturally (without using __instancecheck__) conform to
collections.abc.Coroutine and collections.abc.Awaitable ABCs.
[The __instancecheck__ is still used for generator-based
coroutines, as we don't want to add __await__ for generators.]
3. Add new opcode: GET_YIELD_FROM_ITER. The opcode is needed to
allow passing native coroutines to the YIELD_FROM opcode.
Before this change, 'yield from o' expression was compiled to:
(o)
GET_ITER
LOAD_CONST
YIELD_FROM
Now, we use GET_YIELD_FROM_ITER instead of GET_ITER.
The reason for adding a new opcode is that GET_ITER is used
in some contexts (such as 'for .. in' loops) where passing
a coroutine object is invalid.
4. Add two new introspection functions to the inspec module:
getcoroutinestate(c) and getcoroutinelocals(c).
5. inspect.iscoroutine(o) is updated to test if 'o' is a native
coroutine object. Before this commit it used abc.Coroutine,
and it was requested to update inspect.isgenerator(o) to use
abc.Generator; it was decided, however, that inspect functions
should really be tailored for checking for native types.
6. sys.set_coroutine_wrapper(w) API is updated to work with only
native coroutines. Since types.coroutine decorator supports
any type of callables now, it would be confusing that it does
not work for all types of coroutines.
7. Exceptions logic in generators C implementation was updated
to raise clearer messages for coroutines:
Before: TypeError("generator raised StopIteration")
After: TypeError("coroutine raised StopIteration")
Known limitations of the current implementation:
- documentation changes are incomplete
- there's a reference leak I haven't tracked down yet
The leak is most visible by running:
./python -m test -R3:3 test_importlib
However, you can also see it by running:
./python -X showrefcount
Importing the array or _testmultiphase modules, and
then deleting them from both sys.modules and the local
namespace shows significant increases in the total
number of active references each cycle. By contrast,
with _testcapi (which continues to use single-phase
initialisation) the global refcounts stabilise after
a couple of cycles.